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SUMMARY

In cells, specific regulators often compete for limited amounts of a core enzymatic resource. It is 

typically assumed that competition leads to partitioning of core enzyme molecules among 

regulators at constant levels. Alternatively, however, different regulatory species could time share, 

or take turns utilizing, the core resource. Using quantitative time-lapse microscopy, we analyzed 

sigma factor activity dynamics, and their competition for RNA polymerase, in individual Bacillus 
subtilis cells under energy stress. Multiple alternative sigma factors were activated in ~1-hr pulses 
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in stochastic and repetitive fashion. Pairwise analysis revealed that two sigma factors rarely pulse 

simultaneously and that some pairs are anti-correlated, indicating that RNAP utilization alternates 

among different sigma factors. Mathematical modeling revealed how stochastic time-sharing 

dynamics can emerge from pulse-generating sigma factor regulatory circuits actively competing 

for RNAP. Time sharing provides a mechanism for cells to dynamically control the distribution of 

cell states within a population. Since core molecular components are limiting in many other 

systems, time sharing may represent a general mode of regulation.

In Brief

Cellular regulatory factors often compete for limited amounts of core enzymes. Sharing is 

typically assumed to involve statically partitioning core enzyme molecules. In contrast, using time-

lapse movies, we find that Bacillus subtilis alternative sigma factors, which compete for core RNA 

polymerase, activate dynamically in stochastic, repetitive, hour-long pulses. Using mathematical 

modeling, we show how such pulsatile competitive circuits can effectively time share, or take turns 

using, core polymerase under similar conditions. Time-sharing represents an alternative mode of 

resource sharing in cells.

INTRODUCTION

Many core cellular components are shared among distinct regulatory factors or substrates in 

the cell. For example, the proteasome is shared by multiple substrate proteins, the ribosome 

by multiple mRNA species, and core RNA polymerase (RNAP) by multiple sigma factors in 

bacteria (Figures 1A and 1B). When the shared core component is present in limited supply, 

sharing gives rise to competition between regulatory factors. At steady state, it is generally 

assumed that each substrate or factor utilizes an approximately constant fraction of core 

component molecules. However, certain regulatory systems may operate more dynamically, 

and far from a steady state. This opens up the possibility that sharing could occur in time. In 

such a time-sharing system, the core component would effectively take turns, interacting 
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predominantly with only one or a few of its many potential partner species at any given time 

(Figure 1C). Despite the familiarity of time-sharing strategies in engineered systems such as 

computers and communication networks, it is unknown whether, or how, time sharing could 

occur in cells.

In bacteria, alternative sigma factors function as subunits of the RNAP holoenzyme, 

directing it to specific sets of target promoters (Boylan et al., 1993; Helmann, 2002, 2016; 

Paget, 2015; Price et al., 2001) (Figure 1A). In many contexts, alternative sigma factors 

actively compete for limiting amounts of RNAP (Ganguly and Chatterji, 2012; Grigorova et 

al., 2006; Hicks and Grossman, 1996; Maeda et al., 2000). In addition to competition, 

alternative sigma factors are typically controlled through a multi-stage regulatory system 

with feedback. In these systems, sigma factors are negatively regulated through cognate anti-

sigma factors, which can (Cao et al., 2003; Estacio et al., 1998) prevent their association 

with core RNAP. These anti-sigma factors can in turn be inhibited by specific inputs or 

stresses to enable sigma factor activation (Gruber and Gross, 2003). Finally, sigma factors 

typically activate their own operons, which often contain the genes for both the sigma factor 

and its anti-sigma factor, creating interlocking positive and negative feedback loops (Cao et 

al., 2002, 2003; Estacio et al., 1998; Huang et al., 1999; Kalman et al., 1990; Yoshimura et 

al., 2004).

As a result of this regulatory structure, sigma factors can exhibit complex dynamics, even 

under constant environmental conditions. For example, the alternative sigma factor σB in 

Bacillus subtilis is activated in a sustained series of stochastic pulses in response to energy 

stress (Locke et al., 2011; Narula et al., 2016). These pulses represent events in which many 

σB molecules simultaneously become active, associate with core RNAP to initiate 

transcription of target genes, and then deactivate. However, σB is only 1 of 17 alternative 

sigma factors in B. subtilis (Gruber and Gross, 2003) (Table S1). It has remained unclear 

whether pulsing is specific to σB or occurs across the broader set of alternative sigma 

factors, whether multiple sigma factors pulse under the same conditions, and how pulsing 

relates to competition for core RNAP. Given that the concentration of each sigma factor 

species may change with time and that they compete with varying affinities for limiting 

amounts of core RNAP, describing and understanding the dynamics that may arise in a 

system expressing multiple sigma factors is non-trivial.

Here, we analyze the dynamics of multiple alternative sigma factors in B. subtilis cells under 

energy stress conditions at the level of individual cells. In addition to σB, we find that 

multiple other alternative sigma factors, including σD, σM, σW, and σX, also activate in 

repetitive pulses. Based on these observations, we explore the idea that RNAP could be 

shared more dynamically in time. We illustrate the principles of pure biochemical time 

sharing using mathematical models, and then ask which aspects of the alternative sigma 

factor dynamics observed in vivo may be explained by dynamic competition for RNAP, of 

which pure time sharing is a special case. Finally, we discuss how time sharing can, in 

principle, provide a mechanism for dynamically controlling the distribution of cell states or 

phenotypes within a population.
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RESULTS

Understanding the dynamics of multiple sigma factors interacting with one another through 

competition for core RNAP requires the ability to visualize their activity over time in 

individual cells. To achieve this, we constructed a set of reporter strains, each containing a 

yellow fluorescent protein gene specifically activated by one of the B. subtilis alternative 

sigma factors not involved in sporulation (Figure 1A; Table S1). Fluorescent reporters were 

chromosomally integrated at the sacA locus (see STAR Methods), and specifically 

responded to their corresponding sigma factors (Figure S1A). We analyzed these strains in a 

minimal medium containing 40 μg/mL mycophenolic acid (MPA), a drug that reduces 

cellular ATP levels and stimulates a broad energy stress response (Zhang and Haldenwang, 

2005) (Figure S1B). Visualizing fluorescent protein levels in single cells revealed markedly 

heterogeneous activation of seven alternative sigma factors in these conditions (Figure 1D). 

In contrast, the housekeeping sigma factor σA, which has higher affinity for core RNAP and 

lacks an anti-sigma factor (Rollenhagen et al., 2003), was activated in a more homogeneous 

manner, suggesting that this type of heterogeneous activation was not general to all sigma 

factors (Figures 1D, S1C, and S1D).

While the distributions of total fluorescent protein expressed from alternative sigma factor 

promoters exhibited skewed distributions with extended tails (Figure S1C), similar to those 

previously observed under conditions of pulsatile activation of σB (Locke et al., 2011), this 

cumulative readout can obscure dynamics on timescales faster than the cell cycle. Therefore, 

we computed for each cell the approximate instantaneous rate of fluorescent protein 

production from its corresponding target promoter, and corrected for photobleaching and 

dilution due to cell growth (Dunlop, 2014; Young et al., 2011) (see STAR Methods). This 

instantaneous activity should reflect the rate at which free sigma factor (not sequestered by 

its cognate anti-sigma factor) can associate with available core RNAP and initiate 

transcription at target promoters (Locke and Elowitz, 2009). It therefore depends on sigma 

factor protein levels, anti-sigma factor levels, and the availability of core RNAP.

For these experiments, we seeded cells on pads of low-melt agarose in minimal media with 

40 μg/mL MPA, and used quantitative time-lapse fluorescence imaging to analyze individual 

cells within growing microcolonies. This analysis revealed that the seven alternative sigma 

factors mentioned above were activated in a pulsatile fashion (Figures 1E and S1D; Movie 

S1). Pulses appeared to be generated stochastically, as no significant correlations were 

observed in sister cell pairs (Figure S2A), or between a parent cell and its two daughters 

(Figure S2B). Widespread stochastic pulsing of this type was not specific to MPA-induced 

stress, as stationary phase conditioned media also caused pulsing of many sigma factors 

(Figure S3A). Also, this pulsing did not require σB, a factor previously shown to pulse 

(Figure S3B) (Locke et al., 2011).

We next sought to characterize the pulse dynamics more precisely. Because pulses occur 

much less than once per cell cycle, this required analysis over many generations. 

Exponential accumulation of cells on agarose pads limits the number of generations that can 

be analyzed, and leads to non-stationary environmental conditions. To circumvent these 

issues, we turned to the mother machine, a microfluidic device that enables analysis of a 
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single cell over tens or hundreds of cell division events (Taheri-Araghi et al., 2015; Wang et 

al., 2010) (Figure 2A; Movie S2). More specifically, we used a mother machine variant 

optimized for B. subtilis that features a shallow side channel beside the main growth 

trenches to enhance diffusion of media over long distance to reach cells at the end of each 

trench (Norman et al., 2013). In the mother machine, we grew each reporter strain in 

minimal media containing 40 μg/mL MPA. Analysis of reporter dynamics revealed 

qualitatively similar dynamics as those observed on agarose pads, with five alternative sigma 

factors exhibiting pulsatile behavior (Figure 2B), with similar distributions of pulse shapes 

(Figures 2C and 2D), with typical durations on the order of 1 hr (Figure 2E), and varying 

frequencies (Figure 2F). The mean pulse showed an increase in activity relative to baseline 

activity of at least 5-fold for each sigma factor. σY and σL were not active under these 

conditions, possibly due to the more chemostatic conditions in the device and the consequent 

prevention of buildup of secreted components. Therefore, they were not considered further 

in these experiments.

To understand how pulsing affects the mode of sharing core RNAP, we constructed a 

mathematical model where sigma factor pulsing is driven by key regulatory features 

common to many alternative sigma factor systems (see STAR Methods). These features 

include two feedback loops, based on transcriptional autoregulation and inhibition by a co-

expressed anti-sigma factor, as well as activation by an input. For simplicity, we represent 

this activation process as a molecular ligand that inactivates the anti-sigma factor (Figures 

3A and S4A), although, in principle, it can be any process with double-negative logic that 

inactivates the anti-sigma in a concentration-dependent manner. This feedback structure 

occurs in all five alternative sigma factors examined in the mother machine, but has only 

been characterized in the context of σB (Locke et al., 2011). As such, the model is not 

intended to be a precise representation of any specific sigma factor system, but rather to 

explore the behaviors that such systems could generate when they are coupled through 

competition for RNAP. In particular, anti-sigma factors utilize diverse mechanisms for 

activation, and the ligand does not directly represent a specific molecular component. In 

contrast to other work modeling the control of sigma factor activities at steady state 

(Grigorova et al., 2006; Mauri and Klumpp, 2014; Narula et al., 2016), we focused on 

dynamic pulsatile behaviors.

We identified physiologically reasonable parameters (STAR Methods) that lead to pulsatile 

dynamics similar to those observed experimentally for an individual sigma factor (Figure 

3B). In this regime, pulses are initiated through a stochastic burst of ligand production. 

These bursts are assumed to be cell intrinsic based on the lack of correlation in pulsing 

between sister cells (Figure S2A; STAR Methods). The ligand pulse can suddenly reduce the 

activity of its cognate anti-sigma factor and thereby de-inhibit the corresponding sigma 

factor. Autoregulation of the sigma factor operon initially amplifies the pulse by 

upregulating expression of the sigma factor itself. Finally, the pulse eventually terminates 

itself through increased expression of the anti-sigma factor, which is part of the sigma 

operon (Figures 3B and S4B). These results show that the simple sigma/anti-sigma operon 

architecture is capable of generating pulsatile dynamics under physiologically reasonable 

conditions.
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To explore how multiple pulsatile sigma factor species interact dynamically under conditions 

of limiting RNAP, we expanded the model to include five identical, but orthogonal, pulsatile 

sigma factor systems (Figure 3C). In addition, to represent the constitutive, non-pulsatile σA 

(Figure 1E), we incorporated an additional sigma factor species with no anti-sigma factor. 

All sigma factors were coupled to one another exclusively through competition for limiting 

amounts of shared core RNAP (STAR Methods). Such competition has been established in 

previous work (Ganguly and Chatterji, 2012; Grigorova et al., 2006; Hicks and Grossman, 

1996; Maeda et al., 2000), and is further supported by experiments in which ectopic 

expression of σB repressed σW and σD activity under these conditions (Figures S5A, S5B, 

and S5C).

