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Summary

Genetic alterations in signaling pathways that control cell cycle progression, apoptosis, and cell 

growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of 

alterations in these pathways differ between individual tumors and tumor types. Using mutations, 

copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors 

profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of 

somatic alterations in 10 canonical pathways: cell cycle, Hippo, Myc, Notch, NRF2, PI-3-Kinase/

Akt, RTK-RAS, TGFβ signaling, P53 and β-catenin/WNT. We charted the detailed landscape of 

pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-

occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration 

in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by 

currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating 

opportunities for combination therapy.
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An integrated analysis of genetic alterations in 10 signaling pathways in >9,000 tumors profiled by 

TCGA highlights significant representation of individual and co-occurring actionable alterations in 

these pathways, suggesting opportunities for targeted and combination therapies.
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Introduction

Cancer is a disease in which cells have acquired the ability to divide and grow 

uncontrollably (Hanahan and Weinberg, 1998), (Hanahan and Weinberg, 2011), usually 

through genetic alterations in specific genes. Advances in DNA sequencing over the past 

decade have made it possible to systematically study these genetic changes, and we now 

have a better understanding of the commonly involved processes and signaling pathways 

(Garraway and Lander, 2013; Vogelstein et al., 2013). As more genetic alterations become 

targetable by specific drugs, DNA sequencing is becoming part of routine clinical care 

(Hartmaier et al., 2017; Schram et al., 2017; Sholl et al., 2016; Zehir et al., 2017). However, 

there is considerable variation in the genes and pathways altered across different tumor types 

and individual tumor samples, and a complete understanding of the genes and pathways 

altered in all cancer types is essential to identify potential therapeutic options and 

vulnerabilities.

Several important signaling pathways have been identified as frequently genetically altered 

in cancer, including the RTK/RAS/MAP-Kinase (hereafter also called RTK-RAS for 

brevity) pathway, PI3K/Akt signaling, and others (Vogelstein and Kinzler, 2004). Members 

of these pathways and their interactions have been captured in a number of pathway 

databases, such as Pathway Commons (Cerami et al., 2011), which aggregates a number of 
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~20 databases, including REACTOME (Joshi-Tope et al., 2005) and KEGG (Kanehisa and 

Goto, 2000). Genes in key pathways are not altered at equal frequencies, with certain genes 

recurrently altered and well-known in cancer, while others are only rarely or never altered.

Recurrence of rare alterations often requires large numbers of samples for detection 

(Lawrence et al., 2014). This is confounded by the challenge to distinguish between 

functionally relevant (or “driver” alterations) from non-oncogenic “passenger” events (Gao 

et al., 2014), especially in tumor types with a high background mutation burden (Alexandrov 

et al., 2013; Lawrence et al., 2013). In these cases, many mutations, even when they occur in 

cancer genes, may have no functional effect. This topic is further addressed in Bailey et al 

(Bailey et al., 2017).

Previous studies by The Cancer Genome Atlas (TCGA) have incrementally mapped out the 

alterations landscape in signaling pathways. Certain pathways, such as RTK-RAS signaling 

or the cell cycle pathway, are altered at high frequencies across many different tumor types, 

whereas other pathways are altered in more specific subsets of malignancies (e.g., alterations 

in the oxidative stress response pathway are strongly associated with squamous histologies). 

With >10,000 samples characterized by TCGA, there is an opportunity to systematically 

characterize and define the alterations within well-known cancer pathways across all tumor 

types and map out commonalities and differences across pathways. The existence of shared 

genomic features across histologies has been highlighted previously (Ciriello et al., 2013; 

Hoadley et al., 2014, 2018), but these studies traditionally used a gene-centric, as opposed to 

pathway-centric, approach. Identifying relationships of inter- and intra-pathway recurrence, 

co-occurrence or mutual exclusivity across different types of cancers can help elucidate 

functionally relevant mechanisms of oncogenic pathway alterations that might inform 

treatment options.

Here, we worked within the framework of the TCGA PanCanAtlas initiative (Cancer 

Genome Atlas Research Network et al., 2013) to build a uniformly processed data set and a 

unified data analysis pipeline aimed at exploring similarities and differences in canonical 

cancer pathway alterations across 33 cancer types. The focus of this effort is on mitogenic 

signaling pathways with evidence for functional alterations; other oncogenic processes, such 

as alterations in DNA repair (Monnat et al., 2017), the spliceosome (Seiler et al., 2017), 

ubiquitination (Ge et al., 2017a) or metabolic pathways (Peng et al., 2017), as well as the 

effects of splicing mutations (Jayasinghe et al., 2017), are covered by other efforts of the 

TCGA PanCanAtlas project.

Results

Data Set

We evaluated all samples in the TCGA PanCanAtlas collection for which the following data 

types were available: somatic mutations (whole exome sequencing), gene expression levels 

(RNA-Seq), DNA copy-number alterations (Affymetrix SNP6 arrays), and DNA 

methylation (Infinium arrays). This resulted in a final set of 9,125 samples from 33 different 

cancer types (Figure 1A, Table S1). In order to account for molecular or histological 

subtypes, these cancer types were further stratified into a total of 64 genomically distinct 
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tumor subtypes, as previously defined by the individual TCGA analysis working groups 

(Figure 1A, Table S1). All genomic data and clinical attributes per sample can be visualized 

through the cBioPortal for Cancer Genomics at http://cbioportal.org/pancanatlas (Cerami et 

al., 2012).

