
Tingley et al., Sci. Adv. 2018; 4 : eaar3230     1 August 2018

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 12

N E U R O P H Y S I O L O G Y

Multiplexed oscillations and phase rate coding  
in the basal forebrain
David Tingley1,2, Andrew S. Alexander2,3, Laleh K. Quinn2, Andrea A. Chiba2, Douglas Nitz2*

Complex behaviors demand temporal coordination among functionally distinct brain regions. The basal forebrain’s 
afferent and efferent structure suggests a capacity for mediating this coordination at a large scale. During perform
ance of a spatial orientation task, synaptic activity in this region was dominated by four amplitudeindependent 
oscillations temporally organized by the phase of the slowest, a thetafrequency rhythm. Oscillation amplitudes 
were also organized by task epoch and positively correlated to the taskrelated modulation of individual neuron 
firing rates. For many neurons, spiking was temporally organized through phase precession against theta band 
field potential oscillations. Theta phase precession advanced in parallel to task progression, rather than absolute 
spatial location or time. Together, the findings reveal a process by which associative brain regions can integrate 
independent oscillatory inputs and transform them into sequencespecific, ratecoded outputs that are adaptive 
to the pace with which organisms interact with their environment.

INTRODUCTION
Encoding and passage of information via rhythmic electrical activity 
patterns in the brain provide an efficient means by which to trans-
mit information, one complementary to encoding of information 
in spike rates. The brain appears to take advantage of neural os-
cillations in information transfer, and these mechanisms may be 
dysfunctional in neurological disorders such as schizophrenia and 
autism (1–5).

Oscillations in action potential discharge in connected brain re-
gions are often highly coherent across narrow frequency ranges in 
relation to specific cognitive processes such as attention (6, 7). Yet, 
prominent neural oscillations occur at a number of different fre-
quencies (8–11), and it remains to be determined how they are or-
ganized and decoded within a single recipient system. For “associative” 
brain regions integrating a wide array of inputs, it is unclear whether 
and in what form coordination of different oscillatory inputs is 
achieved. Equally, it is unclear how oscillatory input amplitudes 
may be translated into other forms of neural information, such as 
rate-coded sequences of cell assemblies (12).

Valuable clues as to how these processes might occur may be 
found in telecommunications where communication across a net-
work of devices must be accomplished along bandwidth-limited 
pathways (13, 14). Here, multiplexing of different sources of infor-
mation through distinct oscillatory frequencies [frequency-division 
multiplexing (FDM)] or through distinct timing within a predeter-
mined clock cycle [time-division multiplexing (TDM)] both provide 
powerful means by which to process independent information sources 
(15). Yet, critical questions remain as to whether specific informa-
tion transmission models, such as TDM and FDM, are applicable to 
brain networks and whether robust evidence for their utilization is 
found during performance of complex tasks.

With regard to these questions, the mammalian basal forebrain 
(BF) represents an excellent test case with which to consider how 
oscillatory inputs may be integrated and transformed into sequenced 

ensemble firing rate patterns. First, the BF receives afferents from 
a remarkably wide array of cortical and subcortical brain regions 
(16, 17), many of which exhibit oscillatory spiking activity across 
a wide range of frequency bands (18–25). Second, individual BF 
neurons exhibit stimulus-induced oscillatory spiking in vitro (26). 
Thus, at least some BF synaptic inputs, whether intrinsic or ex-
trinsic in source, are likely to be organized as oscillations and there-
fore to be observed in recordings of local field potentials (LFPs). 
Third, BF ensembles generate robust sequences of rate-coded out-
put that strongly correlate with specific epochs of tasks requiring 
stimulus detection and encoding, decision-making, and outcome 
evaluation (27). Fourth, these BF neuron ensembles operate as 
cell assemblies in vivo (28), indicating the capacity for integration 
of oscillations at both the cellular and network levels. Finally, BF 
outputs reach a wide array of targets, implying a role in coordi-
nating activity patterns among widely separated brain regions based 
on the integrated activity from an equally wide array of afferents 
(29–32).

In this study, we examined LFP and multiple single-neuron re-
cordings in BF in the context of a spatial orientation task taking place 
within a large circular arena. Over an approximately 5-s period on 
each trial, the animal proceeded through a series of epochs involv-
ing (i) scanning from the center of the arena for an expected light 
stimulus at one of many perimeter locations, (ii) locomotion to the 
perceived location of the perimeter light source and indication of its 
location via a nosepoke, and (iii) return to the arena center for po-
tential food reward. Consistent with a role for BF in integration and 
transformation of oscillatory inputs to rate-coded spike sequenc-
es, we found highly distinct and reliable peaks in BF LFP oscilla-
tions in different frequency ranges and over different task epochs. 
Many BF neurons fired with phase locking to one or more oscillatory 
components of the LFP. LFP oscillation amplitudes were also cor-
related with epoch-specific spike rates of BF neurons. Furthermore, 
for large subsets of BF neurons, task-related spiking was temporally 
organized through phase precession of spikes against theta-frequency 
(6 to 10 Hz) LFP oscillations. Together, the data reveal a complex 
role for neural oscillations in determining how BF integrates its in-
puts and coordinates responsiveness in efferent target regions such 
as the cortex.
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RESULTS
Outstanding features of BF oscillatory dynamics
Figure S1 depicts BF recording locations in four animals. Single- unit 
activity and LFPs were localized to BF regions within or bordering 
the ventral pallidum, substantia innominata, and magnocellular 
preoptic area, all regions containing cortically projecting neurons 
(33, 34). Wavelet-based examination of BF LFP power spectra across 
the full length (~30 min) of recordings revealed prominent oscilla-
tions in four distinct frequency bands (Fig. 1A). The higher-frequency 
oscillations, beta (20 to 35 Hz), gamma (45 to 65 Hz), and hi-gamma 
(80 to 150 Hz), often occurred as transient events easily visible from raw 
LFP traces (Fig. 1B). The transient nature of these higher-frequency 
oscillations produced a “heavy-tailed” power distribution that was 
evident when examining the kurtosis for each frequency band. Kurtosis 
in the theta-frequency band (8.9 ± 2.8) was less than half that for the 
three higher-frequency bands considered (beta, 30.6 ± 1; gamma, 20 ± 
2.1; hi-gamma, 30 ± 1.3). All four frequency bands were indepen-
dent of each other in their power fluctuations, as indicated by very 
low off-diagonal values in matrices correlating power at different 
frequencies to each other (Fig. 1C). Amplitude correlations among 
all four frequency bands were, in all cases, less than r = 0.08 (fig. S2). 
The observed features are hallmarks of frequency-division models 
for multiplexing where different information sources are organized 

at different frequencies and with independence in variation of their 
amplitudes.