The model generated pulsatile dynamics for each of the alternative sigma factors, and an 

approximately constant activity for σA, consistent with experiments (Figures 3D and S5D). 

In this regime, more than 80% of core RNAP not bound to σA was occupied by one 

alternative sigma (Figure 3E). Furthermore, the sigma factors actively excluded one another, 

suppressing simultaneous pulses of multiple sigma factors (Figures 3F and 3G), and 

generating an overall anti-correlation in their activity when RNAP was limiting, but not 

when it was in excess (Figure 3H). We suggest that the regime, which does not depend on 

the use of symmetric parameter sets for the alternative sigma factors (Figure S8C), 

represents perfect time sharing.

The anti-correlations, characteristic of perfect time sharing, arise because each sigma factor 

pulse reduces the amount of core RNAP available for other sigma factors over a typical 

pulse duration (~1 hr). Subsequent termination of the pulse causes the sigma factor to 

relinquish core RNAP, allowing other sigma factors to initiate pulses (Figures S4B and 

S5D). While the overall rate of pulsing in this parameter regime is controlled by the rate of 

underlying stochastic inputs, represented in the model by ligand species, these ligands are 

uncorrelated with one another. The exclusion of simultaneous pulsing results from coupling 

between sigma factor species, which can arise only from competition for core RNAP. These 

modeling results show that time sharing dynamics can emerge from the combination of 

pulsatile activation dynamics from individual sigma factor operons and coupling through 

competition for core RNAP.

These simulations provoke the experimental question of what dynamic relationships occur 

among the pulsatile sigma factors within the same cell. To address this issue, we constructed 

a 5×5 “matrix” of strains (15 strains in total, i.e., the upper half matrix plus the diagonal), 

each containing a cyan fluorescent protein (CFP) reporter for one sigma factor, and a yellow 

fluorescent protein (YFP) reporter for a second sigma factor (Figure 4A). The matrix also 

included “diagonal” strains containing two distinguishable fluorescent reporters for the same 

sigma factor to establish the upper limit of possible correlation (Elowitz et al., 2002). 

Finally, all strains contained a third fluorescent protein (mCherry) reporter for σA activity 

(see STAR Methods). Using the mother machine, we recorded movies of individual cells 

from each of these 15 strains (Figure 4B; Movie S3), flowing minimal media containing 40 

μg/mL MPA at a constant rate into the microfluidic device. We then quantified instantaneous 

promoter activities for all reporter pairs over time in each individual cell lineage (Figure 

4C).
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To understand the dynamic relationships between each pair of sigma factors, we computed 

the cross-correlation function of each pair of CFP and YFP fluorescence traces. As expected, 

strains with two reporters for the same alternative sigma factor showed strong positive 

correlations (Figure 5A). By contrast, four of the ten off-diagonal strains showed negative 

correlation between two different sigma factors, as predicted by the model (Figures 5A and 

5B). These negative correlations occur despite the many factors expected to positively 

correlate the signals, including extrinsic fluctuations in cell growth rate and global gene 

expression parameters (e.g., transcription and translation efficiencies) (Bar-Even et al., 2006; 

Elowitz et al., 2002; Newman et al., 2006; Paulsson, 2004; Volfson et al., 2006), and the co-

activation of multiple sigma factors by overlapping stresses, including MPA (Locke et al., 

2011; Zhang and Haldenwang, 2005). The same negative correlations also appeared when 

using a “pulse-triggered averaging” analysis approach that specifically focuses on pulses 

within these time traces (Lin et al., 2015) (Figure S6). Of the remaining six pairs, five 

showed positive correlations that were significant, although substantially weaker than those 

observed for diagonal strains (Figure 5A). These will be discussed in detail below. Finally, 

one sigma factor pair showed no strong correlation in either direction. It is interesting that, 

while the positively correlated pairs exhibited more simultaneous pulses than expected if the 

two sigma factors were independent, simultaneous pulses were still rare even for the 

positively correlated pairs. This can be seen by plotting co-occurrences of pulses for all 

sigma factor pairs (Figure 5C).

Perfect time sharing, as demonstrated by the model (Figure 3H), is predicated on exclusively 

negative pairwise correlations between sigma factors and results in pulses where one 

alternative sigma factor is exclusively active (Figure 3E). In vivo, however, the appearance 

of positive and negative pairwise correlations between sigma factors is consistent with 

partial time sharing under these conditions, but also indicates a more complex and 

asymmetrical dynamical structure. This can be seen in the correlation graph (Figure 5B), 

where no two sigma factors share the same pattern of correlations with other sigma factors 

(Segrè et al., 2005). Even σB and σD, which show similar (although not identical) 

interactions with the other sigma factors, are anti-correlated with one another. We next asked 

whether the complex dynamical correlations observed here could be explained by 

competition for RNAP, or whether they require more specific regulatory interactions.

To address this question, we constructed a minimal, analytically solvable model of sigma 

factors competing for a common pool of core RNAP, dispensing with the regulatory features 

incorporated in the computational model discussed above (Figure 5D). We solved this model 

for an arbitrary number of sigma factors under the simplifying assumption of small 

equilibrium fluctuations (see STAR Methods)We obtained analytical expressions for the 

cross-correlation functions between all sigma factor pairs in terms of the binding/unbinding 

rates of the sigma factors to core RNAP and their abundances.

These results show that competitive binding interactions alone are sufficient to generate 

complex correlation graphs with mixtures of positive and negative correlations (see STAR 

Methods). For example, in the case of three sigma factors, it is possible for two of the sigma 

factors, σ1 and σ2, to exhibit positive correlations with each other, and negative correlations 

with σ3 (Figures 5E and S7A). This occurs when σ3 has slower binding and unbinding rates 
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to core RNAP compared with those of the other two. In this regime, the fraction of core 

RNAP bound by σ3 fluctuates at a timescale longer than that of the other two sigma factors. 

At shorter timescales, σ1 and σ2 are both more likely to be found bound to core RNAP when 

the fraction of bound σ3 is lower than its steady-state value, resulting in a positive 

correlation between σ1 and σ2 (Figure 5F).

Similarly, it was possible to generate complex patterns of dynamical correlations among five 

sigma factors under certain parameter regimes in the simple model (Figure 5G). The 

analytical minimal model thus demonstrates that complex correlation patterns, including 

positive correlations between certain pairs of sigma factors, can arise from competitive 

interactions alone, even without more specific regulatory interactions (although these could 

also exist in the biological system). Most critically, these results show that complex 

correlation patterns can arise from asymmetries in the parameters governing sigma factors’ 

interaction with core RNAP.

To determine whether sigma factors exhibit such asymmetric relationships with core RNAP 

in vivo, we constructed a 7 × 7 deletion “matrix” of strains. Sigma factor deletions enable 

analysis of competitive interactions without potential overexpression artifacts. Each strain in 

the matrix was deleted for one sigma factor and contained a YFP fluorescent reporter for 

another sigma factor. This matrix contained all five pulsatile strains whose correlations were 

analyzed in the mother machine, as well as σY and σL. All strains also contained a 

constitutive fluorescent protein (mCherry) to assist in cell segmentation. For each strain in 

the matrix, we grew cells in liquid minimal media containing 40 μg/mL MPA, and quantified 

sigma factor activity by acquiring static fluorescence microscopy snapshots and 

quantitatively analyzing single-cell expression levels (see “Sample Preparation for Liquid 

Culture Snapshots and Agarose Pad Movies,” STAR Methods).

If most interactions between sigma factors result from competition for core RNAP, then 

regardless of which sigma factor is deleted, removing one sigma factor should cause similar 

relative effects on the remaining sigma factors. By contrast, if interactions are dominated by 

more specific regulatory interactions, the deletion matrix would be expected to show very 

different effects for each sigma factor deletion. Analysis of the deletion matrix revealed that 

deletion of six of the seven sigma factors predominantly increased σW activity, with smaller 

effects on other sigma factors (Figures 6A, S8A, and S8B). This result suggests that 

competition plays a major role in determining sigma factor activity. There was one exception 

to this pattern: deletion of sigD increased activity of all sigma factors except σW and σX. In 

addition, the sigD deletion, unlike the others, strongly affected cell size, suggesting 

additional pleiotropic effects (Figure S8A). Together, these results suggest that competition 

is asymmetric, with σW and σD being more and less susceptible, respectively, to competition 

than other sigma factors. Deletion of σD also appeared to cause a broader set of effects on 

cell physiology compared with other sigma factors.

We next asked whether the asymmetric competition observed in the deletion matrix could 

explain the complex mixture of experimental pairwise correlations between sigma factors. 

To answer this question, we used insights from the deletion matrix (Figure 6A), and the 

simplified model of competitive interactions (Figures 5D–5G and S7), to create a hierarchy 
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of sigma factor “strengths” in the model. First, we increased the upregulated production rate 

of one sigma factor (labeled σ5) by a factor of 1.4, making it more dominant in competitive 

interactions, analogous to σD. Second, we reduced the affinity of a different sigma factor 

(σ3) for core RNAP, making it more susceptible to competition, like σW. Third, for the 

remaining sigma factors, we used two intermediate strengths, with one sigma factor 

possessing a higher affinity to core RNAP than the other two (see model parameters, set B, 

in STAR Methods). As in the simpler case described in Figure 3, time sharing dominates, 

with prevalent negative correlations between alternative sigmas (Figure 6B) and ~85% of 

pulses occurring in isolation; in only 15% of the pulses, two (or more) sigma factors were 

active simultaneously (Figure 6C).

In this model, the hierarchy of sigma factor strengths qualitatively recapitulated most of the 

experimentally observed asymmetric interactions. “Deletion” of most sigma factors in the 

model predominantly increased activity of σ3, the σW-like sigma factor, while deletion of 

σ5, the σD-like sigma factor, increased all other sigma factor activities (Figure 6D). 

Furthermore, the resulting pattern of positive and negative pairwise correlations in the model 

(Figure 6B) also resembled that observed experimentally (Figure 5A). σ5 exhibited negative 

correlations with all other sigma factors. This result matched most experimental 

observations.

The exception was the σD -σX pair, which exhibited positive correlations in the experiments. 

σD and σX also deviated from expectation in the experimental deletion matrix, where sigD 
deletion caused a decrease, rather than an increase, in σX activity (Figure 6A). These results 

suggest that there could be a more complex and specific regulatory interaction between these 

two sigma factors. In the model, σ3 generally behaved like σW with respect to its 

correlations with other sigma factors. It correlated negatively with σ5, and positively with 

the weaker sigma factors σ2 and σ4, which we identify with σX and σM. These simple 

parameters did not capture all dynamic interactions. For instance, σB showed positive and 

neutral, rather than negative, interactions with σM and σX, respectively. Nevertheless, taken 

together, our results demonstrate that sigma factor competition, in the absence of additional 

regulation, can generate patterns of mixed pairwise correlations, broadly similar to those 

observed experimentally. Moreover, this work suggests that, although it is not perfect, many 

alternative sigmas may operate in regimes where time sharing contributes to the promoter 

activity dynamics observed.

DISCUSSION

Here we have analyzed the dynamics of sigma factor activity and competition in B. subtilis 
under energy stress. Despite the steady-state nature of the environmental conditions, we find 

that many sigma factors activate not at constant levels, but rather through repetitive pulsing 

(Figures 1 and 2). These dynamics expand previously published observations of σB pulsing 

(Locke et al., 2011) to a much broader set of sigma factors, and suggest that pulsing is a 

general mode of sigma factor activation. Based on analogy with σB regulation, pulsatile 

activity likely results from the interaction of a positive feedback loop on sigma factor 

expression and a negative feedback loop mediated by the corresponding anti-sigma factor. A 

model based on this generic architecture, in which sigma factors compete for limiting RNAP, 
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demonstrates that competition can distribute pulsatile sigma factor activities in time, 

reducing their temporal overlap and resulting in negative correlations between their 

activities, among more complex dynamics.