Definition of pathways and alterations

We evaluated 10 canonical signaling pathways with frequent genetic alterations, starting 

with key cancer genes explored in these pathways in previous TCGA publications, and 

focused on pathway members likely to be cancer drivers (functional contributors) or 

therapeutic targets. The pathways analyzed are: 1) cell cycle, 2) Hippo signaling, 3) Myc 

signaling, 4) Notch signaling, 5) oxidative stress response / NRF2, 6) PI-3-Kinase signaling, 

7) receptor-tyrosine kinase (RTK) / RAS / MAP-Kinase signaling, 8) TGFβ signaling, 9) 

P53 and 10) β-catenin / WNT signaling (Figures 2 and S1, Table S2). Alterations in DNA 

repair pathways, epigenetic modifiers, splicing and other cellular processes frequently 

altered in cancer were not included, as these primarily provide a background of genomic 

instability, rather than specifically proliferative potential.

We began by compiling and reviewing the full set of cancer-type specific pathway diagrams 

from the compendium of TCGA manuscripts published between 2008 and 2017 (Brennan et 

al., 2013; Cancer Genome Atlas Network, 2012a, 2012b, 2015a, 2015b, Cancer Genome 

Atlas Research Network, 2008, 2013, 2014c, 2014a, 2014b, 2014d; Cancer Genome Atlas 

Research Network, 2017; Davis et al., 2014; Network, 2010, 2013, Network et al., 2017, 

2009), each of which included the pathway genes found to be genetically altered in the 

individual tumor types. These pathway diagrams are publicly available as pre-defined 

network templates within the www.PathwayMapper.org visualization tool (Bahceci et al., 

2017). By taking the union of pathway members across multiple TCGA studies, we 

produced a consolidated list of candidate member genes for each of the ten pathways. These 

were then further curated based on updated literature (including but not limited to the 

references in Table S2), public pathway databases and expert opinion (Figure 1B).

The selected genes in the ten pathways were then assessed for recurrent alterations within 

and across different tumor types as follows (Figure 1B): Alterations of pathway members 

were classified as activating events (usually specific recurrent missense mutations, i.e., 

hotspot mutations, amplifications or fusions involving oncogenes) or inactivating events 

(truncating mutations, specific recurrent missense or inframe mutations, deletions, as well as 

fusions and promoter hypermethylation of tumor suppressor genes). Individual alterations 

were also scrutinized for two features: statistical recurrence across sets of tumor samples and 

presumed functional impact. We first assessed statistical recurrence using MutSigCV 

(Lawrence et al., 2014) for mutations and GISTIC 2.0 (Mermel et al., 2011) for copy-

number alterations. In order to identify likely functional variants, we then used recurrence 

across tumor samples at the residue level (linear and 3D mutational hotspots, (Chang et al., 

2016a, 2018; Gao et al., 2017a), see Methods) and prior knowledge about specific variants 

via the OncoKB knowledge base, which contains information about the oncogenic effects 

and treatment implications of variants in >400 cancer genes (Chakravarty et al., 2017a). 

Epigenetic silencing through promoter DNA hypermethylation of tumor suppressor genes 
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was evaluated using the RESET algorithm (see Methods). Gene fusions and structural 

rearrangements were called from RNA-Seq data using a combination of the STAR-Fusion, 

EricScript and BreakFast algorithms (Gao et al., 2017b), see Methods), and likely passenger 

events were filtered out based on OncoKB annotation. Through this process, genes without 

evidence for recurrent or previously known oncogenic alterations were removed from the 

preliminary pathway templates. The resulting curated pathway templates and the identified 

genetic alterations were vetted for functional importance by individual pathway experts or 

the corresponding TCGA-PanCanAtlas pathway-specific analysis working groups, when 

applicable (Figure 1B). The pathway member genes and the genetic alterations considered as 

oncogenic are listed in Table S3, and binary genomic alteration matrices are provided as 

Table S4 (see Methods).

The resulting comprehensive dataset of different types of alterations across many tumor 

types form the basis of all subsequent analyses regarding pathways, patterns of co-

occurrence and mutual exclusivity, as well as potential therapeutic implications. The 

simplified pathway diagrams in Figure 2 show the most frequently altered genes in the ten 

pathways, including alteration frequencies as well as the types of oncogenic alterations 

identified in each of the genes.

Pathway alteration frequencies per tumor-type

For each tumor type and subtype, we computed the fraction of samples with at least one 

alteration in each of the 10 signaling pathways (Figure 3). A tumor sample was considered 

as altered in a given pathway if one or more genes in the pathway contained a recurrent or 

known driver alteration (as described above). Despite the fact that non-recurrent and not 

previously known alterations were filtered out as likely passenger events and were not 

included in the alteration frequencies, the microsatellite instability (MSI) and polymerase ε 
(POLE) mutant subtypes of gastrointestinal and uterine tumors, which had the highest 

mutation burden, also had the highest overall frequencies of pathway alterations. This is 

possibly due to the frequent inactivating mutations introduced by the predominant mutation 

mechanisms in these tumor types (Boland and Goel, 2010; Rayner et al., 2016)

The RTK-RAS pathway was the signaling pathway with the highest median frequency of 

alterations (46% of samples) across all cancer types. The tumor subtypes with the highest 

fraction of alterations in this pathway were (in descending order): melanoma (SKCM, 95% 

altered), the genomically-stable subtype of colorectal cancer (CRC GS, 88%), Her2-enriched 

breast cancer (BRCA Her2-enriched, 82%), pancreatic cancer (PAAD, 78%), IDH1-wild-

type glioma (LGG IDHwt, 82%), lung adenocarcinoma (LUAD, 74%), and thyroid 

carcinoma (THCA, 84%). Some tumor types, such as lung squamous cell carcinoma 

(LUSC), EBV-positive esophagogastric cancer (STES EBV), and non-hypermutated uterine 

cancer (UCEC CN high and CN low), had high rates of alterations in the PI3K pathway, 

altered in 68%, 80%, 86%, and 95% of samples, respectively. While cell cycle alterations 

were common in many tumor types, the pathway was only rarely altered in uveal melanoma 

(UVM), thymoma (THYM), testicular cancer (TGCT) and acute myeloid leukemia (AML). 