Beta, gamma, and hi-gamma oscillatory amplitudes were tem-
porally organized across the phases of individual theta waves in all 
animals (4 to 9 Hz; Fig. 1D and fig. S2). The specific theta phase 
preferences of each frequency band differed somewhat across ani-
mal subjects, suggesting cross-animal variability in the organization 
of amplitudes relative to theta and/or cross-animal variability in 
recording electrode placements relative to oscillatory sources. We used 
Tort’s modulation index (MI) to quantify these phase/amplitude 
relationships (35). To assess the MI values expected by chance, we 
compared actual MI values to those obtained when the vectors of 
theta-frequency oscillation phases were reversed in time relative 
to the three amplitude vectors for the higher-frequency bands. 
Time-aligned MI values exceeded control, time-reversed values in 
89 to 97% of individual recordings, depending on the frequency 
band (beta, 89%; gamma, 94%; hi-gamma, 97%; fig. S2). Further-
more, MI values were, on average, an order of magnitude higher for 
the observed as compared to phase-reversed values [fig. S2, F and G; 
Kolmogorov-Smirnov (KS) test probability values less than P = 3.7 × 
10−9 for all three frequency ranges]. The presence of significant 
phase/amplitude relationships in all animals suggests that the BF theta 
rhythm is responsible for sequencing higher-frequency transients 

Fig. 1. Beta, gamma, and hi-gamma transients occur within a temporal framework that is referenced to theta. (A) Average power spectral density plots for 36 
recordings from four animals. Dark and light transparent shadings represent 1 and 2 SDs, respectively. We calculated the plots using LFP data from the entire recording 
sessions (~25 to 40 min). Power spectral density plots were also remarkably consistent across recording days in single individuals (fig. S2A). (B) Example of 2-s raw LFP 
trace (black), and z-scored power at theta (gray; 4 to 9 Hz), beta (orange; 20 to 35 Hz), gamma (blue; 45 to 65 Hz), and hi-gamma (magenta; 80 to 150 Hz) frequency bands. 
(C) Average power/power correlations for all animals across all frequencies, showing that there are multiple frequency bands that are correlated within a given range but 
independent from other frequency ranges. Color axis, 0 to 0.5. (D) Phase/amplitude coupling to theta (4 to 9 Hz) frequency. We plotted the average theta wave, aligned 
by the peaks, across all recordings as the gray line. The colormap represents the average wavelet transform relative to the peak of theta. Beta (20 to 35 Hz) and hi-gamma 
(80 to 150 Hz) frequencies increase in amplitude during troughs in theta, while gamma power (45 to 60 Hz) increases at the peak of theta oscillations. Orange, blue, and 
magenta ticks on the average theta wave indicate maximum power for beta, gamma, and hi-gamma frequency bands, respectively. Black vertical bar for theta wave, −2 
to +2 V. Values at each frequency are normalized to the highest value at the same frequency. Color axis, 0 to 1.
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through time. This feature is a hallmark of TDM (15), where differ-
ent information sources reach their target according to a temporally 
ordered sequence. Notably, theta-frequency cycling of LFP oscilla-
tory amplitudes in the gamma and hi-gamma frequency ranges is 
also a property of LFPs recorded in the hippocampus, retrosplenial 
cortex, and posterior parietal cortex (PPC) (22, 36, 37). This suggests 
that TDM in the form of theta-frequency organized gamma activity may 
be an organizing principle across many brain structures and raises the 
question, for future work, as to whether the BF is key to this organization.

Together, the foregoing analyses of full recording sessions iden-
tify distinct, amplitude-independent components of BF LFPs. Inasmuch 
as LFPs largely reflect patterns in extrinsically and/or intrinsically 
sourced synaptic inputs to a given region (38), the findings suggest 
that oscillations in BF synaptic input streams are a critical feature of 
BF input/output processes. Furthermore, the temporal structuring 
of amplitudes for the observed oscillations is compatible with both 
time- and frequency-division models for the processing of indepen-
dent information sources.

Note that time- and frequency-division models for decoding 
and/or integration of separate information sources are not mutually 
exclusive, and more specifically, both are consistent with phase 
locking of spiking activity to the phase of ongoing oscillatory in-
puts. Accordingly, in the present sample, spiking activity for a large 
subpopulation of BF neurons was robustly phase-locked to the ob-
served LFP frequency bands (Fig. 2, A and B). Across the popula-
tion, neurons varied widely with respect to their phase locking to 
the four major LFP oscillatory frequency bands, with some neurons 
showing locking to more than one frequency band and some to 
none. As quantified using the Rayleigh test for uniformity of spike 
counts by oscillatory phase, far larger proportions of neurons ex-
hibited significant phase locking as compared to the proportions 
observed following multiple shuffles of spike times (Fig. 2, B and C). 
Variability in phase locking across the population was not related to 
the basic features of spiking dynamics such as mean firing rate or 
burstiness (table S1). Together, then, it is clear that both BF oscilla-
tory inputs and BF spiking are organized in a manner consistent 
with at least two models for integration of multiplexed information.

The observation of significant subpopulations of neurons phase- 
locking to each frequency band (Fig. 2, C and D) also demonstrates 
that all four of the observed oscillatory LFP components have local 
influences and are unlikely to solely reflect volume conduction from 
other brain regions (36, 39). Further support for this contention 
comes from previous bipolar recording electrode studies demon-
strating that the beta and gamma rhythms are local oscillations 
within BF (10, 40). The proportions of neurons phase-locked to the 
theta-frequency oscillation was particularly high (>0.4). This feature 
of the data set stands in stark contrast to the proportion (~0.08) 
observed for striatal neurons in a recent publication (39) where the 
relative lack of theta-modulated spiking activity was used to argue 
that striatal LFP theta oscillations are volume-conducted and exert 
minimal influence on the neural dynamics in striatum. Further-
more, modulation of similar proportions of neurons (0.28 to 0.46) 
has previously been taken as evidence for the local influence of LFP 
oscillations (36).