An ideal time-sharing system allows cells to focus the limited resource of core RNAP on a 

few alternative sigma factor regulons at a time, rather than spreading it across all sigma 

factor regulons at lower, constant levels (Figure 1C). These dynamics have a strong effect on 

the distribution of sigma factor activity states within a population. For example, consider 

three hypothetical alternative sigma factors. Without pulsatile dynamics (molecular sharing), 

all cells would exhibit relatively similar phenotypic states, with intermediate activities of 

each sigma factor, constrained by the total amount of core RNAP (Figure 7A, left simplex). 

By contrast, time sharing causes sigma factor activities to mainly occupy the edges and 

vertices of the allowed state-space (Figure 7A, right simplex), and to dynamically transition 

from one such state to another in a stochastic fashion. In the time-sharing regime, inputs to 

the system could effectively regulate the fraction of time that cells spend in various sigma 

factor activation states by controlling the relative frequency of pulses of different sigma 

factors. In addition, because the pulse durations observed here, of ~1 hr, are comparable with 

the duration of the cell cycle in these conditions, time sharing could cause successive cell 

cycles to be dominated by different sigma factor programs and corresponding phenotypes 

(Figure 7B). In this way, cells could control the distribution of activity states in the 

population, and regenerate the entire distribution of states after a perturbation (Figures 7C 

and 7D).

The question remains whether the pulsatile dynamics observed at the level of alternative 

sigma promoters have phenotypic consequences. For phenotypic time sharing to occur, two 

conditions must be satisfied. First, anti-correlations observed with fluorescent protein 

reporters should reflect corresponding anti-correlations between phenotypes. Because the 

fluorescent reporter proteins used here are stable, their concentrations should be proportional 

to those of stable endogenous sigma factor target proteins, and thus the dynamic reporter 

correlations measured here likely reflect correlations among endogenous genes. Unstable 

target proteins could increase the magnitude of correlations by reducing time averaging. 

Second, individual sigma factor pulses must generate sufficient amounts of target gene 

products to affect cellular functions. Future work should address the propagation of pulses to 

specific phenotypes.

The dynamics observed here deviate from perfect time sharing in several ways. First, sigma 

factor activities are not exclusively pulsatile, as some basal activity is observed between 

pulses (Figure 2B). Second, competition appears to be asymmetric (Figure 6A). Third, the 

sigma factors exhibit a complex mixture of positive and negative correlations, rather than 

uniform negative correlations (Figure 5A). Modeling revealed how such mixed correlations 

can arise from asymmetric competition, particularly when sigma factors differ in the relative 

timescales of their interactions with RNAP (Figure S7). Higher-dimensional measurements 

of more than two alternative sigma factors at a time will be necessary to fully understand 

these complex dynamics.
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While pulses are a strong feature here, sigma factor dynamics in general vary between 

systems and contexts. For example, the transition from exponential phase to stationary phase 

in Escherichia coli (Gruber and Gross, 2003), and the developmental program of sporulation 

in B. subtilis (Fimlaid and Shen, 2015), both involve, in different ways, sequentially ordered 

replacement of one sigma factor by another. In addition, the same sigma factor can activate 

with repetitive pulsing or adaptive dynamics in different contexts, as has been shown for σB 

(Cabeen et al., 2017; Young et al., 2013). Our observations are not incompatible with 

previously analyzed modes of activation, but rather enlarge the spectrum of dynamical 

modes implemented by sigma factor systems.

STAR★METHODS

KEY RESOURCES TABLE

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

PY79 BGSC 1A747 PY79

PY79; ppsB::PtrpE-mCherry PhleoR (Locke et al., 2011) JP1

JP1;ytvA::NeoR This paper JP2

JP2;sacA::PB-yfp CmR This paper JP3

JP2;sacA::PM-yfp CmR This paper JP4

JP2;sacA::PW-yfp CmR This paper JP5

JP2;sacA::PX-yfp CmR This paper JP6

JP2;sacA::PD-yfp CmR This paper JP7

JP2;sacA::PL-yfp CmR This paper JP8

JP2;sacA::PY-yfp CmR This paper JP9

JP2;sacA::PA-yfp CmR This paper JP10

JP3;rsbU-rsbX::TetR This paper, (Locke et al., 2011) JP11

JP4; sigM::TetR This paper, (Luo and Helmann, 2009) JP12

JP4; sigW::ErmR This paper, (Luo and Helmann, 2009) JP13

JP6;sigX::SpectR This paper, (Cao and Helmann, 2002) JP14

sigD::TetR (Helmann et al., 1988; Steinmetz and Richter, 1994) JP15

JP7; sigD::TetR This paper, (Helmann et al.,1988; Steinmetz and Richter, 
1994)

JP16

JP1; sacA::PL-yfp CmR This paper, (Wiegeshoff et al., 2006) JP17

JP17;sigL::KanR This paper JP18

JP1; sacA::PY-yfp CmR This paper JP19

JP19;sigY::KanR This paper, (Cao et al., 2003) JP20

JP3;amyE::PB-3Xcfp SpectR This paper JP21

JP3;amyE::PM-3Xcfp SpectR This paper JP22

JP3;amyE::PW-3Xcfp SpectR This paper JP23

JP3;amyE::PX-3Xcfp SpectR This paper JP24
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REAGENT or RESOURCE SOURCE IDENTIFIER

JP3;amyE::PD-3Xcfp SpectR This paper JP25

JP4;amyE::PB-3Xcfp SpectR This paper JP26

JP4;amyE::PM-3Xcfp SpectR This paper JP27

JP4;amyE::PW-3Xcfp SpectR This paper JP28

JP4;amyE::PX-3Xcfp SpectR This paper JP29

JP4;amyE::PD-3Xcfp SpectR This paper JP30

JP5;amyE::PB-3Xcfp SpectR This paper JP31

JP5;amyE::PM-3Xcfp SpectR This paper JP32

JP5;amyE::PW-3Xcfp SpectR This paper JP33

JP5;amyE::PX-3Xcfp SpectR This paper JP34

JP5;amyE::PD-3Xcfp SpectR This paper JP35

JP6;amyE::PB-3Xcfp SpectR This paper JP36

JP6;amyE::PM-3Xcfp SpectR This paper JP37

JP6;amyE::PW-3Xcfp SpectR This paper JP38

JP6;amyE::PX-3Xcfp SpectR This paper JP39

JP6;amyE::PD-3Xcfp SpectR This paper JP40

JP7;amyE::PB-3Xcfp SpectR This paper JP41

JP7;amyE::PM-3Xcfp SpectR This paper JP42

JP7;amyE::PW-3Xcfp SpectR This paper JP43

JP7;amyE::PX-3Xcfp SpectR This paper JP44

JP7;amyE::PD-3Xcfp SpectR This paper JP45

JJB213; rsbU-rsbX::TetR This paper JP46

JP1 ; rsbU-rsbX::TetR This paper JP47

JP47; amyE::Phyperspank-sigB SpectR This paper JP48

JP48; pyrD::PB-cfp KanR This paper JP49

JP49; sacA::PW-yfp CmR This paper JP50

JP49; sacA::PD-yfp CmR This paper JP51

JP50; hag::ErmR This paper, (Koo et al., 2017) JP52

JP51; hag::ErmR This paper, (Koo et al., 2017) JP53

JP21;hag::ErmR This paper, (Koo et al., 2017) JP54

JP26;hag::ErmR This paper, (Koo et al., 2017) JP55

JP31;hag::ErmR This paper, (Koo et al., 2017) JP56

JP36;hag::ErmR This paper, (Koo et al., 2017) JP57

JP41;hag::ErmR This paper, (Koo et al., 2017) JP58

JP27;hag::ErmR This paper, (Koo et al., 2017) JP59

JP32;hag::ErmR This paper, (Koo et al., 2017) JP60

JP37;hag::ErmR This paper, (Koo et al., 2017) JP61

JP42;hag::ErmR This paper, (Koo et al., 2017) JP62

JP33;hag::ErmR This paper, (Koo et al., 2017) JP63
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REAGENT or RESOURCE SOURCE IDENTIFIER

JP38;hag::ErmR This paper, (Koo et al., 2017) JP64

JP43;hag::ErmR This paper, (Koo et al., 2017) JP65

JP39;hag::ErmR This paper, (Koo et al., 2017) JP66

JP44;hag::ErmR This paper, (Koo et al., 2017) JP67

JP45;hag::ErmR This paper, (Koo et al., 2017) JP68

JP2; amyE::Phyperspank-yfp SpectR This paper JP69

JP69; hag::ErmR This paper, (Koo et al., 2017) JP70

JP3; rsbU-rsbX::TetR This paper, (Locke et al., 2011) JP71

JP4; rsbU-rsbX::TetR This paper, (Locke et al., 2011) JP72

JP5; rsbU-rsbX::TetR This paper, (Locke et al., 2011) JP73

JP6; rsbU-rsbX::TetR This paper, (Locke et al., 2011) JP74

JP7; rsbU-rsbX::TetR This paper, (Locke et al., 2011) JP75

JP8; rsbU-rsbX::TetR This paper, (Locke et al., 2011) JP76

JP9; rsbU-rsbX::TetR This paper, (Locke et al., 2011) JP77

JP3; sigD::TetR This paper, (Helmann et al.,1988; Steinmetz and Richter, 
1994)

JP78

JP4; sigD::TetR This paper, (Helmann et al.,1988; Steinmetz and Richter, 
1994)

JP79

JP5; sigD::TetR This paper, (Helmann et al.,1988; Steinmetz and Richter, 
1994)

JP80

JP6; sigD::TetR This paper, (Helmann et al.,1988; Steinmetz and Richter, 
1994)

JP81

JP7; sigD::TetR This paper, (Helmann et al.,1988; Steinmetz and Richter, 
1994)

JP82

JP8; sigD::TetR This paper, (Helmann et al.,1988; Steinmetz and Richter, 
1994)

JP83

JP9; sigD::TetR This paper, (Helmann et al.,1988; Steinmetz and Richter, 
1994)

JP84

JP3; sigL::KanR This paper, (Wiegeshoff et al., 2006) JP85

JP4; sigL::KanR This paper, (Wiegeshoff et al., 2006) JP86

JP5;sigL::KanR This paper, (Wiegeshoff et al., 2006) JP87

JP6;sigL::KanR This paper, (Wiegeshoff et al., 2006) JP88

JP7;sigL::KanR This paper, (Wiegeshoff et al., 2006) JP89

JP8;sigL::KanR This paper, (Wiegeshoff et al., 2006) JP90

JP9;sigL::KanR This paper, (Wiegeshoff et al., 2006) JP91

JP3;sigM::TetR This paper, (Luo and Helmann, 2009) JP92

JP4;sigM::TetR This paper, (Luo and Helmann, 2009) JP93

JP5;sigM::TetR This paper, (Luo and Helmann, 2009) JP94

JP6;sigM::TetR This paper, (Luo and Helmann, 2009) JP95

JP7;sigM::TetR This paper, (Luo and Helmann, 2009) JP96

JP8;sigM::TetR This paper, (Luo and Helmann, 2009) JP97

JP9;sigM::TetR This paper, (Luo and Helmann, 2009) JP98

JP4; sigW::ErmR This paper, (Luo and Helmann, 2009) JP99
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REAGENT or RESOURCE SOURCE IDENTIFIER

JP4; sigW::ErmR This paper, (Luo and Helmann, 2009) JP100

JP5; sigW::ErmR This paper, (Luo and Helmann, 2009) JP101

JP6; sigW::ErmR This paper, (Luo and Helmann, 2009) JP102

JP7; sigW::ErmR This paper, (Luo and Helmann, 2009) JP103

JP8; sigW::ErmR This paper, (Luo and Helmann, 2009) JP104

JP9; sigW::ErmR This paper, (Luo and Helmann, 2009) JP105

JP3;sigX::SpectR This paper, (Cao and Helmann, 2002) JP106

JP4;sigX::SpectR This paper, (Cao and Helmann, 2002) JP107

JP5;sigX::SpectR This paper, (Cao and Helmann, 2002) JP108

JP6;sigX::SpectR This paper, (Cao and Helmann, 2002) JP109

JP7;sigX::SpectR This paper, (Cao and Helmann, 2002) JP110

JP8;sigX::SpectR This paper, (Cao and Helmann, 2002) JP111

JP9;sigX::SpectR This paper, (Cao and Helmann, 2002) JP112

JP3;sigY::KanR This paper, (Cao et al., 2003) JP113

JP4;sigY::KanR This paper, (Cao et al., 2003) JP114

JP5;sigY::KanR This paper, (Cao et al., 2003) JP115

JP6;sigY::KanR This paper, (Cao et al., 2003) JP116

JP7;sigY::KanR This paper, (Cao et al., 2003) JP117

JP8;sigY::KanR This paper, (Cao et al., 2003) JP118

JP9;sigY::KanR This paper, (Cao et al., 2003) JP119

JP7; hag::ErmR This paper, (Koo et al., 2017) JP120

Chemicals, Peptides, and Recombinant Proteins

Mycophenolic Acid MP Biomedicals Cat #194172

Recombinant DNA

Plasmid ECE174, sacA::P?-yfp 
CmR, where ? can be 
SigB,D,L,M,W,X,Y target site

This paper, (Locke et al., 2011) Plasmid #1 
(see STAR 
Methods)

Plasmid pDL30, amyE::P?-3Xcfp 
SpectR, where ? can be 
sigB,D,M,W,X, target site

This paper Plasmid #2 
(see STAR 
Methods)

Plasmid pDR-111, 
amyE::Phyperspank-sigB SpectR

This paper Plasmid #3 
(see STAR 
Methods)

Plasmid ECE171, pyrD::PB-cfp 
kanR

This paper Plasmid #4 
(see STAR 
Methods)

Plasmid pDR-111, 
amyE::Phyperspank-yfp SpectR

This paper Plasmid #5 
(see STAR 
Methods)

Software and Algorithms

Custom MATLAB Algorithms for 
Image Analysis

This paper, (Locke et al., 2011)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Michael B. Elowitz, at melowitz@caltech.edu.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This section details the sample preparation for experiments as well as the mathematical 

model, as well as a reference table for which strains werve to generate specific figures.