Alterations in the WNT pathway were the most variable across cancer types. Colorectal 

cancer had near universal activation of this pathway, while others, such as renal cell 
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carcinomas and breast cancer, had very low frequencies of alteration in genes in this 

pathway. The oxidative stress response / NRF2 pathway had the lowest overall frequency of 

alteration (4% of samples), and it was altered most frequently in lung squamous (25% 

altered) and esophagogastric squamous cell carcinoma (STES ESCC, 23%).

Particularly interesting gene alterations across tumor types were observed in the RTK-RAS 

pathway. KRAS was the most frequently altered gene (9% across all samples), followed by 

BRAF (7%) and EGFR (4%) (Figure 4A). KRAS alterations were most common in 

pancreatic carcinoma (PAAD, 72%), genomically stable colorectal cancer (69%), and lung 

adenocarcinoma (33%) (Figure 4B). BRAF alterations (predominantly known hotspot 

mutations) were found in melanoma and thyroid carcinoma, altered in 51% and 62% of 

samples, respectively. EGFR alterations were predominantly found in glioblastoma (GBM, 

50%), low grade glioma IDHwt (52%), HPV-negative head and neck cancer (HNSC HPV−, 

13%), lung adenocarcinoma (13%), and esophagogastric squamous carcinoma (14%), while 

ERBB2 alterations were found most commonly in breast cancer and chromosomally 

unstable esophagogastric carcinoma (STES CIN 26% altered), as well as cervical carcinoma 

(CESC 23% altered). While most of the alterations described here were previously reported 

as functional contributors, we identified relatively rare potentially oncogenic alterations in 

SOS1 (<1%). SOS1 encodes a guanine-nucleotide-exchange factor (GEF) involved in the 

activation of Ras proteins. Specific germline mutations in this gene are involved in Noonan 

syndrome (Lepri et al., 2011), and recurrent somatic mutations in SOS1 were recently 

identified in otherwise RAS-pathway driver-negative lung adenocarcinoma samples 

(Campbell et al., 2016). We identified recurrent (hotspot) mutations (A90V/T, N233Y/S) and 

other known activating mutations (M269I/V, G434R, R552S/K/G/M, E846K) in SOS1 in a 

total of 1% of lung adenocarcinoma samples, 1% of uterine carcinomas, independent of 

subtype, and at lower frequencies in several other cancer types (Figure 4C). This finding 

suggests that rarely altered novel cancer genes can be identified as more tumor samples are 

profiled. A more detailed analysis of RAS pathway alterations is published separately, 

including a description of downstream transcriptional changes due to malfunctioning Ras 

signaling and results suggesting that multiple hits in the Ras pathway are capable of 

increasing overall Ras activity in RAS wildtype tumors (Way and Greene, 2017).

The alteration frequencies of the most commonly altered genes in the other nine pathways 

are in Figure 5 (full heat maps providing frequencies of alteration for every gene in each 

pathway are in Figures S2 and S3). In some pathways, the alterations are distributed over 

many genes (e.g., cell cycle, PI3K), while in others the alterations mainly affect only a few 

genes (WNT, MYC, NRF2). Several pathways are featured in more detail as separate 

publications, including: 1) PI3K pathway (Zhang et al., 2017): aberrations in the PI3K 

pathway were found predominantly as activating events in PIK3CA (less commonly in 

PIK3CB) and inactivating events in PTEN or PIK3R1 with PIK3CA and PTEN alterations 

being most commonly found in head and neck cancer, breast cancer, gastrointestinal and 

gynecological tumors; 2) TGFβ pathway (Korkut et al., 2017): The TGFβ pathway had the 

highest alteration rate in pancreatic and gastrointestinal cancers, while renal and brain 

cancers, among others, had almost no alterations in this pathway; and 3) MYC 

pathway(Schaub et al., 2017): MYC pathway alterations were most common in tumor types 
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with amplification of chromosome 8, which contains MYC, such as breast cancer, ovarian 

cancer (OV), and others.

Mutual exclusivity and co-occurrence among pathway alterations

Individual tumors typically have multiple functional alterations affecting more than a single 

pathway. Some pathways may be the target of more than one alteration per patient or distinct 

pathways may be co-altered in one tumor. Patterns of mutual exclusivity between alterations 

across large patient cohorts have been associated either with functional redundancy, 

indicating that once one occurred and is selected the second will not provide a further 

selective advantage, or with synthetic lethality, indicating that cells cannot survive with both 

alterations (Etemadmoghadam et al., 2013; Mina et al., 2017). Patterns of co-occurrence of 

alterations in many tumor samples, on the other hand, indicate functional synergies and, 

importantly, may reflect resistance to therapy targeting one of the alterations (Nissan et al., 

2014)

To explore significantly co-occurring and mutually exclusive alterations by pathway or by 

gene, we used the SELECT method (Mina et al., 2017). Among the 416 alterations 

characterized, we identified 152 pairs of mutually exclusive alterations and 116 pairs of co-

occurring alterations (Table S5).