Transformation of oscillatory amplitudes into spike rates as 
a function of task epoch and oscillatory frequency range
The foregoing data suggest a capacity for BF networks to efficiently 
integrate independently varying sources of oscillatory input to, in 

turn, produce spiking output, consistent with the coordination of 
responsiveness in efferent targets such as the cortex. However, a 
next critical step was to determine whether and how such a process 
is actually used during performance of a task involving a behavioral 
series associated with variation in sensory stimuli, required actions, 
and cognitive demands. Therefore, LFP and spiking activity relation-
ships during a multi-epoch spatial orientation task were analyzed to 
determine (i) whether LFP oscillations themselves are organized 
relative to the cognitive demands associated with different epochs 
of task performance and (ii) whether these signals may be integrated 
or transformed into other coding regimes as part of BF spiking 
output.

Animals completed 100 trials of a spatial orientation task where 
they identified transient light flashes on the perimeter of a circular 
environment with a nosepoke at the light location (Fig. 3A) (27). 
Across all trials associated with success in light source identification 
and reward delivery (~70 per recording), the spiking activity of single 
neurons followed stereotyped patterning relative to task epoch (Fig. 3B). 
The characterization of the significance of this spike patterning was 
the subject of a previous publication that included the analysis of all 
the spiking data used in the present work (27).

Prominent oscillatory LFP transients occurred at specific epochs 
of individual trials (Fig. 3, C and D). The timing of these transients 
was often reliable across animals (fig. S3) and across recordings 
(Fig. 3E and fig. S3). To determine whether the timing of oscillatory 
peaks was organized beyond chance levels, we compared the observed 
variation in oscillatory amplitudes to that observed following ran-
dom time shifts of task epoch versus LFP data. For each recording, we 
used multiple random offsets (100) of task epoch versus oscillatory 
amplitude vectors. For each frequency at each task epoch, Fig. 3E 
(right) depicts the proportion of recordings for which the observed 
mean values for oscillatory amplitudes fell outside the 95th percen-
tile of the randomized data distributions. Notably, most of the pre-
dominant clusters in this mapping overlap with the major peaks 
and troughs in oscillatory amplitudes in Fig. 3E (left), including (i) 
the gamma-range cluster found subsequent to light flash as animals 
locomoted to the perimeter to execute a nosepoke, (ii) the strong 
beta-range cluster and hi-gamma depression seen subsequent to 
nosepoke and during locomotion back to the arena center, (iii) the 
beta-range cluster found just after reward obtainment, and (iv) theta- 
frequency amplitude increases associated with locomotion to and 
from the nosepoke locations at the arena perimeter.

Notably, oscillatory amplitude changes do not parallel the changes 
in the presence/absence of locomotor or consummatory behavior 
across task epochs. For example, beta and gamma oscillations peak 
for only a fraction of the task epochs associated with locomotion, 
and beta oscillations peaking upon reward obtainment do not persist 
over the full time period (past epoch 540) during which the animal 
consumes the reward. Thus, reference to potential artifacts associated 
with specific motor behaviors cannot explain the independent oscil-
latory LFP components identified in Fig. 1. Instead, their distribution 
across task epochs evidences their relationship to the variations in 
experience and cognitive processing associated with performance of 
the task.

The finding that both neural spiking and LFP oscillations follow 
stereotyped task epoch–specific patterns raises the critical question 
as to whether a dynamic coupling between LFP oscillation ampli-
tudes and single-neuron firing rates is found across task epochs. 
Direct evidence for this was found in the trial-by-trial correlations 
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Fig. 2. Individual BF neurons phase-lock to specific frequency bands. (A) For each example neuron (columns), there are four plots (rows) that show the spike time 
histograms relative to the phase of theta, beta, gamma, and hi-gamma oscillations. Colored boxes map onto the colored dots in (B). (B) For each neuron, we calculated 
resultant vectors for the distribution of phase angles at spike times and for randomized spike times (average of 100 iterations). Scatterplots depict the actual resultant 
vector (y axis) and the average resultant vector with randomized spike times (x axis) for each neuron. Red lines indicate a slope of 1, and colored dots map onto the colored 
outlines in (A). Light green, blue, teal, and yellow dots correspond to strongly phase-locked neurons for theta, beta, gamma, and hi-gamma, respectively; while magenta, 
orange, red, and dark green dots correspond to neurons with weak or no modulation for theta, beta, gamma, and hi-gamma, respectively. (C) For each neuron, we then 
used Rayleigh’s test for nonuniformity to determine whether spike times were uniformly distributed or locked to particular phases of theta, beta, gamma, or hi-gamma 
oscillations. The proportion of neurons with P < 0.05 is represented as the black dots for each frequency band. The mean proportion of neurons with P < 0.05 when spike 
times are randomly shuffled (100 iterations; error bars are ±3 SDs) is shown in red. (D) The proportion of neurons with significantly nonuniform spike phase distributions 
for one, two, three, or four of the observed frequency bands is shown as black dots. The proportion of neurons with P < 0.05 for one, two, three, or four frequency bands 
when spike times are randomly shuffled (100 iterations; error bars are ±3 SDs) is shown in red.
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between firing rate and oscillation amplitude across the power spec-
trum (Fig. 3, E and F). Across trials, the amplitudes of the dominant 
LFP oscillations at any given task epoch were predictive of the firing 
rates exhibited by the concurrent population of highly active neu-
rons. A total of 84.8% of firing rate/LFP power correlations were 
significantly reduced (KS tests with a threshold of P < 0.05) when 
trial order was shuffled, suggesting that the LFP oscillatory strengths 
directly modulate BF neuron firing rates (that is, BF outputs) in dif-
ferent frequency bands (fig. S4). Effectively, the result evidences an 
integration of oscillatory input strengths and, further, a transforma-
tion of this information into rate-coded spiking output. As shown 
previously, these BF outputs can drive the responsiveness and pat-
terning of firing in BF target structures, such as the cortex, in a highly 
subregion-specific manner (40–42).