Table of Figures and Associated Strains

Figure Strains

1 JP3…JP10

2 JP54, JP59, JP63, JP66, JP68, JP70

3 n/a

4 JP56, JP63, JP67

5 JP54…JP68

6 JP71…JP119

7 n/a

S1 JP3…JP10, JP71, JP82, JP90, JP93, JP101, JP109, JP119

S2 A,B,C JP3…JP9

S2 D JP73

S3A,B JP54, JP59, JP63, JP66, JP68, JP70

S3C JP7, JP120

S4 JP52, JP53

S5 n/a

S6 JP54…JP68

S7 n/a

S8 JP3, JP71, JP78, JP85, JP92, JP99, JP106, JP113

Bacillus subtilis Strains—All strains were constructed in the PY79 genetic background, 

and the list of strains used is given in the Key Resources Table. Many strains and genomic 

DNA were kind gifts of C.W. Price (see references), and many sigma factor deletion strains 

were kind gifts from John Helmann. Several strains were obtained from the Bacillus Genetic 

Stock Center (BGSC), and their strain codes are noted in the Key Resources Table.

In this table, in the column labeled “Source,” the term “This paper” indicates that this strain 

was constructed by the authors. Additional citations in the “Source” column reflect genetic 

material (or information) that was utilized to construct the strain. Genetic deletions were 

made by replacing genes of interest with a selection marker, typically by transforming 

genomic DNA alreading containing such marker into the relevant strain, and then selecting 

with the appropriate antibiotic.
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Antibiotic resistance was switched using a previously described antibiotic switching vector 

system(Steinmetz and Richter, 1994). Deletions were made by replacing genes of interest 

with a selection marker via a linear DNA fragment homologous to the region of interest.

METHOD DETAILS

Plasmid Construction—All plasmids were cloned using E. coli strain DH5α and a 

combination of standard molecular cloning techniques and non-ligase dependent cloning 

using Clontech In-Fusion Advantage PCR Cloning kits. Plasmid constructs were integrated 

into B. subtilis chromosomal regions via double crossover using standard techniques. The 

following list provides a description of each plasmid constructed, with details on integration 

position/cassette and selection marker given at the beginning. Note that all plasmids below 

replicate in E. coli but not in B. subtilis.

Plasmid list:

1. ppsB::PtrpE-mCherry ErmR -This plasmid was used to provide uniform 

expression of mCherry from a σA-dependent promoter, enabling automatic 

image segmentation (cell identification) in time-lapse movie analysis. A minimal 

σA promoter from the trpE gene was cloned into a vector with ppsB homology 

regions (Locke et al., 2011). The original integration vector was a gift from A. 

Eldar (Eldar et al., 2009). For some strains, the selection marker was 

subsequently changed, in B. subtilis, to either KanR or PhleoR.

2. sacA::P?-yfp CmR -Target promoters of each alternative sigma factor, (B, D, L, 

M, W, X, Y, A) were cloned into the EcoRI/BamHI sites of AEC127 (Eldar et al., 

2009). For σA, a minimal σA promoter was used from the trpE gene(Locke et al., 

2011). Target promoter sequences for alternative sigmas are described below.

3. amyE::P?-3Xcfp SpectR. Target promoters of each alternative sigma factor (B, D, 

L, M, W, X, Y), were cloned into the EcoRI/Nhe1 sites of plasmid amyE::

3XCFP SpectR (Locke et al., 2011). This plasmid, based on pDL30, contains 3 

tandem copies of cfp, each with its own RBS. Target promoter sequences are 

described below.

4. amyE::Phyperspank-sigB SpectR - The coding region of sigB, along with a 5′ 
transcriptional terminator, was cloned downstream of the Phyperspank IPTG-

inducible promoter in plasmid pDR-111 (gift of D. Rudner, Harvard).

5. pyrD::PB-cfp kanR. Target promoter of σB, followed by the CFP fluorescent 

protein gene, was cloned into the EcoRI/BseRI site of the ECE171 plasmid 

(Middleton and Hofmeister, 2004).

Target Promoters for Sigma Factors—Below is a list of the target promoters used to 

report on each sigma factor’s activity. Each sequence below contains a binding site for the 

corresponding sigma factor. These sequences were cloned upstream of a standard cassette 

containing an RBS followed by the yfp reporter gene. Note restriction enzyme sites are not 
included in the displayed sequences.
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1. σB : Sequence was chosen from the σB binding site upstream of the rsbV gene 

(Boylan et al., 1993; Kalman et al., 1990).5′-GTT 

TCTTGGAGCGTCCTGATCTGCAGAAGCTCATTGAGGAACATATGTGTTC

CTCTGCGCAGGAAATGGTCAAAAACATTTATGA 

CAGCCTCCTCAAATTGCAGGATTTTCAGCTTCACGATGATTTTACGTTA

ATTGTTTTGCGGAGAAAGGTTTAACGTCTGTCAG 

ACGAGGGTATAAAGCAACTAGTGATTTGAAGGAAAATTTG-3′

2. σD: Sequence was chosen from the σD binding site upstream of the flgB gene 

(Estacio et al., 1998).5′ – TTTTGCATTTTTCTTCA 

AAAAGTTTCAAAAATGCCGAAAAGAAAGGAGAAAAAACAGAAATTCT

G –3′

3. σL: Sequence was chosen from the σL binding site upstream of the ptb gene 

(Debarbouille et al., 1999).5′-AATATGGCCTTGCA 

AATGAAGGCATGCAATAATTTGCAGAATAAACGCAAACATCTGCACGA

ATGTTTCGGTATACCTGGTATGACAGCACCCTTA 

AGAGCTGGCATGGAACTTGCATAATAAAAGGCGGAG – 3′

4. σM: Sequence was chosen from the σM binding site upstream of the sigM gene 

(Horsburgh and Moir, 1999).5′ – TTTGCATGTA 

ATGTGCAACTTTAAACCTTTCTTATGCGTGTATAACATAGAGG-3′

5. σW: Sequence was chosen from the σW binding site upstream of the ydbS gene 

(Cao et al., 2002).5′ – TTAAGAATGAAACC 

TTTCTGTAAAAGAGACGTATAAATAACGACGAAAAAAAG – 3′

6. σX: Sequence was chosen from the σX binding site upstream of the sigX gene 

(Huang et al., 1997).5′ – TTGTAATGTAACTTTTC 

AAGCTATTCATACGACAAAAAAGTGAACGGAGGG – 3′

7. σY: Sequence was chosen from the σY binding site upstream of the sigY gene 

(Cao et al., 2003).5′ – GAATTGTAAAAAAGATGA 

ACGCTTTTGAATCCGGTGTCGTCTCATAAGGCAGAAAAACA – 3′

These promoters were first cloned into the appropriate plasmid (see section Plasmid 

Construction), and next, these plasmids were transformed into appropriate B. subtilis strains 

(see Key Resources Table). This transformation step resulted in an expression 

chromosomally integrated at a target locus.

Microscopy—All data were acquired using a CoolSnap HQ2 camera attached to a Nikon 

inverted TI-E microscope, equipped with the Nikon Perfect Focus System (PFS) hardware 

autofocus module. Molecular Devices commercial software (Metamorph 7.5.6.0) controlled 

microscope, camera, motorized stage (ASI instruments), and epifluorescent and brightfield 

shutters (Sutter Instruments). For experiments in liquid culture and agarose pads, epi-

illumination was provided by a 300 W Xenon light source (LamdbaLS, Sutter instruments) 

connected via a liquid light guide into the illuminator of the scope. Between days, relative 

lamp intensity levels were monitored by taking an image of fluorescent beads and measuring 

their mean intensity. Exposure times were then adjusted to keep per exposure light levels 
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constant between experiments. For experiments in the mother machine, epi-illumination was 

provided by a solid state white light source (Lumencor SOLA, Lumencor SOLA). Phase 

contrast illumination was provided by a halogen bulb to allow verification of cell focus and 

cell shape. Temperature control was achieved using an enclosed microscope 

chamber(Nikon) attached to a temperature sensitive heat exchanger set to 37 °C. All 

experiments used a Phase 100× Plan Apo (NA 1.4) objective. Chroma filter sets used were 

as follows: #41027 (mCherry), #41028 (YFP), and #31044v2 (CFP). The interval between 

consecutive imaging was 15 minutes.

Sample Preparation for Liquid Culture Snapshots and Agarose Pad Movies—
Unless otherwise noted, cells were grown in Spizizen’s minimal media, or SMM (Spizizen, 

1958), which uses 0.5% glucose as the carbon source. Mycophenolic acid (MPA) was 

dissolved in DMSO and diluted 1,000 fold into working concentrations in liquid and pad 

conditions. IPTG was dissolved in H2O and diluted 1,000 fold into working concentrations. 

Concentrations of 0.1% DMSO were not found to affect cell growth or σB activity.

Samples were prepared following a time-lapse microscopy protocol described previously 

(Young et al., 2011). A stab from a glycerol stock was inoculated into SMM, placed into a 

30 °C shaking incubator, and grown overnight. Cells were then diluted back to a final 

concentration of 0.01 OD600 in a total volume of 2 ml of SMM. Cells were then grown in a 

37 °C shaker for 3 hours.

For liquid culture experiments, MPA (MP Biomedicals cat #194172) was then added to the 

culture to a final concentration for 40 μg/ml. Cells were returned the 37 °C shaker for 3 

hours, after which 2 μl of culture was spotted onto an agarose pad. Agarose pads were 

constructed of 1.5% low melt agarose solution in PBS, and then imaged, as described in the 

‘Microscopy’ section.

For time-lapse movies, cells were spotted on solidified 1.5% low melt agarose in SMM pads. 

MPA was also added to the pads to final concentration of 40 μg/ml. These prepared pads 

were then enclosed in coverglass bottom dishes (Wilco #HBSt-5040), sealed with parafilm 

or grease to prevent evaporation, and then imaged.

Sample Preparation for Stationary-Phase (Conditioned Medium) Experiments
—Conditioned medium was prepared growing PY79 wild-type B. subtilis strain in 2 ml of 

LB at 37 °C for 4.5h. Then, this culture was diluted in 23 ml of fresh LB and was grown at 

37 °C for 17.5h. After this, cells were removed by centrifugation (at 5,000 rpm for 10 min) 

and the supernatant was sterilized by filtration (using 0.2 μm pore-size filters) and stored at 

−80 °C. This conditioned media protocol was defined previously (Espinar et al., 2013).