Upon mapping these significant pairs to the affected pathways, we found numerous mutually 

exclusive pairs within the P53, cell cycle, RAS, and PI3K pathways, suggesting that one 

alteration is sufficient to functionally alter each of these pathways or that more than one 

might be disadvantageous (Figure 6A). On the other hand, the Hippo, RTK, and, to a lesser 

extent, Wnt pathways often had multiple alterations per tumor sample, suggesting co-

occurring events that mediate synergistic activation of each pathway (Figure 6A). The 

SELECT method also identified several significant interdependencies between distinct 

pathways (Figure S4). For example, activation of RTKs was significantly mutually exclusive 

with alterations that promote either RAS or PI3K signaling, consistent with RTKs being able 

to activate either pathway without the need for additional alterations. Notable exceptions 

were significant co-occurrent alterations in the FGF receptors FGFR2 and FGFR3 and 

alterations in the PI3K pathway (Figure S4A). The P53 and cell cycle pathways were 

frequently co-altered. Indeed, numerous alterations affecting Rb-mediated cell cycle control 

were found co-occurring with TP53 mutations. These included amplification of CCNE1, 

mutation of CDKN2A, RB1 loss, and amplification of CDK6 and E2F3 (Figure S4B). 

Interestingly, TP53 mutations were found mutually exclusive with CDKN2A deletion, 

consistent with the latter invariably affecting both p16, regulating the cell cycle, and ARF, 

promoting p53-dependent apoptosis. Similarly, MDM2 amplification was significantly 

mutually exclusive with RB1 and CDKN2A loss. However, MDM2 is proximal to CDK4 in 

the genome and the two genes were almost always co-amplified. Overall, these results 

indicate that p53 signaling and cell cycle control are frequently co-altered across multiple 

tumor types, either through two independent events (e.g., mutations of TP53 and RB1), or 

through a single alteration that is able to affect both pathways (e.g., CDKN2A deletion).

The strongest co-occurrence among pathways was found between alterations of the PI3K 

and NRF2 pathways. Here, gain of function mutations and amplifications of the NFE2L2 
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gene (encoding for NRF2) significantly co-occurred with PIK3CA amplification and tended 

to co-occur with PIK3CA mutations and PIK3CB amplification (Figure 6C). Interestingly, 

even though NFE2L2 amplification was largely mutually exclusive with loss of STK11 
(a.k.a. LKB1), the latter significantly co-occurred with loss of function mutations of 

KEAP1, a negative regulator of NFE2L2. Co-occurring NRF2-PI3K pathway alterations 

were most frequent in lung tumors (both squamous cell and adenocarcinoma), esophageal 

carcinomas, head and neck squamous cell carcinoma and uterine carcinoma, independent of 

subtype (Figure 6D). In these tumor types, alterations in NFE2L2 and KEAP1 were 

recurrent and almost perfectly mutually exclusive and they frequently co-occurred with 

PIK3CA activation or STK11 loss (Figure 6E). PI3K pathway activation promotes NRF2 

accumulation, which, in turn, mediates metabolic pathways required to sustain cell 

proliferation and protection from reactive oxidative species (Mitsuishi et al., 2012). NRF2 is 

however kept in check by inhibitory molecules such as KEAP1 and CUL3 (Figure 6F). The 

observed co-occurrence between alterations of the PI3K and NRF2 pathways suggests that 

bypassing these inhibitory mechanisms (either by loss of KEAP1 or CUL3, or by direct 

over-activation of NFE2L2) is synergistic with active PI3K signaling. Importantly, tumors 

with these events might depend on NRF2 activity to tolerate PI3K pathway over-activation.

The RTK-RAS pathway contained numerous and some of the most significantly mutually 

exclusively altered genes, as well as several gene pairs that were significantly concurrently 

altered (Figure 6G). In particular, alterations promoting EGFR activation (gain of function 

mutations, fusion, and amplification) were involved in the highest number of significant 

pairs. EGFR amplification was significantly mutually exclusive with activation of its paralog 

growth factor receptor Her2 (ERBB2, Figure 6H - Box 1) and with key drivers of the RAS 

pathway, including oncogenic mutations in BRAF and KRAS as well as loss of NF1 and 

RASA1 (Figure 6G). Since oncogenic EGFR can be synthetically lethal with mutated KRAS 
and can mediate resistance to BRAF inhibition in colon cancer and melanoma (Sun et al., 

2014; Unni et al., 2015), these results suggest a similar antagonistic interaction with loss of 

NF1 or RASA1. Overall, alterations of either of these genes were recurrent across multiple 

tumor types, although almost never in the same patient (Figure 6H - Box 2). On the other 

hand, in glioblastoma and IDH wild-type low grade glioma, EGFR amplifications were 

highly co-occurrent with either EGFR mutations or gene fusions (Figure 6H - Box 3) or with 

focal amplifications of chromosome 4q12, where both KIT and PDGFRA are located 

(Figure 6H - Box 4). It should be noted that the majority of EGFR and PDGFRA fusions 

were found coincident with amplifications in these genes, indicating that, potentially, in 

these cases the same structural variant was detected as both a copy number gain and a fusion 

(Alaei-Mahabadi et al., 2016). Interestingly, co-amplification of EGFR and PDGFRA has 

been proposed to be an early event in glioblastoma development, where the two receptors 

heterodimerize under EGF stimulation and respond to EGFR-inhibitors (Chakravarty et al., 

2017b).