A simple feed-forward entrainment of spiking activity could ex-
plain the results of the foregoing analyses. In such a model, the in-
creased spike rates associated with frequency-specific increases in 
oscillation strength simply reflect the strength of excitatory rhyth-
mic inputs. Alternatively, correlations of task epoch–specific firing 
to specific LFP oscillatory amplitudes could reflect integration of 
oscillatory synaptic inputs in the absence of increased rhythmicity 
in firing. Therefore, we examined the relationship between phase 
locking (as described in Fig. 2) and power-rate correlations (as de-
scribed in Fig. 3F). A total of 56% (438 of 780 neurons) of the BF 
population are significantly phase-locked to at least one LFP oscil-
latory frequency band, while 67% (529 of 780) of the same BF popu-
lation have power-rate correlations greater than 0.15 for at least one 
frequency band. With a simple entrainment model, the degree of 

Fig. 3. Neuronal firing is correlated with the oscillation amplitude of specific frequency bands. (A) Example tracking data from a single trial (left) and 24 recordings 
(right). We detected the head location via two head-mounted light-emitting diodes (LEDs) (black dots). Green, cyan, magenta, and red dots indicate the head location 
during the light flash, nosepoke, plate cross, and reward location, respectively. (B) Example spike trains from 45 simultaneously recorded BF neurons across a single trial. 
(C) Raw LFP trace from the same example trial as in Fig. 2B. (D) Wavelet transform of LFP trace in Fig. 2C. Note the gamma and beta transients after the light flash and 
nosepoke, respectively (color axis, 0 to 1; maximum normalization performed individually for each frequency bin). (E) Left: Average wavelet transform of LFPs recorded 
during the selective attention task. Changes in LFP power during the task can be observed across all four frequencies: theta (4 to 9 Hz), beta (20 to 35 Hz), gamma (45 to 60 Hz), 
and hi-gamma (80 to 150 Hz). All frequencies (rows) are individually maximum-normalized (color axis, 0 to 1) to visualize changes across the spectrum of frequencies 
present. Right: Proportion (color axis, 0 to 1) of recordings with LFP power fluctuations that were significantly different from equal length segments randomly selected 
from the recording for all frequencies (1 to 150 Hz) and task epochs (1 to 540 Hz). Note that both significant increases and decreases (hi-gamma during return) in power 
are observed during specific task epochs. KS tests thresholded at P < 0.05. (F) Left: Mean firing rates for 780 BF neurons. Each row is the average firing rate (~70 trials) for 
a single neuron; the population is sorted by the point of maximum firing during the selective attention task (color axis, 0 to 1; with each maximum normalization per-
formed individually for each row/neuron). Right: Neurons with specific firing patterns, relative to epochs of the selective attention task, correlate with specific frequency 
bands in the LFP (left). For each trial, we correlated the cross-epoch firing rate vector for each neuron (Pearson’s product-moment correlation) with the wavelet transform 
of the LFP across the same epochs. These correlations are then averaged across trials, generating a matrix where the y axis is the neuron number (1 to 780) and the x axis 
is the LFP frequency (1 to 150 Hz). The rows of this correlation matrix are then sorted to match the order of (E), maximum-normalized, and smoothed with the nearest 30 
neurons (moving window along the y axis; color axis is between 0 and 1). For comparison with correlation values expected by chance, see fig. S4. Black vertical lines [across 
(E) and (F)] mark the light flash, nosepoke, plate cross, and reward, while the black horizontal lines [across (E) and (F)] mark the neurons with peak firing rates closest to 
these behaviorally defined events.
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phase locking (that is, length of the resultant vector) should be di-
rectly related (for example, correlated) to the strength of correlation 
between a neuron’s firing rate and the associated amplitude of LFP 
oscillations at a given frequency. However, we found only weak re-
lationships between resultant lengths quantifying phase locking and 
power-rate correlation values (Pearson’s correlations for strength of 
phase locking versus LFP power/firing rate: theta, r = 0.142; beta, r = 
0.005; gamma, r = 0.023; hi-gamma, r = −0.034; n = 780). This result 
strongly suggests that rhythmic entrainment of BF neuron spiking 
to specific LFP oscillations and transformation of LFP oscillatory am-
plitudes into spike rates are two independent coding processes, both 
of which are observed in the BF neuron populations examined here. 
The former (entrainment) preserves the rhythmic temporal organi-
zation of its synaptic inputs. The latter (transformation of LFP ampli-
tudes into spike rates) essentially filters out fine temporal structure but 
retains information regarding the strength of LFP oscillations.

Taking various categorization approaches leads to the same result. 
Neurons were clustered into three groups according to either task 
phase–specific firing (Fig. 3F, left column) or LFP oscillatory ampli-
tude versus firing rate correlations (Fig. 3F, right column). In no case 
did any cluster of neurons show significantly greater phase locking 
to any of the four frequency bands examined (table S2). This demon-
strates that task epoch–associated increases in firing rate, and LFP power 
versus spike rate correlations, are not well related to the frequency-
specific phase locking of BF neurons. Thus, the transformation of 
LFP oscillatory amplitudes into action potential firing rates is inde-
pendent from the degree of phase locking within BF neurons.

Theta phase precession of BF spiking yields  
spike sequencing
The aforementioned evidence for transformation of oscillatory in-
puts into rate-coded outputs does not preclude a temporal organi-
zation or sequencing of BF spiking outputs. Combined temporal and 
rate coding schemes are prominent in the spiking output of other 
brain systems (43). We therefore examined whether BF output adheres 
to a precise sequencing of spiking activity at a finer temporal scale. 
The analysis focused on BF spiking relative to the theta-frequency 
component of the BF LFP for several reasons. First, in the present 
data set, the theta rhythm provides a temporal framework against 
which beta, gamma, and hi-gamma oscillations are organized (Fig. 1D). 
Second, theta oscillatory activity was present throughout most epochs 
of the task (Fig. 3E and fig. S4A). Third, modulation of BF spiking 
according to theta-frequency LFP oscillations was found in greater 
than 40% of all neurons (Fig. 2C). Finally, the theta rhythm in brain 
regions such as the hippocampus provides a framework for pre-
cisely sequenced activity patterns representing trajectories through 
space (44–46).