Cells were grown from glycerol stocks in LB until OD600 1.5–3.5, then diluted back into LB 

(1:10) in PBS to an OD600 of 0.05. This culture was grown at 37 °C for a minimum of 4 

hours and a maximum of 7, when cells were diluted to an OD600 of 0.8–0.1 with conditioned 

medium (1:45) in PBS for imaging. 1.5% low melting agarose pads were prepared with 

conditioned medium (1:45) in PBS. Cells were allowed to equilibrate for 2–3 hours before 

initiating time-lapse imaging.
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Sample Preparation for Mother Machine Experiments

Wafer Construction: Silicon wafers were constructed using photolithography by 

Shivakumar Bhaskaran at the Searle CleanRoom Manager at the University of Chicago. The 

CAD file for the design was a kind gift from Richard Losick and Johan Paulsson (Norman et 

al., 2013).

Chip Construction: Mother machine chips were constructed by first mixing Sylgard 184 

(Dow Corning) Parts A and B in ratios of 10 to 1 by weight, respectively. Both parts were 

thoroughly mixed together, and then degassed in a vacuum chamber (Welch 256413-01) for 

1 hr or until there was no visual sign of bubbles. The PDMS mixture was poured onto a 

wafer that had been placed into a ‘boat’ of aluminum foil, then baked at 65 °C overnight. 

The solidified PDMS was then carefully peeled off the wafer, cut with a scalpel to isolate the 

device, and fluidic inlets and outlets were created with with a 0.5 mm diameter hole punch 

(World Precision Instruments).

Chip Bonding to Coverslip: Glass coverslips (#1.5 Gold Seal 3416) were cleaned by 

sonicating in an Isopropanol Bath for 30 minutes, then sonicating in deionized water 3 times 

for 30 min. The microfluidic chips were cleaned simply by applying and removing Scotch 

tape multiple times. Chips were bonded using a plasma cleaner (Autoglow) with an attached 

O2 tank, at 50 W for 6 seconds, and was performed at the Micro Nano Fabrication 

Laboratory at Caltech. The chip-coverslip complex was then baked at 85 °C overnight. 

Importantly, we found using O2 with the plasma cleaner strengthened the bond between the 

glass coverslip and PDMS chip.

Cell Preparation and Cell Loading onto Chip: Cells were grown from glycerol stocks in 

SMM at 30 °C overnight. Cells were diluted to 0.01 OD600 in the morning, and then grown 

for 3 hours at 37 °C. MPA was then added to a final concentration of 40 μg/ml, and then the 

culture was grown at 37 °C for another 6 hours. Cells were then pipetted into the chip inlet 

by utilizing gel loading tips (Molecular BioProducts 2155). To ensure cell entry into the 

narrow side channels of the chip, the entire coverslip and chip assembly was placed into a 

custom adapter (Norman et al., 2013), and then spun in a tabletop microcentrifuge 

(Eppendorf 5424R) for 10 min at 3,000 rcf.

Fluidic Inlet and Outlet: Fluid flow was driven by a syringe pump (NE-1600, 

syringepumps.com), which can drive up to six 10-ml syringes (BD 309604) in parallel. 

Unless otherwise noted, we used a flow rate of 1.5 μl/min. We used Tygon tubing (Saint 

Gobain AAD04103) for all tubing purposes. A blunt end needle (McMaster-Carr 

75165A681) interfaced between the syringe and the tubing, and the same blunt end needle 

(with luer lock tip removed) interfaced between the tubing and the chip.

Media Driven by the Syringe: Unless noted otherwise, the media used in the mother 

machine was SMM, supplemented with 40 μg/ml MPA and 100 μg/ml BSA (Sigma A7906).

The exception was the competition assay in the mother machine. Syringes were initially 

loaded with the media as described above, namely SMM + 40 μg/ml MPA + 100 μg/ml 
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BSA. But in the middle of acquisition, the syringes were switched to new syringes that 

contained the same media, excepted supplemented with additional 1 mM IPTG.

Mother Machine Microscopy: The coverslip/chip apparatus with attached fluidic inputs 

and outputs was fixed to the microscope stage insert (I-3014, ASI Imaging) using lab tape, 

and then imaged as described in the Microscopy section.

Competition Assay in the Mother Machine: Cells were loaded into the mother machine as 

described above.

Mathematical Model of σ Factor Pulsing and Competition—We constructed a 

model to simulate the activity of five identical, alternative sigma factor pathways, plus a 

housekeeping sigma factor, all interacting only through their association with shared RNA 

polymerase core (R). The main features of the model are:

• Transcriptional autoregulation. Each sigma factor comprises an operon 

containing the σ factor (Si, where i = 1, 2, …5) and its cognate anti-σ factor (Ai). 

This operon is activated by its own σ factor. A sixth σ factor with no anti-σ is 

considered, representing the housekeeping factor σA.

• Inhibition by a co-expressed anti-σ factor. The σ factor binding to its cognate 

anti-σ prevents it from associating with RNAP.

• Limiting levels of RNAP resulting in competitive binding between σ factors.

• A ligand that sequesters its cognate anti-σ. A common feature among extra-

cytoplasmic (ECF) sigma factors is that in most cases the anti-σ is a 

transmembrane protein that only releases its cognate sigma factor when it 

receives a certain input from the extracellular environment (Helmann, 2002). 

Hence, we implemented in the model a ligand (Li) responsible for sequestration 

of its cognate anti-σ, to allow for the release of the corresponding σ factor. As 

shown below, we assume Poisson distributed steps in Li, which trigger sigma 

factor activation pulses.

This minimal structure is sufficient to generate pulses in the σ·RNAP complex concentration 

in response to pulsatile ligand fluctuations. Even though the ligand fluctuations are 

uncorrelated among sigmas, RNAP competition leads to anticorrelations in σ·RNAP 

complex concentration that enable the alternative sigma factors to time-share core RNAP 

(Figure 3H).

An additional equation (Equation S2, below) simulates σA, the main - or housekeeping - σ 
factor. Its structure resembles that of the alternative σ factors, but without an anti-σ factor or 

corresponding ligand. The removal of the anti-σ factor results in a non-pulsatile and 

constitutive σA·RNAP concentration.

The transcription terms for σ factors and anti-σ factors are assumed to be linear, as are all 

degradation terms. The positive transcriptional regulation is modeled with Michaelis-Menten 

kinetics. σA is assumed to be expressed at higher levels than the alternative σ factors. 

Negative regulation occurs through sequestration, with linear rates for complex association 
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and dissociation. Importantly, the sigma-RNAP complex produces more anti-sigma factor 

than sigma factor, a feature consistent with experimental measurements (Li et al., 2014). 

This relative advantage in anti-sigma production allows anti-sigma levels to overcome sigma 

factor activation and terminate the pulse. The ligand pulses were uncorrelated in time and 

exponentially distributed in magnitude. This was motivated by previous observations 

(Friedman et al., 2006; Raj et al., 2006; Taniguchi et al., 2010) that cellular protein 

concentrations follow a gamma distributed Ornstein-Uhlenbeck (GOU) process (Locke et 

al., 2011). This implementation allows for independent manipulation of mean ligand pulse 

size and pulse frequency. To optimize computational efficiency, ordinary (not stochastic) 

differential equations were solved between the stochastic ligand bursts in the discretized 

stochastic GOU process.

The following ODEs describing the dynamics for each species and their complexes were 

solved numerically in MATLAB using a variable step BDF method (http://

www.mathworks.co.uk/help/matlab/ref/ode15s.html). Parameters can be found in the table 

below. The MATLAB codes for the model simulation and analysis are available upon 

request.

Alternative σ Factors (Si)

transcription + positive auto − regulation + complex dissociation + complex association + degradation
d[S]i

dt = αs + βs[RS]i + krs − [RS]i + ksa − [SA]i − krs + [R][S]i − ksa + [S]i[A]i

− δs[S]i

(Equation S1)

Housekeeping σ Factor (SA)

transcription + positive auto − regulation + degradation
d[S]A

dt = αsA + βsA[RS]A + krsA − [RS]A − krSA + [R][S]A − δsA[S]A

(Equation S2)
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Anti-σ Factors (Ai)

transcription + up − regulation + complex dissociation − complex association − degradation
d[A]i

dt = αa + βa[RS]i + ksa − [SA]i + kal − [AL]i − ksa + [S]i[A]i − kal + [A]i[L]i

− δa[A]i

(Equation S3)

RNA Polymerase·σ Factor Complex (RS)

complex association − complex dissociation − degradation
d[RS]i

dt = krs + [R][S]i − krs − [RS]i − δrs[RS]i

(Equation S4)

RNA Polymerase·σA Complex (RSA)

complex association − complex dissociation − degradation
d[RS]A

dt = krsA + [R][S]A − krsA − [RS]A − δrsA[RS]A

(Equation S5)

Anti-σ Factor·σ Factor Complex (SA)

complex association − complex dissociation − degradation
d[SA]i

dt = ksa + [S]i[A]i − ksa − [SA]i − δsa[SA]i

(Equation S6)

Ligand (L)

complex dissociation − complex association − degradation
d[L]i

dt = kal − [AL]i − kal + [A]i[L]i − δl[L]i

(Equation S7)
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Anti-σ Factor·Ligand Complex (AL)

complex association − complex dissociation − degradation
d[AL]i

dt = kal + [A]i[L]i − kal − [AL]i − δal[AL]i

(Equation S8)

The free amount of RNAP is given by the conservation law

[R] = Rtot − ∑
i

[RS]i (Equation S9)

where the sum runs over all sigma factors, including the housekeeping sigma factor.

Finally, in order to randomly trigger pulses of sigma factor activation, the dynamics of the 

ligands are modified by adding the random quantity ε0 (exponentially distributed and 

uncorrelated between sigma factor species) at random times T0 (uniformly distributed) 

throughout the simulation.

L(t) L(t) + ε0L(t) (Equation S10)

The ligand bursts triggering the sigma factor pulses could in principle have an origin 

external or internal to the cells. An external perturbation would result in adjacent cells 

pulsing together. The fact that we did not observe sister cells pulsing together on agarose 

pads (Figure S2A) argues against an external origin for pulsing. Similarly, a cell 

experiencing a large enough internal ligand perturbation would pulse, but its daughter cells 

would also inherit this pulse-inducing molecule, meaning they would pulse as well. Thus, 

under these conditions a pulse in the parent cell increases the probability of pulsing in the 

daughter cells, something not observed experimentally (Figure S2B).

Based on these considerations, we implemented a different type of internal perturbation, in 

which it is the sharp change in the concentration of the ligand that is critical for pulse 

generation. Here, a sharp rise in ligand concentration sequesters the anti-sigma factor, which 

in turn frees up its cognate sigma factor to bind RNAP (Figure S4B). The sigma-RNAP 

complex creates more sigma factors via positive autoregulation, which sustains the pulse 

even when the ligand is no longer present. In other words, the ligand itself is not strictly 

necessary once the chain of events is initiated. In this scenario, we do not expect a parent 

cell’s pulse to increase the chances of its daughters pulsing, consistent with observations.

Model Parameters—Given the current limitations in what is known about the regulation 

of alternative sigma factors, we lack sufficient information to construct a biochemically 

detailed model without introducing many unverified assumptions and unknown parameters. 
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Therefore, the goal of the model is not to represent the complete complexity of the system, 

but rather to show that under a minimal set of assumptions that incorporate features common 

to many sigma factors, dynamics like those observed experimentally could occur. We 

selected biologically reasonable values for model parameters, shown in the table below. In 

particular, the decay rate of all species is assumed to correspond to the cell division time, 

here considered to be 1 hour (that is, we assume dilution dominates degradation for protein 

removal). The ligand burst sizes and total RNAP concentration are chosen to correspond to 

abundances on the order of 104 molecules per cell. The relative expression rates (both basal 

and regulated) of the anti-sigma factors with respect to their corresponding cognate sigma 

are chosen on the order of 1.5, based on previous work (Li et al., 2014) showing that anti-

sigma factors can be produced at higher rates than sigma factors. Finally, the sigma factor-

RNAP dissociation constant is assumed to be 10-fold lower for the housekeeping sigma 

factor than for the alternative sigma factors, following existing literature (Sharma and 

Chatterji, 2010).