Overall, these results provide a map of the cross-talk between pathways and pathway 

components, reflecting functional interactions and dependencies that could be 

therapeutically exploited.
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Therapeutic actionability

DNA sequencing has been used routinely to inform the choice of targeted therapy in specific 

cancer types for several years, and some institutions now apply it more broadly to guide 

clinical trial enrollment for many additional cancer types. A relatively small number of 

alterations in a subset of tumor types are currently biomarkers for standard care targeted 

therapies, and a larger number are potential biomarkers for investigational therapies, some 

with promising clinical results. Using the OncoKB knowledge base of clinically actionable 

alterations (Chakravarty et al., 2017a), we systematically assessed all alterations in each 

sample of each cancer type, distinguishing between standard care actionability (Levels 1 or 

2) and investigational therapies (Levels 3 and 4). Overall, 52% of tumors had at least one 

potentially actionable alteration in the ten signaling pathways, and 57% had at least one 

actionable alteration when including genes outside of these pathways, most notably 

BRCA1/2 and IDH1/2 (all numbers referenced below include these additional genes). Apart 

from the Her2-enriched breast cancer samples, most of which have a standard care targeted 

therapy, melanoma was the tumor type with the highest fraction of tumors with a Level 1 or 

2A alteration (46%) (Figure 7A), mainly due to frequent BRAF mutations (Figure 7B), 

followed by esophagogastric cancers (ERBB2 amplifications). Luminal A breast cancer was 

the tumor type with the highest frequency of biomarkers with promising investigational data 

(Level 3A), driven by the high prevalence of PIK3CA, AKT1 and ERBB2 mutations. 

Several tumor types had frequent mutations that are biomarkers for drug sensitivity in other 

cancer types (Level 3B), including endometrial cancer, where PIK3CA mutations are 

common. Uveal melanoma and testicular non-seminoma had the lowest percentage of 

potentially targetable samples (2.5% and 8.5%, respectively); thymoma, mesothelioma 

(MESO), and renal clear cell carcinoma (KIRC) also had low frequencies of potentially 

actionable alterations.

Thirty percent of tumor samples had two or more potentially targetable alterations (Figure 

7C). Among these, the MSI-H and POLE-mutated tumor subtypes had the highest 

proportion of samples with multiple potentially actionable alterations (not considering the 

fact that patients with MSI-H tumors are now eligible for immunotherapy). Other tumor 

types with a high frequency of samples with multiple targetable alterations included non-

hypermutated endometrial cancer (64%), colorectal cancer (37%), and breast cancer (28%).

Finally, we searched for candidate drug combinations that could prove effective across 

different tumor types based on the occurrence of actionable alterations. Hyper-mutant MSI 

and POLE subtypes had a high fraction of samples of actionable alterations corresponding to 

various drug combinations. In other tumor subtypes, a combination of CDK4 and MDM2 

inhibitors was the most commonly indicated combination (1% total), in particular in 

dedifferentiated liposarcomas (SARC DDLPS), in which 78% of the cases had co-

amplification of the two targets (Figure 7D). By a similar consideration linking actionable 

alterations of targets to their inhibitors, a combination of HER2 and PI3K inhibitors might 

be beneficial across multiple tumor types, in particular Her2-enriched breast cancer (17%), 

uterine carcinosarcoma (UCS, 7%), chromosomally unstable endometrioid carcinoma 

(UCEC CN high, 7%), and cervical adenocarcinoma (7%) (Figure 7D). Additional candidate 

combination therapies include PI3K and MEK inhibitors in EBV+ stomach tumors (10%), 
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CDK4 and PI3K inhibitors in glioblastoma multiforme (7%), HER2 and MEK inhibitors in 

pancreatic cancer (7%), PI3K and RAF inhibitors in melanoma (SKCM, 12%), and IDH and 

PI3K inhibitors in IDH-mutant low grade glioma (14%) (Figure 7D). While there are many 

steps from the observation of combinations of genetic alterations to valid combination 

therapies, this survey indicates the wide landscape of potential tumor-type specific novel 

therapeutic combinations that can be explored in experimental and clinical contexts.

Discussion

Signaling pathways are somatically altered in cancer at varying frequencies and in varying 

combinations across different organs and tissues, indicative of complex interplay and 

pathway cross-talk. Understanding the extent, detailed mechanisms, and co-occurrence of 

the oncogenic alterations in these pathways is critical for the development of new 

therapeutic approaches that can improve patient care.

Here we performed a comprehensive characterization of 10 selected signaling pathways 

across the 33 cancer types analyzed by TCGA. This report constitutes the first pan-cancer 

exploration that uses a uniformly processed data set and a standardized set of pathway 

templates, curated through a combination of computational methods and expert review 

(Figures 1, 2). The results highlight similarities and differences in frequencies of alteration 

of individual pathways in different cancer types and specific molecular subtypes (Figure 3). 

They also underscore the potential for discovering previously uncharacterized alterations in 

pathway genes that occur at low frequencies and might otherwise remain statistically 

unnoticeable (see SOS1, Figure 4). More generally, even though a small set of critical genes 

contains a very large fraction of alterations in these pathways (Figures 4, 5), there is a 

complex interplay of co-occurring and mutually exclusive alterations within and across 

pathways (Figure 6). In spite of the accumulating wealth of biological knowledge and the 

accepted oncogenic relevance of these pathways, the number of currently approved 

biomarkers linked to standard of care therapies remains sparse (Figure 7), but additional 

drug targets in these pathways will hopefully emerge, and candidates for combination 

therapy will be explored.