Given the considerations listed above, we examined the possibility 
that BF output is sequenced relative to LFP theta oscillations in a 
similar fashion to that of the place-specific firing of hippocampal 
neurons. To do so, we quantified the dynamic relationship between 
BF neuron spiking and phases of the ongoing BF LFP theta-frequency 
oscillation across individual time periods associated with peaks in 
spike firing. These time periods were defined by rate increases 
above 50% of the maximum observed spike rate persisting for at 
least 10 consecutive epochs of the same spatial orientation task de-
scribed in Fig. 3A. Spiking activity associated with these discrete 
task epoch–specific increases in firing often exhibited phase preces-
sion relative to the LFP theta rhythm (Fig. 4, A and B). To ensure 

that this result was not epiphenomenal to theta phase resets or shifts 
at specific task epochs, we excluded all BF firing fields that over-
lapped with any task epoch with a nonuniform theta phase distribu-
tion from the precession analysis. Such instances were relatively rare 
(Fig. 4C). Thus, a subpopulation of BF neurons exhibits reliable pat-
terning of spiking activity relative to phases of theta-frequency oscil-
lations across task epochs associated with robust increases in spike rate.

Even for individual neurons, the strength of correlation between 
theta phase of firing and task epoch progression was variable (Fig. 4D). 
Across the population of all neurons and all instances of discrete 
firing rate increases, the proportion of neurons exhibiting phase 
precession at each task epoch was well above (two to four times) 
that expected by chance, as assessed through multiple randomiza-
tions of phase versus epoch (Fig. 4E). This result was specific to the 
theta-frequency oscillations of BF LFPs. In analyses wherein we ex-
amined the potential for phase precession against beta and gamma 
rhythms, the number of neurons exhibiting significant correlations 
was very near that observed following randomization of the oscilla-
tory phases associated with each spike (Fig. 4E).

Critically, phase precession of BF neuron spiking to LFP theta 
oscillations also generated the expected temporal offsets in cross- 
correlated spiking activity of neuron pairs whose firing peaks relative 
to task epoch were offset (fig. S5). Thus, phase precession yields 
precise sequencing among the spike firing times of BF ensembles on 
the time scale of tens of milliseconds. Such sequencing is coincident 
with the correlated variation in frequency- and task epoch–specific 
firing rates and LFP oscillatory amplitudes. Thus, the spike sequencing 
component of phase precession may, in particular, be supportive of 
learning processes dependent on the BF (47) in that such temporal 
sequencing lies at the core of spike timing–dependent plasticity (48).

Notably, phase precession in the BF did not present according to 
progression through space, as seen for hippocampal neurons in navi-
gating animals, nor according to absolute time, as has been seen 
during rapid eye movement sleep and salient behavioral events 
(Fig. 5 and fig. S6) (49–51). Instead, significant phase precession was 
seen in the largest proportion of neurons when the theta phases of 
individual spikes were mapped against the concurrent progression 
of the animal through the task epochs associated with prominent 
spike rate increases. Thus, phase precession was adaptive to trial- to-
trial fluctuation in intervals between major task events such as stimulus 
onset, choice, and reward obtainment. The result implies that, across 
trials, the theta phase–specific firing of BF ensembles progresses in 
step with the progression of the animal through epochs of the task.

DISCUSSION
Together, the foregoing data demonstrate that associative brain re-
gions, such as BF, use multiplexing schemes resembling those used in 
telecommunications to process converging but independent sources 
of information. Convergence of signals in the cortically projecting 
BF regions recorded in this work arises from multiple neuromodu-
latory, brainstem, hypothalamic, and cortical sources. As such, Heimer 
and colleagues (52) described the BF as a macrosystem using the term 
“Perestroika,” in part referring to its potential to restructure these 
multiple inputs and transmit an integrated response to the cortex. 
The following is one method by which this anatomically predicted 
function might be accomplished. Multiple subsystems with distinct 
behavioral roles and potent oscillatory signals converge on various 
subpopulations of neurons in the BF (33). Multiplexing these inputs, 
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in both time and frequency, allows for a steady communication 
stream to the cortex that can, in turn, be demultiplexed by the cor-
tex. Subregional differences in outputs across the BF have been dis-
tinctly identified (34), with little knowledge of the impact on the 
defined cortical outputs (17). The demonstrated ability of the BF to 
provide a temporal framework for the cortex provides a clue as to 
how the inherent architecture results in a functional organizational 
structure. Given that the BF regions from which we obtained re-
cordings contain multiple adjacent nuclei (with projections that 
reach most subregions of the cortical mantle) and given inherent 
difficulties in identifying the specific sources of LFP oscillations, 
the present study can speak clearly to the issue of temporal dynamics 
in BF. Nevertheless, the present work is limited with respect to deter-
mining which oscillatory components may be associated, or not, with 
specific input/output circuits.

Across the population of BF neurons, independently varying os-
cillatory afferent inputs are integrated to produce both temporal 
oscillation in spiking outputs and arrhythmic, rate-coded spiking 
outputs. The correlation between LFP oscillatory amplitudes and 
firing rates provides critical evidence for naturally occurring trans-
formations between temporal coding and rate coding mechanisms 
for processing and transfer of neural information. Rate-coded spiking 
output was also organized temporally in the form of specific spike 
sequences organized through precession of phase-specific firing against 
the BF LFP’s persistent theta-frequency component (Fig. 4). Unlike 
higher-frequency oscillations, theta-frequency amplitude in the present 
data set was related to task epochs associated with running behavior 

(that is, the light flash through to reward obtainment periods). As such, 
the observed theta oscillations may well have been coherent with 
theta oscillations in the hippocampus. This interpretation is consistent 
with interconnectivity of our BF recording locations (ventral pallidum 
and substantia innominata) with the septal nucleus, an important 
source of hippocampal theta rhythms. It is also consistent with a 
previous work showing that ventral striatal spiking activity exhibits 
phase precession against hippocampal theta-frequency oscillations 
(23). Such phase-specific precision in firing indicates that the theta- 
frequency LFP oscillations in the present recordings, while quite 
possibly influenced by volume conduction from the hippocampus, 
are nevertheless a strong determinant of spiking activity. This fea-
ture of the data evidences a strong and local influence on the spiking 
activity of BF neurons in the ventral pallidum. Similar results have 
been obtained in examining a role for theta-frequency oscillations in 
organizing the spiking dynamics of neurons and gamma-frequency 
LFP oscillations in the basolateral amygdala (25).