Reaction Parameter Description Reactant(s)

Value Value

Set A Set B

Basal transcription αs Basal rate alternative σ factor 1.5 nM/min 1.5 nM/min

αsA Basal rate housekeeping σ factor σA 180 nM/min 180 nM/min

αa Basal rate anti-σ factor 2.3 nM/min 2.25 nM/min

Up-regulation βs Transcription rate alternative σ factor 0.06 min−1 0.06, 0.06, 0.06, 
0.06, 0.084 min−1

βsA Transcription rate σA 6×10−4 min−1 6×10−4 min−1

βa Transcription rate anti-σ factor 0.09 min−1 0.09 min−1

Association krs+ Binding rate RNAP, σ factor 0.03 nM−1 min−1 0.03, 0.0091, 
0.003, 0.0091, 
0.03 nM−1 min−1

krsA+ Binding rate RNAP, σA 0.3 nM−1 min−1 0.3 nM−1 min−1

ksa+ Binding rate σ factor, anti-σ factor 0.024 nM−1 min−1 0.024, 0.001716, 
0.024, 0.0024, 
0.024 nM−1 min−1

kal+ Binding rate anti-σ factor, ligand 0.018 nM−1 min−1 0.018 nM−1 min−1

Dissociation krs− Unbinding rate RNAP·σ factor complex 0.3 min−1 0.3, 0.99, 3, 0.99, 
0.3 min−1

krsA− Unbinding rate RNAP·σA factor complex 0.3 min−1 0.3 min−1

ksa− Unbinding rate σ factor·anti-σ factor 
complex

0.06 min−1 0.06 min−1
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Reaction Parameter Description Reactant(s)

Value Value

Set A Set B

kal− Unbinding rate anti-σ factor·ligand complex 0.03 min−1 0.03 min−1

Degradation δs Degradation rate alternative σ factor 0.0167 min−1 0.0167 min−1

δsA Degradation rate housekeeping σA factor 0.0167 min−1 0.0167 min−1

δa Degradation rate anti-σ factor 0.0167 min−1 0.0167 min−1

δrs Degradation rate RNAP·σ factor complex 0.0167 min−1 0.0167 min−1

δrsA Degradation rate RNAP·σA complex 0.0167 min−1 0.0167 min−1

δsa Degradation rate σ factor·anti-σ factor 
complex

0.0167 min−1 0.0167 min−1

δal Degradation rate anti-σ factor·ligand complex 0.0167 min−1 0.0167 min−1

δl Degradation rate ligand 0.0167 min−1 0.0167 min−1

Total RNAP Rtot Concentration RNAP 12.6 μM 12.6 μM

Burst size ε0 Concentration ligand 10 μM 10 μM

Burst frequency T0 Rate ligand 3.33×10−3min−1 3.33×10−3min−1

Analytical Minimal Model of Competing Sigma Factors—Here we introduce a 

minimal model of an arbitrary number sigma factors competing for binding to a common 

pool of core RNAP, dispensing with the regulatory features of the sigma factors captured in 

the more detailed computational model (main text). We derive the analytical form of the 

cross-correlation function of the steady-state fluctuations in the bound fractions of the sigma 

factors, in terms of the microscopic parameters of the model (abundances of the molecular 

species and their binding/unbinding rates). For the case of three or more sigma factors we 

show that, counter-intuitively, under some parameter regimes it is possible for certain pairs 

of sigma factors to exhibit positive correlations in their fluctuations.

First, we write down the rate equations for the dynamics of binding and unbinding of two 

species with a common factor (the core RNAP). The following notation will be used:

σ1: total concentration of sigma factor 1 (bound or unbound).

σ2: total concentration of sigma factor 2 (bound or unbound).

p: total concentration of the core RNAP (bound or unbound).

n1: fraction of core RNAP molecules that are bound by sigma factor 1. Note that the 

concentration of bound sigma 1 is simply n1p.

n2: fraction of core RNAP molecules that are bound by sigma factor 2.
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We also define:

c1: ratio of abundance of total core RNAP to total sigma factor 1, p/σ1.

c2: ratio of abundance of total core RNAP to total sigma factor 2, p/σ2.

The key attribute of the binding and unbinding equations is the competition between the two 

sigma factors. Namely, if a core RNAP molecule is bound by sigma factor 1 then it is not 

available for binding with sigma factor 2, and vice-versa.

The equation takes the form,

p
dn1
dt = f 1(σ1 − pn1)p(1 − n1 − n2) − l1pn1 (Equation S11)

This equation can be simplified by dividing both sides by p and redefining the forward rate 

constant as k1 = f1σ1.

dn1
dt = k1(1 − c1n1)(1 − n1 − n2) − l1n1 (Equation S12)

The binding/unbinding dynamics of sigma factor 2 can be described by a similar equation. 

Taken together, we have a coupled set of ODEs for the fraction of core RNAP bound by each 

type of sigma factor:

dn1
dt = k1(1 − c1n1)(1 − n1 − n2) − l1n1

dn2
dt = k2(1 − c2n2)(1 − n1 − n2) − l2n2

(Equation S13)

To find the steady-state values of the fractional occupation of core RNAP by each sigma 

factor, we set the left-hand side of the above equations to zero and solve for n1 and n2:

k1(1 − c1n1)(1 − n1 − n2) − l1n1 = 0
k2(1 − c2n2)(1 − n1 − n2) − l2n2 = 0

(Equation S14)

n̄1 and n̄2 depend on the values of the parameters ki, li and ci, with i = 1,2.

To introduce fluctuations in the above equations, we consider small thermal fluctuations that 

result in changes in the rate constants ki→ki + δk and li→li + δli. We then compute the 

resulting fluctuations in the occupation fractions around the steady-state values ni→ni + δni. 

Assuming that the fluctuations are small, we can expand the above equations to first order in 

δki, δli and δni, which leads to
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dδn1
dt = [ − k1c1(1 − n1 − n2) − k1(1 − c1n1) − l1]δn1 + [ − k1(1 − c1n1)]δn2 + [(1 − c1n1)(1

− n1 − n2)]δk1 − n1δl1

(Equation S15)

A similar equation can be written for the fluctuations in the core RNAP occupation fraction 

of sigma factor 2, δn2. For brevity, only equations for sigma factor 1 are shown.

Assuming that binding and unbinding fluctuations occur at equilibrium, the forward and 

reverse rates are related through the free energy change of the reaction,

k1
l1

= exp
F1

kBT , (Equation S16)

where kBT is the Boltzmann constant multiplied by the temperature of the system. The 

change in free energy of binding can also fluctuate from thermal kicks F1→F1 + δF1. 

Assuming small fluctuations, linearizing the above equation gives the relationship between 

fluctuations of the rate constants and fluctuations in the change in free energy of the 

reaction.

δk1
k1

−
δl1
l1

=
δF1
kBT (Equation S17)

Inserting Equation S17 into Equation S15 and simplifying gives

dδn1
dt = [ − k1c1(1 − 2n1 − n2) − k1 − l1]δn1 + [ − k1(1 − c1n1)]δn2 + n1l1

δF1
kBT (Equation 

S18)

Finally, to get rid of the time-derivative on the left-hand side, we consider the fluctuations in 

the frequency domain, defining δn∼1(ω) = ∫ 0
∞δn1(t)eiωtdt. Taking the Fourier transfer of both 

sides of the above equation gives,
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−iωδn∼1(ω) = [ − k1c1(1 − 2n1 − n2) − k1 − l1]δn∼1(ω) + [ − k1(1 − c1n1)]δn∼2(ω) + n1l1
δF1
kBT

(Equation S19)

The two coupled equations for fluctuations in the bound fractions of sigma factors 1 and 2 

can be succinctly represented in matrix form.

δF∼1

δF∼2
= kBT

−iω + k1c1(1 − 2n1 − n2) + k1 + l1
n1l1

1
1 − n1 − n2

1
1 − n1 − n2

−iω + k2c2(1 − n1 − 2n2) + k2 + l2
n2l2

δn∼1
δn∼2

(Equation S20)

We can present the above equation in a more compact form by introducing the matrix Λ.

δF∼ = Λδn∼ (Equation S21)

Equation S21 relates fluctuations in core RNAP occupation fraction δn to fluctuations in the 

free energy δF. This is a linear response relation, with the free energy playing the role of the 

driving force (Bialek and Setayeshgar, 2005; Hormoz, 2013). From this relationship, we can 

calculate the power-spectrum of fluctuations in n by using the fluctuation dissipation 

theorem, which relates the rate of decay of correlations to the response function (Bialek and 

Setayeshgar, 2005; Hormoz, 2013; Kubo, 1966)

S(ω) =
2kBT

ω 𝔍 Λ−1 (Equation S22)

 denotes the imaginary part of the inverse of matrix Λ. From S we can compute the 

covariance matrix,

Park et al. Page 28

Cell Syst. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



〈δni(t)δn j(t + τ)〉 = ∫
−∞

∞ dω
2π Si j(ω)e−iωτ . (Equation S23)

The left-hand side of the above equation is the quantity measured in the experiments, 

namely, the cross-correlation of fluctuations in the fraction of bound sigma factors. The 

right-hand side is an analytical expression in terms of the parameters of the model (Equation 

S13) and the abundance (ci) and binding and unbinding rate constants (ki and li) of each 

sigma factor.

Extension to an Arbitrary Number of Sigma Factors—We now extend the above 

results for two sigma factors to an arbitrary number N of sigma factors simultaneously 

competing for binding to the same pool of core RNAP. As before, the dynamics of sigma 

factor i is described by three relevant parameters: its abundance ci (with respect to total core 

RNAP concentration), and its binding and unbinding rate constants to core RNAP, ki and li 
respectively.

In analogy with Equation S13, the rate of change of the fraction of core RNAP bound by 

sigma factor i is given by,

dni
dt = ki(1 − cini) 1 − ∑

j = 1

N
n j − lini (Equation S24)

where 1 − ∑ j = 1
N n j is the total fraction of unbound core RNAP.

Similarly, Equation S18 can also be easily generalized to the case of N sigma factors.

dδni
dt = −kici 1 − ni − ∑

j = 1

N
n j − k1 − l1 δni + [ − ki(1 − cini)] ∑

k ≠ i

N
δnk + nili

δFi
kBT

(Equation S25)

where the ∑
k ≠ i

–denotes summation of k for all values of 1 to N except for i. ni is the steady-

state of the bound fraction of sigma factor i, and satisfies the equation

ki(1 − cini) 1 − ∑
j = 1

N
n j − lini = 0 (Equation S26)
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Equation S21, which relates the fluctuations in bound fraction of core RNAP to fluctuations 

of the binding energy of each sigma factor, still holds in matrix form. For N sigma factors, 

the matrix Λ takes the form,

−iω + k1c1 1 − n1 − ∑ j = 1
N n j + k1 + l1

n1l1
… 1

1 − ∑ j = 1
N n j

…

⋮
1

1 − ∑ j = 1
N n j

⋱

−iω + kici 1 − ni − ∑ j = 1
N n j + ki + li

nili
⋮ ⋱

(Equation S27)

Note that all the off-diagonal entries of the matrix are equal to 1/(1 − ∑ j = 1
N n j).

Finally, the spectral density of the fluctuations can be calculated as before using the 

fluctuation-dissipation theorem.

S(ω) =
2kBT

ω 𝔍 Λ−1 (Equation S28)

Cross-correlation functions can be obtained by taking the Fourier transform of S,

〈δni(t)δn j(t + τ)〉 = ∫
−∞

∞ dω
2π Si j(ω)e−iωτ (Equation S29)

Nothing in the above derivation precludes the possibility of a mixture of positive and 

negative correlations for certain parameter regimes. Next, we demonstrate how positive 

correlations between certain pairs of sigma factors can emerge in the case of three sigma 

factors.

Example: Three Sigma Factors—Consider three sigma factors competing for binding 

to the same pool of core RNAP (Figure 5D), with the following parameter values: ki = li = 

50 for i = 1,2, k3 = l3 = 1, c1 = c2 = c3 = 1. These parameters imply that the abundances of 

the three sigma factors are equal. However, the binding and unbinding rates of the first two 

sigma factors to RNAP are faster than that of sigma factor 3. Therefore, the fraction of core 
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RNAP bound by sigma factor 3 fluctuates at a time scale longer than that of the other two 

sigma factors.