This analysis of targetable alterations only included currently approved therapies or 

investigational therapies with reported promising results. These predominantly target the 

RTK-RAS, PI3K, cell cycle and TP53 pathways. While some of these therapies are standard 

care, many are still investigational, and further testing is required to assess how effective 

different targeted therapies will be across tumor types and in tumors with different co-

mutation spectra. Efforts are underway to develop therapies that target additional pathways, 

some of which are in clinical trials (Table S6) (Park and Guan, 2013), (Whitfield et al., 

2017), (Whitfield et al., 2017), (Aster and Blacklow, 2012), (Takebe et al., 2014), (Buijs et 

al., 2012), (Sheen et al., 2013), (Pai et al., 2017). In the WNT signaling pathway, for 

example, two approaches involve drugs targeting PORCN, which is involved in the 

processing of wingless proteins, and monoclonal antibodies directed at proteins in the 

Frizzled gene family. While the NRF2 pathway does not have therapies directly targeting 

any of the pathway members included in this study, alterations in NRF2 pathway members 

(NFE2L2 and KEAP1) are used as part of the inclusion criteria in the Phase 2 trial of a 
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TORC1/2 inhibitor. Clinical trials involving these pathways exemplify opportunities in 

precision medicine to associate additional functional alterations as part of inclusion criteria 

(Table S6). Not all apparently functional mutations, however, represent therapeutic targets, 

as illustrated, e.g., by the unusually large number of mutations in the MSI-H and POLE-

mutated tumor subtypes, of which only a small fraction plausibly dominate oncogenesis.. 

The observed co-occurrence patterns indicate a potential for combination therapies in some 

tumor types. The development of targeted combination therapies has been challenging for 

several reasons, including lack of safety data for combinations, the relatively slow pace of 

adoption of clinically approved multi-panel gene tests and of clinical trials testing 

combinations of multiple targeted therapies. However, there is a growing corpus of 

promising preclinical data indicating such combinations can be effective, such as the 

combination of MDM2 and CDK4 inhibitors (Laroche-Clary et al., 2017), and the 

combination of PI3K inhibitors and HER2 inhibitors in HER2-positive / PIK3CA mutant 

breast cancer patients, even when single gene-therapy approaches (e.g. PI3K monotherapy 

for PIK3CA mutant tumors) have thus far not had definitive clinical impact.

Although we cover a diverse range of oncogenic processes that spans most tissues and organ 

systems (Figures 1, 3), we did not include some tumor types in the scope of this TCGA 

project, including most hematologic cancers. Furthermore, in spite of the relatively large set 

of samples, this effort is still underpowered to reliably discover tumor-type specific 

alterations that occur at very low frequencies; these will require further exploration using 

larger tumor-type specific sample sets.

The original aim and scope of TCGA was to genomically characterize primary, untreated 

tumors with a basic set of genetic alterations and transcript profiles. As the program is now 

completed, a future challenge is to expand these analyses to larger sample sets, additional 

data types, such as metabolite levels, a wider range of epigenetic states, post-translational 

modifications of proteins, and to investigate metastatic disease and genomic alterations that 

arise in post-treatment samples, as well as analyzing the role of a wider range of germline 

alterations and their interplay with somatic events. These new avenues of research will 

benefit from pathway-level analysis for which the templates and template curation pipelines 

presented here constitute a promising starting point. Similarly, as the catalogue of clinically 

actionable alterations continues to grow, understanding intra- and inter-pathway 

dependencies, such as the ones considered here, will be crucial for the development of 

effective combination therapies that address or prevent resistance to initially successful 

single agent therapies.

The curated pathway templates and the uniformly processed data set of alteration calls in 

9,125 tumor samples are publicly available (Tables S3 and S4) and can be easily accessed 

through the PathwayMapper tool (http://pathwaymapper.org/), which allows alteration 

frequencies to be visually overlaid on the pathway templates; and, via the cBioPortal for 

Cancer Genomics (http://cbioportal.org/pancanatlas/). This pathway landscape in The 

Cancer Genome Atlas is meant to provide a valuable resource for clinical oncologists, for 

cancer researchers and for a broad scientific community interested in cancer precision 

medicine.
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STAR METHODS

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Nikolaus Schultz (schultzcbio.mskcc.org).

Experimental model and subject details

TCGA Project Management has collected necessary human subjects documentation to 

ensure the project complies with 45-CFR-46 (the “Common Rule”). The program has 

obtained documentation from every contributing clinical site to verify that IRB approval has 

been obtained to participate in TCGA. Such documented approval may include one or more 

of the following:

• An IRB-approved protocol with Informed Consent specific to TCGA or a 

substantially similar program. In the latter case, if the protocol was not TCGA-

specific, the clinical site PI provided a further finding from the IRB that the 

already-approved protocol is sufficient to participate in TCGA.

• A TCGA-specific IRB waiver has been granted.

• A TCGA-specific letter that the IRB considers one of the exemptions in 45-

CFR-46 applicable. The two most common exemptions cited were that the 

research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for 

informed consent, because the received data and material do not contain directly 

identifiable private information.

• A TCGA-specific letter that the IRB does not consider the use of these data and 

materials to be human subjects research. This was most common for collections 

in which the donors were deceased.