Phase precession of spiking across the population was stronger 
when considered as a function of the animals’ progression through task 
epochs than when considered as a function of progression through 
the absolute times or distances associated with firing rate increases 
(Fig. 5). Thus, the ultimate BF output follows an abstract chunking 
process that reflects and/or dictates progression through a behavioral 
task, rather than the absolute time or space within which the task 
occurs. Accordingly, BF spiking has been causally linked to the tim-
ing of specific behaviors (53). More generally, similar time- varying 
progressions through segmented activity states have been seen in 

Fig. 4. BF neurons theta phase precess across task epochs. (A) Scatterplots, for five example cells, of spike times relative to LFP theta phase (y axis) and task epoch 
(x axis). To aid visualization, theta cycles are repeated three times on the y axis, and colored arrows depict behavioral events on the x axis (green, light; cyan, nosepoke; 
magenta, plate cross; red, reward). Above the scatterplots, blue lines represent the average firing rate for each neuron across the selective attention task (normalized to 
maximum rate; y axis is 0 to 1). (B) Spike density heat maps of the data given in Fig. 3A. (C) Theta phases are uniformly distributed across task epochs. Circular SDs of theta 
phases are plotted in black, and those expected by chance are plotted in red (10× shuffled; bounded line is a 99% confidence interval). Green dots depict the few task 
epochs with nonuniform theta phase distributions. (D) Example cell #3 is depicted again with circular-linear correlations plotted as the slope for each of its firing fields 
(epochs 1 to 138, 185 to 251, and 291 to 502) (see Materials and Methods for firing field definition). Note that its second and third firing fields display strong circular/linear 
correlations between theta phase and task epoch. (E) Proportion of neurons that are active (>50% maximum firing rate) and also exhibiting significant phase precession 
as a function of task epoch. For each task epoch (x axis), all significant theta precessing firing fields with centers of mass within ±10 epochs were summed (y axis). Gray 
line indicates precession relative to 4- to 9-Hz theta. Orange, blue, and magenta lines indicate precession relative to beta, gamma, and hi-gamma, respectively. Red line 
indicates the proportion of neurons expected by chance to be precessing at each task epoch relative to 4- to 9-Hz theta.
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cortical (54, 55) and subcortical structures (56, 57) that integrate mul-
tiple sources of information. In this way, processing of information 
in large-scale networks, such as those in which the BF participates, 
may proceed with some level of independence from the timing of 
stimuli and actions. Such a level of abstraction may be a critical prop-
erty for the adaptive flexibility observed in mammalian nervous sys-
tems and the inflexibility observed with BF damage (58, 59).

Across multiple epochs of the spatial orientation task, BF gener-
ated highly specific and varying combinations of oscillatory input, 
as well as orthogonal combinations of ensemble spiking output. 
With respect to temporal organization, BF output is a mixture of 
spiking entrained to LFP oscillations, nonentrained spiking that 
nevertheless reflects oscillatory input amplitudes, and specific multi-
neuron spike sequences that result from phase precession of spiking 
against the LFP theta rhythm. Together, all of these features of BF 
neural dynamics are consistent with the implication of BF networks 
as key to driving the spatiotemporal coordination of cortical activity 
required to meet a wide range of cognitive demands (11, 41, 60, 61). 
BF output itself reflects an integration and transformation of oscil-
latory synaptic inputs into sequenced firing rate outputs, and this 
process is highly dynamic with respect to oscillatory frequency and 
to the evolution of cognitive demands associated with task perform-
ance. Furthermore, the BF and its cortically projecting constituents 
have been known to be vital for normal cognitive function, and its 
degradation has been linked to neurodegenerative disease, deficits 
in attention, learning impairments, general dementia, and age-related 
cognitive decline (62–64). Thus, it is likely that this complex set of 
dynamics lies at the core of multiple cognitive processes and that its 
dysfunction may explain why there are such wide-ranging physio-
logical and cognitive impairments associated with damage to this 
region in humans and animals (65–67).

MATERIALS AND METHODS
Some of the methods described below are similar to methods used 
in a previous study (28).

Subjects
All experimental protocols adhered to the Association for Assessment 
and Accreditation of Laboratory Animal Care International guide-
lines and were approved by the University of California, San Diego 
Institutional Animal Care and Use Committee and Animal Care 
Program. Four adult, male Long-Evans rats served as behavioral 
subjects. Rats were housed individually and kept on a 12-hour light/
dark cycle. Before experimentation, the animals were habituated to 
the colony room and handled daily for a period of 1 to 2 weeks. 
After this period, animals were placed on food restriction until they 
reached 85 to 90% free-fed weight. Water was available continuously. 
Rats were required to reach a minimum weight of 350 g before surgery 
and subsequent experimentation.

The subjects examined in the present work represent the subset 
of those included in previous publications (27, 28) whose LFPs were 
recorded and free of obvious artifact. As such, the data relating spik-
ing activity to task epoch was reported in a previous work (27), and 
the experimental methodology described in those publications was 
identical to that presented here.

Visuospatial attention task
Each day, animals completed 100 trials of a spatial orientation task 
in a circular arena with a 1.2-m diameter (Fig. 3A). All analyses pre-
sented in this study were conducted on data collected during the 
performance of this single task. Along the circumference of 
the arena were 36 light ports, located at 10° intervals and standing 
6.5 cm above the arena floor. Animals were trained by approxima-
tion to remain in a 25-cm circular region in the center of the arena 
and scan the arena boundary for a light flash (~150 ms) at a single 
location. The trial-to-trial probability of a light flash at any given 
location was defined by a “center” light that is most probable and 
one of two normal distributions surrounding it (1.25 and 3 SDs). 
Only one distribution was used on any given recording day, and 
across days of testing, a single one of these distributions was repeat-
edly used such that several neurophysiological recordings could 
be obtained under asymptotic levels of performance. Once several 

Fig. 5. BF phase precession is relative to task epoch progression, not absolute time or spatial location. (A) For each neuron, we compared the firing field with the 
maximum circular linear correlation (y axis) with the average circular linear correlation when theta epochs were randomly shuffled across spike times (mean of 100 itera-
tions; x axis). Circular/linear correlations are consistently larger for actual task phase precession than for theta phase shuffled data. Green dots indicate neurons with P < 
0.05 for a one-sample t test between actual and shuffled data (123 of 780 neurons) (B) Rather than task epochs as in Fig. 5A, we used absolute time relative to trial onset 
as the linear variable for precession (see fig. S6 for example neurons). Green dots indicate neurons with P < 0.05 for a one-sample t test between actual and shuffled data 
(84 of 780 neurons). (C) Rather than task epochs as in Fig. 5A, we used cumulative distance traveled from the trial start as the linear variable to test for phase precession 
(see fig. S6 for example neurons). Cumulative distance was calculated as the summed Euclidean distance between each position tracking frame from the start of the trial 
to the frame at which a spike occurred. Green dots indicate neurons with P < 0.05 for a one-sample t test between actual and shuffled data (89 of 780 neurons).
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recordings were obtained under one distribution, the other distri-
bution was used.