To obtain analytical expressions for the correlation functions, we used Equation S22 to 

calculate S12(ω), S13(ω), and S23(ω) for the above parameters (Figure S7A). As expected, 

S13(ω) is the same as S23(ω), and both functions are negative, indicating that fluctuations of 

the bound fraction of sigma factor 3 are negatively correlated with those of the other two 

sigma factors. This is not surprising, since competition for binding implies that if a larger 

fraction of core RNAP is bound by sigma factor 3, then a smaller fraction ought to be bound 

by sigma factors 1 and 2, resulting in negative correlations. However, the power spectrum of 

the correlation function between sigma factors 1 and 2 is positive for low frequencies. This 

implies that fluctuations of bound fractions of sigma factors 1 and 2 can be positively 

correlated over sufficiently long time scales.

To better understand the resulting correlations, we used Equation S23 to convert the 

calculated spectral densities to cross-correlation functions, Cij(τ) = 〈δni(t)δnj(t+τ)〉, by 

taking their inverse Fourier transforms (Figure 5E). As expected, for all lag times τ the 

cross-correlation function between sigma factor 3 and the other two sigma factors is 

negative. However, fluctuations between sigma factors 1 and 2 are positively correlated for 

sufficiently large lag times τ.

We now ask what is the physical origin of the positive correlations between sigma factors 1 

and 2. These two sigma factors 1 and 2 follow the dynamics of the slower sigma factor 3. 

For example, if the fraction of bound sigma factor 3 fluctuates below its steady state value 

then sigma factors 1 and 2 are both more likely to be found bound to core RNAP. Hence, 

fluctuations in the bound fraction of sigma factors 1 and 2 are expected to be positively 

correlated over the time scales set by the binding/unbinding rates of sigma factor 3. 

Conversely, in the shorter time scale set by the binding/unbinding rates of sigma factors 1 

and 2, the fraction of core RNAP bound to sigma factor 3 can be considered a constant. Over 

these times scales, sigma factors 1 and 2 compete for the remaining available core RNAP 

through exclusionary binding, and are therefore anti-correlated.

Finally, to validate the finding of positive and negative correlations at different time-scales, 

we directly simulated the equations of the simple model for N sigma factors, Equation S24, 

as stochastic differential equations (implemented in Matlab). An example trace is shown in 

Figure 5F. The bound fraction of sigma factors 1 and 2 are anti-correlated with that of sigma 

factor 3 but positively correlated with each other. For instance, an increase in the bound 

fraction of sigma factor 3 results in a decrease in the bound fractions of both sigma factors 1 

and 2, resulting in positive correlations. Over shorter time scales, however, fluctuations in 

the bound fraction of sigma factors 1 and 2 are anti-correlated (inset in Figure 5F) as 

expected from competitive interactions. Critically, any readout of the bound fractions of the 

sigma factors that integrates over the shorter time scales (for example a fluorescent reporter) 

will only reveal the positive correlations at the longer time scales. Taken together, these 

results show that positive correlations between some pairs of sigma factors can arise from 

competitive binding interactions alone in some parameter regimes.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Image Analysis for Liquid Culture Snapshots—Quantitative image analysis of 

microscopy images was performed in MATLAB as described previously (Rosenfeld et al., 

2005). Briefly, constitutive mCherry fluorescence was used as a segmentation channel, and 

cell edges were detected using a Laplacian of Gaussian filter. The segmentation masks 

identified with mCherry were then used to extract cell fluorescence values from other 

channels.

Image Analysis for Agarose Pad Movies—Quantitative movie analysis used custom 

image analysis code, the Schnitzcells software written in MATLAB, as described in previous 

work (Young et al., 2011). Briefly, cells were segmented on the constitutive mCherry using 

edge detection with a Laplacian of Gaussian filter. Cell masks were then manually corrected, 

tracked, and then the cell tracks were further manually corrected, all using Schnitzcells.

Image Analysis for Mother Machine Movies—Each microscope image contained 

multiple subchannels (lanes in the mother machine). We used custom MATLAB code to 

automatically identify subchannels, and crop them out into new image files. This was 

important not only to follow cells in individual subchannels, but to reduce the computational 

load of segmentation (described below).

Cell segmentation was accomplished using the Trainable Weka Segmentation plugin in Fiji, 

and was automated using a custom Beanshell script inside Fiji. We were careful to train the 

plugin to accurately separate adjacent cells. Cell tracking of the mother cell was done in 

MATLAB, where for every frame we took the mother cell at the ‘end’ of the channel. This 

tracking method produced accurate tracks except in cases of cell death or flickering 

segmentation, where a cell very dim in mCherry could be segmented in one frame but not 

the next, leading to a tracking error. To correct tracking errors, we used a custom MATLAB 

interactive system, based on one used previously (Lin et al., 2015). By manually searching 

for errors in cell length, we manually marked problematic tracks to be excluded from further 

analysis. Finally, extraction of cell fluorescence and other cell properties such as cell length 

were done in MATLAB.

Promoter Activity Calculation—Single-cell promoter activity was computed using 

previously reported methods (Locke et al., 2011), for both agarose pad and mother machine 

movies. Briefly, we are interested in finding the instantaneous rate of fluorescent protein 

production in individual cells. We calculate this quantity from timelapse microscopy by 

taking a time derivative of the fluorescent protein level in the cell. Consider a timelapse 

movie of a single growing B. subtilis cell expressing yfp. For the moment, let us ignore cell 

division, so we are simply considering the cell as it elongates along its major axis. We 

denote the total fluorescence of the cell T(t), the yfp promoter activity (i.e. production rate) 

P(t), and the combined rate of YFP photobleaching and degradation, γ. T(t) and P(t) are 

functions of time. The rate of YFP degradation rate is typically negligible. These variables 

are related to each other as follows:
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T′ (t) = P(t) − γT(t) (Equation S30)

Here, the prime notation indicates a time derivative, and computing P(t) evidently requires 

measurement of the time derivative T’(t). Although we could try to differentiate T(t) from 

microscopy data, this can be sensitive to cell segmentation errors. As an alternative, we can 

replace T(t) with T(t) = M(t)V(t), where M(t) is the mean fluorescence of the cell, and V(t) 
is the cell volume. In addition, since B. subtilis grows lengthwise, we replace V(t) with V(t) 
= cL(t), where c is a constant and L(t) is the measured cell length at time t. The value c 

should be approximately equivalent to the cell’s cross-sectional area, but we will omit c in 

further calculations, since it will only change the final values by a constant factor, and 

fluorescence units are arbitrary to begin with. After substituting these 2 relationships into the 

above equation for T’(t), we can solve for P(t):

T′ (t) = P(t) − γT(t)

(M(t)V(t))′ = P(t) − γM(t)V(t)

M′ (t)V(t) + M(t)V′ (t) = P(t) − γM(t)V(t)

M′ (t)L(t) + M(t)L′ (t) = P(t) − γM(t)L(t)

P(t) = M′ (t)L(t) + M(t)L′ (t) + γM(t)L(t)

Promoter activity ≡ P(t)
L(t) = M′ (t) + M(t)L′ (t)

L(t) + γM(t)

(Equation S31)

This final equation enables us to calculate the promoter activity, or sigma activity, defined as 
P(t)
L(t) , or the production rate per unit length of the cell. Sigma activity can be interpreted as the 

approximate protein production rate per chromosomal equivalent, allowing comparison of 

protein production through all points in the cell cycle. To compute time derivatives, the 

measured values of M(t) and L(t) were first smoothed to reduce noise (MATLAB smooth 
function with Lowess algorithm). For γ, we used a value of 0.05 as described previously 

(Locke et al., 2011).

Pulse Identification for Agarose Pad Movies—To automatically identify pulses from 

the promoter activity traces, we used custom MATLAB software (Locke et al., 2011). The 

code first identified local maxima (peaks) in the traces of promoter activity vs. time. A point 

in the trace was deemed a peak if its height was the largest within a window of 7 frames 

(frames were separated by time intervals of 10–15 min depending on the movie). In other 

words, a peak at time tk must have height greater than all heights at times tk−3 through tk+3. 

For peaks near the start or end of the trace, the window size was decreased as necessary, e.g. 

a peak at timepoint t3 was compared against t0–t6.

To suppress peaks arising from random fluctuations, the code utilized 2 additional 

parameters: 1) amplitude and 2) amplitude relative to baseline. The amplitude was defined 
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as the height of the peak minus the average height of the 2 flanking minima surrounding the 

peak. The amplitude relative to baseline was defined as the height of the peak divided by the 

average height of the 2 flanking minima. The code rejected potential peaks whose amplitude 

is below the defined threshold of 7.5 arbitrary units (a.u.). The code also rejected peaks 

whose amplitude relative to baseline was less than 0.5 a.u. These two thresholds were 

chosen to avoid peak detection in timelapse data from a non-pulsatile Phyperspank-yfp strain 

induced with IPTG, where the IPTG level was such that the average activity of the 

Phyperspank-yfp was equal to that of the PB-yfp strain at 40 μg/ml MPA. Note the Phyperspank-

yfp strain in movies shows only small fluctuations that are qualitatively distinct from the 

large pulses from the alternative sigma factor reporter strains. The results of automatic pulse 

detection were checked against raw data and the promoter activity traces and showed good 

agreement with manual identification of pulses.

Pulse Identification for Mother Machine Movies and Pulse Characteristic 
Calculations—Pulses were identified from promoter activity traces using MATLAB’s 

findpeaks function, where the minpeakdistance option was set to 5 to prevent double-

counting peaks, and the minpeakheight option was set to 1.7 standard deviations above the 

mean activity to suppress detection of small fluctuations. Pulse identification showed good 

agreement with manual inspection of pulses.

Pulse characteristics were also found with MATLAB’s findpeaks function, which outputs the 

peak widths and peak amplitudes. The average pulse shape (Figure 2C) was found by taking 

each pulse, subtracting its baseline, and then dividing by the amplitude. The baseline was 

calculated by subtracting the pulse’s maximum value from the amplitude output by 

findpeaks. Data was pooled across multiple matrix strains carrying the same fluorescent 

reporter for any given sigma factor, resulting in at least 320 pulses per sigma factor. The 

normalized pulse amplitude distributions (Figure 2D) were normalized by the distribution 

mode.

Cross Correlation Functions, Pulse Triggered Averaging, and Pulse Amplitude 
Scatter Plots—All figure panels for the cross correlation functions (Figure 5A), pulse 

triggered averages (Figure S6) and amplitude scatter plots (Figure 5C) were calculated from 

the same underlying dataset, namely from the matrix strains grown in the mother machine. 

For each matrix strain, we obtained at least 73 single cell traces, each of which was > ~30 

cell cycles in length.

Cross correlation functions (ccf) were calculated using MATLAB’s xcov function, with the 

‘unbiased’ option, and were performed on mean fluorescence (not on promoter activity 

traces). To correct for long-term changes in sigma factor activity, the mean time trace was 

first subtracted from each trace. The cross-correlation function (ccf) for each trace was 

calculated separately, and the resulting set of ccf’s was averaged for Figure 5A. Each 

average ccf was calculated from at least 73 single cell traces.

The pulse triggered average plots (Figure S6) were also calculated from mean fluorescence 

traces. Each mean fluorescence time trace was first standardized by subtracting the mean 

trace and then dividing by the standard deviation. Peaks were computationally identified for 
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one sigma factor (the ‘trigger’), and for each peak a time window in the other sigma factor 

(the ‘plotted’ sigma factor) was extracted. The time window was centered at the peak in the 

‘triggered’ sigma. All such extracted time windows were averaged and then plotted. Thus, 

the same data set was used to generate multiple plots. For example, row 1, column 5 and row 

5, column 1 were generated from the same underlying dataset: the PB-cfp, PD-yfp strain. 

Each trace is the average of at least 75 peaks, and the shaded error bars are s.e.m..

The scatter plots in Figure 5C were based on promoter activity traces from the matrix of 

reporter strains, analyzed in the mother machine (Figure 4). Pulses were identified using 

MATLAB’s findpeaks function, retaining only peaks above the mean promoter activity. 

Each point in the scatter represents a timepoint in which findpeaks identified a peak in either 

the CFP or YFP promoter activity traces (or both).