Sample Selection and Exclusions—We started from the set of 11,276 patients that 

were included in the final whitelist for the TCGA PanCanAtlas project. We only used 

samples that had available data across these four genomic platforms: mutations, copy 

number, DNA methylation and mRNA expression. Our analyses excluded certain molecular 

platforms that have previously been used in TCGA, such as protein levels from reverse-

phase protein arrays (RPPA), microRNA, and lncRNA, as their inclusion would have 

implied a sharp decrease in the total number of samples with data available across all 

platforms. Additionally, we excluded samples that had been flagged during pathology review 

by an expert committee or due to quality control (QC) issues identified by the individual 

tumor-type or PanCanAtlas analysis working groups. After these filters had been applied, a 

total of 9,125 patients were used. Samples consisted of primary solid tumors for a large 

majority of these patients (8602/9125, 94%), plus a small number of blood tumors 

corresponding to the AML subset (162/9125, 2%) and a small subset of metastatic samples 

from melanoma patients (361/9125, 4%).
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Method Details

Somatic mutation calling—We used version 2.8 of the mutation annotation format 

(MAF) file provided by the MC3 ("Multi-Center Mutation Calling in Multiple Cancers") 

group within the TCGA Network (Ellrott et al., 2017). We augmented this file in 

collaboration with the MC3 group and included all validated mutation calls from the original 

AML publication.

Pathway Template Curation—We manually curated the gene annotation of the ten 

selected pathways using the following workflow.

Selection and classification of genes in pathways: Genes were assigned to pathways based 

on a combined revision of pathway analyses in previous TCGA marker papers published 

between 2008 and 2017, a review of the scientific literature (including but not limited to the 

references in Table S2) and expert curation. We applied two different kinds of expert 

curation. 1) several of the pathways, such as TGF-Beta, Myc and PI3K, had specific analysis 

working groups. These groups were led by experts in each pathway and published separate 

manuscripts (Ge et al., 2017b; Korkut et al., 2017; Peng et al., 2017; Schaub et al., 2017; 

Wang and Xiao, 2017; Way and Greene, 2017). 2) for some of the pathways, we consulted 

experts from outside of TCGA in order to validate or improve our curated pathway templates 

(e.g., Frank McCormick for RTK-RAS or Mitchell Frederick for NOTCH). After the lists of 

pathway members were finalized, each gene was annotated as Tumor Suppressor (TSG) or 

Oncogene (OG) using OncoKB and prior knowledge from the scientific literature. The final 

gene lists that were selected for each pathway are provided in Table S3.

Identification of mutational hotspots: The cancer hotspots algorithm that we used 

identifies recurrent alterations based on a cohort of 24,592 tumor samples (Chang et al., 

2016a, 2018). Identification of 3D hotspots was based on recurrence of mutations in the 

context of spatial neighborhoods in protein structures (Gao et al., 2017a).

Annotation of functionally relevant mutations: We used information about oncogenic and 

clinically actionable mutations from the OncoKB database (Chakravarty et al., 2017a), 

which provides information on variants in more than 400 genes. For template curation, we 

used OncoKB to filter out putative passenger mutations and copy number changes, by 

discarding somatic alterations that were not labeled as oncogenic, likely oncogenic or 

predicted oncogenic in the database. For the analysis of therapeutic implications, we used 

annotations about different levels of clinical actionability as described in the text. These had 

originally been compiled and curated by OncoKB by combining a diverse set of sources, 

including FDA-, NCCN- and other guidelines, ClinicalTrials.gov and the scientific literature.

Annotation of functionally relevant CNVs: We applied a two step procedure to determine 

whether the annotated genes were functionally amplified or deleted in each specific sample. 

First, a collection of functional relevant amplifications and deletions was curated by 

integrating the GISTIC 2.0 analysis of the PancanAtlas dataset and the OncoKB database. 

GISTIC was run separately on each individual tumor type, and then globally on the entire 

PanCanAtlas dataset, yielding a list of recurrently amplified and deleted regions of interest 
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(ROIs). Default parameters of GISTIC 2.0 were used, with the confidence level set to 0.95. 

For Genes within ROIs, copy number variants consistent with the role of the gene 

(amplification of OGs and deletions of TSGs) were retained. Genespecific copy number 

variants that were labeled as oncogenic, likely oncogenic or predicted oncogenic in OncoKB 

were also retained, yielding a list of gene-level functional CNVs. As an additional validation 

step, we individually inspected each of the gene level calls to ensure that there was a good 

correlation between copy-number status and gene expression, and we excluded calls in 

genes for which this correlation was non-existent. Thresholded gene-level amplification/

deletion values produced by GISTIC were used for pathway analysis, considering only 

amplifications (+2) and deep deletions (−2). In total, 8,325 gene amplifications and 5,608 

deletions were selected, for a total of 13,933 occurrences.