Light flash initiation only occurred when the animal was in the 
center ring and oriented such that the light would fall within a 120° 
space surrounding its longitudinal axis. Thus, the flash location was 
not always directly in front of the animal but always within its field 
of view. Upon detection of a light flash, animals were required to 
travel to the arena perimeter and to identify the spatial location of 
the light flash with a nosepoke. Upon returning to the arena center, 
animals were rewarded for correct light source identification with 
half of a piece of sweetened cereal (General Mills). Incorrect identi-
fication yielded no reward. Trials associated with failure to travel to 
the perimeter following light flash (“no-gos”) constituted less than 
5% of all trials in any animal once asymptotic performance was reached; 
these trials were not included in the present work’s analyses.

After the animal exhibited correct performance on >70% of trials 
across several days of training, recording experiments were initiated. 
At this point, the subject underwent surgery for the implantation of 
chronic BF and PPC single-neuron recording wires.

Surgery
Rats were implanted with arrays of eight stereotrodes (25-mm tung-
sten with polyimide insulation; California Fine Wire) built into 
custom- fabricated microdrives. These three microdrive arrays were 
implanted in each animal, with two targeting left and right BF 
[anteroposterior (AP), 0.2 mm; mediolateral (ML), 2.8 m; ventral (V), 
7.0 mm] and one targeting right PPC (AP, −4 mm; ML, 2.5 mm; 
V, 0.5 mm; three animals) or one targeting right BF and two target-
ing left and right PPC (one animal). Dorsal-ventral coordinates were 
chosen to permit slow movement of the recording wires into the 
desired BF (V, 8 to 9 mm) and PPC (V, 0.8 to 1.5 mm) target areas 
across days in which the animal was reintroduced to the task. PPC 
neurons were analyzed previously and were not examined in the con-
text of this study (27).

Recordings
All electrodes were bundled into custom-built microdrives permit-
ting movement in 40-m increments in the dorsal-ventral axis. Signals 
were amplified at the level of the headstage connection (20×), again 
at a preamplifier stage (50×), and then to varying degrees, as appro-
priate, at the amplifier stage (additional 1 to 15×). LFP signals were 
generated by referencing one or more of the BF recording wires to a 
skull screw overlying the cerebellum. LFPs were digitized at 1 kHz 
and bandpass-filtered between 1 and 450 Hz. Unit signals were 
bandpass-filtered (450 Hz to 8.8 kHz). Candidate spike waveforms 
(exceeding an amplitude threshold) were recorded using SortClient 
(Plexon) at a sampling frequency of 40 kHz. Waveform discrimina-
tion into individual units was carried out manually using Plexon’s 
Offline Sorter software.

The animal’s position within the environment was detected from 
overhead images of the arena at 60 Hz using Plexon’s CinePlex 
Studio. Tracking software picked up light from two differently col-
ored LEDs clipped to a connector, embedded in the dental acrylic used 
to fix microdrives to the animal’s skull.

Stereotrode bundles were adjusted across days as necessary to 
maintain the collection of large numbers of high-amplitude action 
potential waveforms (as many as 60 per day). Data included in the 
present set of analyses were, for all individual animals, associated 
with different depths (minimum of 80-m separation) to greatly 

minimize the possibility that single neurons could contribute to the 
full data set more than once.

Behavioral event analysis
Position tracking data were analyzed using a custom MATLAB 
(MathWorks) guided user interface. Each trial was closely examined 
to identify the position point associated with initial movement to 
the light source and the sharp point of trajectory reversal associated 
with nosepoke. The time points at which the animal crossed back 
over the perimeter of the center plate and at which the animal 
stopped to consume reward were determined through semiautomated 
analysis of positional data using MATLAB. Trials in which the animal 
did not make ballistic, direct runs to and from the site of a nosepoke 
were not included so that trial-to-trial variability in task epoch dura-
tions were kept minimal relative to task epoch mean durations.

Time normalization and firing rate calculation
To enable comparison of neuronal activity across all trials and all 
behavioral epochs, we used a time normalization procedure to align 
neural data for light onset, nosepoke, center plate return, and stop/
reward times. Time normalization was accomplished by identifying 
the average time between light flash to nosepoke, nosepoke to center 
return, and center return to stop/reward across all trials and animals. 
On average, it took the rodent 0.69 s to traverse to the light port after 
the light flash. Animals took a mean of 1.41 s to return to the plate 
after nosepoke and 0.54 s to stop to consume reward after having 
crossed onto the center plate. We divided these periods into ~80- to 
90-ms time epochs (that is, bins) for each trial. There were slight 
deviations from these averages for all animals across trials; thus, the 
epoch duration was allowed to fluctuate slightly to allow for the be-
haviorally significant events to consistently occur at the same epoch. 
A 1-s period before light flash and after stop/reward was included in 
each trial to include stimulus expectation and reward consumption 
time periods, respectively. By this process, we obtained vectors of 
time-normalized data in which a pre–light flash period comprised 
epochs 1 to 12, light-flash to nosepoke comprised epochs 13 to 20, 
nosepoke to center plate return comprised epochs 21 to 36, center 
plate return to stop/reward comprised epochs 37 to 42, and a post- 
trial reward period comprised epochs 43 to 54. For further details 
on this time normalization procedure, see (27).

Histology
Animals were perfused with 4% paraformaldehyde under deep anes-
thesia. Brains were removed, cut into 50-m sections, and Nissl-stained. 
The point of deepest electrode penetration was used in conjunction with 
microdrive adjustment records to determine the range of depths sam-
pled for any given stereotrode bundle placement. All analyses in the 
present work correspond to histologically identified recording sites in 
the ventral pallidum and substantia innominata subregions of the BF.