Deletion Matrix Experiments—Deletion matrix strains were inoculated into Spizizen’s 

minimal media, and grown overnight in 30 °C shaker. In the morning, strains were diluted 

back to OD600 of 0.01, and grown for 2 hours at 37 °C. This cycle was repeated two more 

times. After the final back-dilution to OD600 of 0.01, strains were grown until the OD600 

reached ~0.1, which took about 3 hours. MPA was then added to the media to a final 

concentration of 40 μg/ml. Strains were then grown for an additional 3 hours at 37 °C. Next, 

cells were transferred to 1.5% Agarose Pads, and imaged with fluorescence microscopy. 

Details of agarose pad preparation and microscopy were as described in section ‘Sample 

Preparation for Liquid Culture Snapshots and Agarose Pad Movies’ and section ‘Image 

Analysis for Liquid Culture Snapshots’.

DATA AND SOFTWARE AVAILABILITY

All data and software used in this manuscript are available upon request, for contact 

information see section ‘Contact for Reagent and Resource Sharing’.

ADDITIONAL RESOURCES

All relevant information, software, and data are provided in previous sections.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Alternative sigma factors activate in repetitive pulses under constant 

conditions

• Time-lapse movies reveal positive and negative dynamic correlations

• Sigma factors appear to compete with different strengths for core RNAP

• Modeling shows competing pulsatile sigma factors can dynamically “time 

share” RNAP
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Figure 1. Multiple Alternative Sigma Factors Pulse under Energy Stress
(A) Alternative sigma factors bind core RNAP to activate target genes, including 

endogenous targets (left target) and the engineered fluorescent reporters used here (right 

target).

(B) Multiple distinct alternative sigma factor species (colored shapes) share core RNAP 

(gray). The “housekeeping” sigma factor σA (white) also utilizes core RNAP.

(C) In principle, sigma factor species could share core RNAP by partitioning, with each 

sigma factor species utilizing some constant fraction of total RNAP (molecular sharing, top). 

Alternatively, they could share RNAP in time, with one or more sigma factors occupying a 

large fraction of RNAP for some period, followed by a different sigma factor or factors for 

another period of time, and so on (time sharing, bottom). Only three distinct species are 

shown here for simplicity.

(D) Fluorescent reporter expression in growing microcolonies shows heterogeneous 

activation of seven alternative sigma factors, as indicated, and homogeneous activation of σA 

(bottom right) under energy stress conditions.

(E) Time-lapse analysis reveals stochastic pulsing of alternative sigma factors in individual 

cell lineages. Here, each plot shows sigma factor activity time traces derived from analysis 

of corresponding fluorescent reporter genes in three different cell lineages (different line 

shades). For each plot, the y axis shows rate of fluorescent protein production, 
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approximating instantaneous sigma factor activity. Note that the housekeeping sigma factor 

σA shows much less variability over time. See also Figures S1 and S2.
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Figure 2. Five Alternative Sigma Factors Exhibit Pulsatile Dynamics over Extended Timescales 
in the Mother Machine
(A) The mother machine microfluidic device enables long-term analysis of a single cell 

maintained at the end of a channel for multiple cell generations (schematic, top, and image 

of cells in device, bottom).

(B) Analysis of individual cell lineages show pulsatile dynamics of five alternative sigma 

factors as well as the constitutively active sigma factor σA for over 100 hr. Traces represent 

rates of fluorescent protein expression from target promoters for each sigma factor 

(promoter activity). Cell cycles are indicated by alternating gray and white vertical bands. 

Note that activity values in these conditions are not directly comparable with those in Figure 

1E.

(C) Mean pulse dynamics for each alternative sigma factor species. For each sigma factor, n 

≥ 320 pulses were detected, aligned around their peaks, and averaged. Error bars are SEM.

(D) Distribution of normalized pulse amplitudes for the indicated sigma factors.

(E) Mean pulse durations, quantified as full-width at half maximum (FWHM) for each of the 

alternative sigma factors. Error bars are SEM.

(F) Pulse frequencies for the indicated sigma factors. Error bars are SEM.

See also Figure S3.

Park et al. Page 42

Cell Syst. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. A Mathematical Model Shows Time Sharing in Alternative Sigma Factor Dynamics
(A) Schematic of model of a single pulsatile alternative sigma factor species. The sigma 

factor autoregulates its own operon, which contains genes for the sigma factor and its 

cognate anti-sigma factor. An input, taken to be a small-molecule ligand (black dot), induces 

pulses by reducing the inhibitory activity of the anti-sigma factor.

(B) The simple sigma factor model can generate a pulsatile response to a sudden increase in 

ligand. Model parameters are in given in the STAR Methods (set A).

(C) Multiple alternative sigma factor circuits identical to the one in (A), along with a 

constitutive sigma factor representing σA, operating in the same cell, are coupled through 

sharing of core RNA polymerase (gray arrows).

(D) The multi-sigma factor model produces pulsatile dynamics of each alternative sigma 

factor (colored traces, left y axis), but more constant dynamics for σA (black, right y axis).

(E) Histogram showing the mean fraction of sigma factors active during pulses in the 

dynamics shown in (D). Most of the time, only one or two alternative sigma factors are 

active (exceeding a threshold value of 0.2 μM) simultaneously.

(F) Quantifying the co-occurrence of pulses of distinct sigma factors (schematic). A pulse 

detection algorithm recognizes pulses in either of two sigma factors (vertical dashed lines, 

upper panel). Sigma factor activities at each of these points can then be plotted relative to 

one another, as illustrated in the lower panel.
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(G) Pulse amplitudes for all detected simulated pulses, plotted as in the lower panel of (F). 

The constraint of total RNAP limits the sum of the two sigma factor activities.

(H) Cross-correlation functions between the activities of two alternative sigma factors show 

anti-correlation between when RNA polymerase is limiting (black) but not when it is in 

excess (gray). See also Figures S4 and S5.
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Figure 4. A Matrix of Multi-reporter Strains Enables Analysis of Dynamic Correlations between 
Different Alternative Sigma Factors
(A) A matrix of strains was constructed, each of which contains a chromosomally integrated 

CFP reporter for one sigma factor (colored boxes) and a chromosomally integrated YFP 

reporter for another (second set of colored boxes), along with mCherry under the control of 

σA (schematic).

(B) Filmstrip from a mother machine movie, showing a single lane at 15 min intervals. PB-

CFP is shown in red, overlaid with PW-YFP in the green channel (see Movie S3). Anti-

correlations between the sigma factors are apparent from the lack of cells showing similar 

intensities in green and red channels (i.e., the lack of yellow cells).

(C) Example traces showing the activity dynamics of different pairs of alternative sigma 

factors, including strains with two reporters for the same sigma factor (top), and other pairs 

(lower two panels). See also Figure S6.
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Figure 5. Dynamic Correlations between Sigma Factors in the Same Cell
(A) Fifteen double-reporter strains for pairs of alternative sigma factors (including 

“diagonal” strains with two reporters for the same sigma factor) were monitored in the 

mother machine. The corresponding time traces were analyzed by cross-correlation analysis. 

The resulting matrix of cross-correlations shows both positive (green), negative (red), and 

one approximately neutral correlation (blue). Each plot displays the mean cross-correlation 

(solid line) and the SE of the mean (shading). The diagonal strains do not show perfect 

correlation due to noise, and provide an upper limit on the possible strength of positive 

correlations.

(B) Diagram compactly summarizing the pattern of correlations revealed in (A), also using 

green, red, and blue to represent positive, negative, and neutral correlations, respectively.

(C) Scatterplots of pulse amplitudes for the sigma factor pairs shown in (A) (cf. Figure 3F). 

Each dot represents an event in which one or both sigma factors pulse (STAR Methods).

(D) Positive correlations can arise from competitive interactions in a minimal model of 

sigma factor-RNAP interactions. (Di) A minimal model of three sigma factors competing for 

binding to a limited pool of core RNAP. (Dii) The model assumes equilibrium binding/

unbinding and uses three parameters for each sigma factor: its abundance (ci), and its 

binding (ki) and unbinding (li) rates to core RNAP.
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(E) Cross-correlation functions of the bound fractions of all pairs of sigma factors calculated 

directly from the spectral densities. Bound fractions of sigma factors 1 and 2 exhibit positive 

correlations over sufficiently large timescales (or, equivalently, sufficiently low frequencies 

in the spectral densities).

(F) Simulated traces of binding fluctuations of the three sigma factors for the same 

parameter values. The bound fraction of sigma factor 3 fluctuates on a longer timescale than 

sigma factors 1 and 2. Over these timescales, the other two sigma factors are anti-correlated 

with sigma factor 3 but positively correlated with each other. In contrast, over shorter 

timescales (inset) the bound fraction of sigma factors 1 and 2 are negatively correlated as 

expected from competitive binding.

(G) Next, we extended the analytical model to six sigma factors (five observed and one 

unobserved) and searched for parameters that resulted in a 5 × 5 correlation matrix (among 

the five observed sigma factors) that exhibited a complex mixture of positive and negative 

correlations. The resulting correlation matrix is shown here (see Figure S7D for the optimal 

choice of parameters). Despite its simplicity, competitive interactions are sufficient to 

generate a complex pattern of positive and negative correlations. See also Figures S6 and S7.
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Figure 6. Diversity in Sigma Factor Competition and Correlation
(A) To systematically analyze competition between sigma factors, we constructed a deletion 

matrix. Each strain in the matrix is genetically deleted for one sigma factor (rows), and 

contains a chromosomally integrated fluorescent reporter for another sigma factor 

(columns). Cells were grown in minimal media with 40 μg/mL MPA. Mean reporter 

expression was measured by fluorescence microscopy. Each element in the matrix shows the 

fold change in sigma factor activity upon deletion of another sigma factor relative to wild-

type. For instance, the ΔsigB, PW-yfp strain (row 1, column 3) exhibited ~1.4-fold more 

fluorescent signal relative to the PW-yfp reporter strain without deletion. The elements along 

the “diagonal” of the deletion matrix reflect negative controls on the sigma factors reporter 

strains’ specificity. Asymmetric interactions are evident from the increased fold change 

along the ΔsigD row and the σW column.

(B) Simulated cross-correlations for asymmetric parameters inspired by the results in (A); 

see (D), and parameter set B in STAR Methods. A mixture of positive and negative cross-

correlations can arise from asymmetric competition for core RNAP. Each trace is the average 

of 81 cross-correlation functions, calculated from 28,000 simulated cell cycles.

(C) Histogram showing the distribution of the number of sigma factors simultaneously active 

during pulses in the dynamics displayed in Figure S8C (parameter set B in STAR Methods). 

Pulse detection threshold was as in Figure 3E, except for σ3, which used a threshold of 0.1 

μM.

(D) The asymmetric sigma factor model recapitulates the broad features of the experimental 

deletion matrix. The deletion matrix was simulated in the model (parameter set B in STAR 

Methods) by removing each alternative sigma factor one at a time, and then simulating the 

rest of the sigma factors. Each simulation was run for 28,000 cell cycles. Deletion of σ5 

increases the activity of all other sigma factors. σ3 is most sensitive to deletion of any other 

sigma factor. See also Figure S8.
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Figure 7. Time Sharing Could Control the Distribution of Cell States in a Population
(A) Two distinct modes of sigma factor sharing (schematic). Competition for core 

polymerase restricts mean sigma factor activities to a subspace indicated by gray triangle, on 

which the sum of sigma factor activities is constant. In molecular sharing, each sigma factor 

would be active at a constant, intermediate level, with all cells (yellow dots) in similar states. 

In time sharing, cells predominantly occupy the vertices and edges of the allowed subspace 

(yellow dots, right triangle), and switch dynamically among these states through pulsing. 

They are therefore distributed over a broader variety of expression states at any given time. 

We consider a hypothetical symmetric three sigma factor system for conceptual illustration.

(B) Because the duration of pulses is comparable with the cell-cycle duration, cells tend to 

switch states from one cell cycle to the next (schematic). Here, colors indicate activity levels 

of each of three sigmas, following the scheme in (A).

(C) A schematic population of time-sharing cells. As in (B), colors indicate activities of 

three sigma factors. Due to stochasticity of sigma factor pulses, under these assumptions, the 

distribution of cell states can recover within one cell cycle from a perturbation to the cell 

state distribution (e.g., selection for the red state, arrow).

(D) In the time-sharing system, dynamic switching among states enables changes to the 

environment to rapidly shift the population from one distribution to another (left and right 

spaces, schematic).
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