Amplitude/amplitude modulation
The LFP recorded on a single electrode was used for all recordings 
from each animal. For each frequency band, 1 to 150 Hz in 1-Hz 
increments, a bandpass Butterworth filter (order, 3) was used with 
a 2-Hz frequency range (1 to 3 Hz, 2 to 4 Hz, 3 to 5 Hz, etc.). These 
signals were then rectified and smoothed using a moving quadratic 
mean with a window length two times greater than the maximum 
frequency, leading to the power envelopes for each frequency band. 
Correlations were then taken for every pairwise combination of 
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frequency band power envelopes from 1 to 150 Hz, resulting in a 
150-by-150 element correlation matrix (Fig. 1C and fig. S2C).

Phase/amplitude modulation
LFPs were bandpass-filtered for theta frequency (4- to 9-Hz Butter-
worth filter; order, 3), and all peaks in the oscillation were identified. 
These peaks in theta oscillation were then aligned and averaged, 
generating the average theta oscillation (gray plot in Fig. 1C). The 
same alignment of peak locations was then used to average wavelet 
transforms for frequencies from 20 to 150 Hz. This resulted in an 
average wavelet transform relative to the peaks in theta oscillations 
(Fig. 1D). To further quantify these phase/amplitude relationships, 
we used Tort’s MI, which was defined as the Kullback-Leibler dis-
tance between the observed amplitude distribution and a uniform 
distribution divided by the maximal possible entropy (35). Values 
for this measure range from 0 for a uniform distribution to 1 for a 
Dirac-like distribution.

LFP “rate mapping”
A common procedure with single-unit recording is the discretiza-
tion of recorded spikes to time (or space) epochs of a particular size, 
allowing for a mean firing rate to be calculated for individual epochs, 
also known as rate mapping. To compare LFP data with single- unit 
spiking data, we implemented a similar mapping procedure for both 
data types. For recorded action potentials, a previously described 
time normalization procedure was used to calculate firing rates 
across phases of a behavioral task (27). First, the specific moments 
on each trial associated with light flash, nosepoke, return to the center 
plate, and stopping to obtain reward were identified. Next, the time 
intervals between each were determined, and the average of these 
across trials was calculated. Each time interval was then divided into 
an equal number of “normalized time” epochs whose durations in 
absolute time differed slightly across trials. Finally, spike rates for 
each normalized time epoch were calculated. Note that the number 
of time epochs for different intervals (for example, light flash to 
nosepoke versus nosepoke to plate cross) varied according to the 
average duration of those intervals such that all time epochs were 
approximately 90 ms in duration.

To compare the LFP data to this time-normalized spiking data, 
we first applied a continuous one-dimensional wavelet transform to 
the LFP data, allowing for the separation of fluctuations in power 
across a wide (1 to 150 Hz) frequency range. Once the wavelet matrix 
was calculated for each recording, the series of LFP amplitude values 
occurring between behavioral events for each trial were down-sampled 
by averaging to a predetermined number of time epochs. This al-
lowed for a uniform trial length of 540 bins across all trials for all 
recordings while preserving the fluctuations in LFP frequency power 
across epochs of the behavioral task. To avoid loss of transient high- 
frequency information, the LFP data were mapped onto 540, instead 
of 54, epochs. All comparisons and correlations between LFP and 
spiking activity were made after the spiking activity was interpolated 
from 54 to 540 bins.

Spike/LFP power correlations
For each neuron, LFP power on each trial (for each frequency band 
across task epochs) was correlated with the neurons’ firing rate. 
These correlation values were then averaged across trials, leading to 
a 150 (1-Hz increments in frequency; 1 to 150 Hz)–by–1 length vector 
of average correlation values for each neuron. Each vector (corre-

sponding to one neuron) was normalized by its maximum average 
value and sorted in the same order as the firing rates in Fig. 3F (left). 
Figure 3F (right) was a smoothed (average of 30 nearest neighbors; 
y axis) heat map of this matrix (780 neurons by 150 frequency bands). 
As a control, trial order was shuffled between firing rates and LFP 
power (fig. S4).

Phase precession
Neuron firing fields were defined as all task epoch sequences 
where a neuron’s firing rate was greater than 50% of that neuron’s 
maximum firing rate and longer than 10 consecutive epochs. For 
each spike time, the theta phase and task epoch were taken. For 
each firing field, a circular/linear correlation between theta phase 
and task epoch was taken for all spikes that occurred. As a control, 
the theta phase for each spike time was randomly selected from 
the distribution of theta phases within each recording, and the same 
circular/linear correlation was taken (25 iterations). This led to 
identical firing fields for each neuron, where the theta phase relation-
ship was effectively randomized. A two-sample t test (significance 
thresholded at P < 0.05) was then used to determine significance 
between the actual circular-linear correlations and the shuffled 
circular-linear correlations. To assess how BF neurons phase-precess 
relative to the ongoing behavior of the animal, the proportion of 
active (>50% maximum firing rate) and significantly precessing 
(two-sample t test, P < 0.01) neurons was calculated for each task 
epoch (Fig. 3F).

For comparison, theta phases for the same spike series were cor-
related with both absolute time and cumulative distance relative to 
trial start. Note that the time normalization procedure resulted in 
variations in task epoch durations across trials such that progres-
sion through epochs differed from progression through absolute time. 
The same subset of action potential times that were used to calculate 
precession relative to task epoch was also used for the time and dis-
tance calculations. Absolute time is simply the difference in spike 
time versus trial start time (here, the time of the light flash). For 
cumulative distance, the summed Euclidean distance traveled from 
the time of light flash to the time of each spike’s occurrence was 
determined. Circular/linear correlations between time and theta phase 
or distance and theta phase were then taken for all spikes within a 
given firing field.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/eaar3230/DC1
Fig. S1. Summary of LFP and multiple single-neuron recording sites in BF.
Fig. S2. Theta, beta, gamma, and hi-gamma frequencies are observed across multiple 
recording days and animals.
Fig. S3. Average wavelet transform of LFPs during selective attention task.
Fig. S4. Firing rate/LFP correlation control.
Fig. S5. Cross-correlogram offsets for simultaneously recorded neuron pairs correlate with 
distance between task epochs associated with maximal firing.
Fig. S6. BF neuron theta phase precession relative to task epoch, time, and space.
Table S1. Phase-locking strengths do not correlate with burstiness or firing rate.
Table S2. Phase-locking resultants do not correlate with task phase–specific firing or power/
rate correlations.
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