Epigenetic silencing

Curated analysis of CDKN2A promoter hypermethylation: CDKN2A promoter 

methylation was assessed using Illumina Infinium HumanMethylation450 probe 

cg13601799 located within Exon 1a of CDKN2A (p16INK4a). We described the selection of 

this probe for CDKN2A methylation calling in a prior report (Cancer Genome Atlas 

Research Network, 2012). We introduced a further refinement of DNA methylation calling 

to avoid artifactual hypermethylation calls due to deep deletion in a gene. In brief, we used 

Level 1 IDAT files to calculate out-of-band (‘oob’) probe intensities as a surrogate for 

background intensity, superior to internal negative controls (Triche et al., 2013). cg13601799 

is a Type I probe with both methylated (M) and unmethylated (U) versions in the red color 

channel, and therefore dye bias is not a concern. We compared the foreground intensities (M 

and U) to the empirical distribution of the background intensities (as measured by the ‘oob’ 

probes). We first called a sample to be methylated when the methylated (M) signal was 

higher than the 95th percentile of the background (‘oob’) probes (FDR=5%). As this locus is 

unmethylated in normal tissues, the U signals are generally higher than the M signal due to 

the presence of contaminating normal cell types. We required a Log2(foreground/

background) log-ratio of 2 or greater for the U probe to ensure that the U signal was derived 

from tumor cells and not from contaminating normal cells in the case of a tumor with 

CDKN2A deletion. If Log2(foreground/background) was <2 for U and <0 for M for this 

probe, then we concluded that this locus was deleted in the tumor cells, and we then denoted 

these cases as containing "no signal" (Table S4). We identified 681 such samples, and we 

had GISTIC copy number change data for 627 out of these 681. Out of these 627, 471 were 

called to have high level deletion for CDKN2A (−2 in GISTIC calls) and 120 had low level 

deletion for this gene (−1 in GISTIC calls), validating this approach.

Analysis of DNA hypermethylation at the promoters of other tumor suppressor 
genes: Epigenetic DNA hypermethylation events at promoters of tumor suppressor genes 

that are associated with decreased gene expression were systematically identified using the 

RESET bioinformatic tool (Saghafinia, Mina, et al. manuscript in preparation). RESET 

extracts probes that (i) map to gene promoter regions, (ii) are significantly hypermethylated 

compared to normal tissue samples, and (iii) are associated with lower transcript levels of 

the corresponding gene. More specifically, only probes overlapping gene promoter regions 

extracted from the FANTOM5 cohort of robust promoters are considered (FANTOM 
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Consortium and the RIKEN PMI and CLST (DGT) et al., 2014). The status of a probe 

(dichotomized in hypermethylated and not hypermethylated) is determined by comparing its 

beta value to the beta value distribution from adjacent normal tissue samples available in the 

TCGA sample collection. Finally, RESET determines whether a hypermethylation event is 

associated with mRNA downregulation by checking whether the mRNA expression of the 

associated gene is significantly decreased in hypermethylated tumors, compared to the not 

hypermethylated ones. To avoid biases due to intrinsic gene expression and methylation 

differences between tumor samples of different origins, we separately applied RESET within 

each tumor type. For tumor types without normal adjacent samples, the entire set of normal 

samples from the TCGA cohort was used to define the background beta value distribution.

In this study, we evaluated all tumor suppressors in ten pathway templates (Table S3). We 

considered as significant only silencing events with a false discovery rate FDR < 10% and a 

RESET score > 1. The results were further manually curated to exclude cases where the 

methylation event might be tissue-associated, leading to a list of 15 genes silenced by DNA 

methylation (Table S7) Consistently with the procedure used for copy number calls, all 

hypermethylation occurrences for these 15 genes in all tumor samples were retained, even if 

the silencing event was only significantly recurrent in a subset of tumor types. This pancan 

set of occurrences was further filtered to increase the likelihood of functional relevance: only 

the hypermethylation occurrences with a gene expression lower than the 25 percentile of the 

gene expression distribution from the unmethylated samples were retained as functional and 

considered in the downstream analyses. The sample-specific epigenetic silencing calls are 

provided as part of the genomic alteration matrix described below (Table S4).

Gene fusion detection and filtering—TCGA RNA-Seq data were downloaded from 

Cancer Genomics Hub (CGHub, https://cghub.ucsc.edu) and analyzed using Google cloud. 

For each sample, the fastq file was mapped to the human genome (build 38) followed by 

fusion calling using STAR-Fusion (parameters: --annotation –coding-effect), EricScript 

(default parameters) and BREAKFAST (two different minimum distance cut-offs were used: 

5 kb and 100 kb). STAR-Fusion showed higher sensitivity in detecting the fusions reported 

in previous TCGA studies. Therefore, we focused on the STAR-Fusion output and integrated 

EricScript and BREAKFAST output in one of the following filtering steps: 1) an exclusion 

list of genes was curated, including uncharacterized genes, immunoglobin genes, 

mitochondrial genes, etc. Fusions involving these genes were filtered; 2) Fusions from the 

same gene or paralogue genes (downloaded from https://github.com/STAR-Fusion/STAR-

Fusion_benchmarking_data/tree/master/resources) were filtered; 3) Fusions reported in 

normal samples were filtered, including the ones from TCGA normal samples, GTEx tissues 

(reported in STAR-Fusion output), and non-cancer cell study (Babiceanu et al.); 4) For the 

fusions reported by only STAR-Fusion but not EricScript, a minimum value of FFPM 

(fusion fragments per million total reads) was required, as suggested by the author; For the 

fusions reported by both callers, no requirement. 5) Finally, fusions with exactly the same 

breakpoints in ≥10 samples across different cancer types were removed unless they were 

reported in previous TCGA studies (e.g., FGFR3-TACC3).

For our pathway analyses, we included only the fusions that (a) involved at least one gene 

labeled as TSG in one of our pathway templates, or (b) involved at least one gene labeled as 
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OG in one of our pathway templates and such that the fusion is labeled as oncogenic, likely 
oncogenic or predicted oncogenic in OncoKB. We also included a small set of additional 

fusions (MAML3-UBTF, NOTCH2-SEC22B and PIK3CA-TBL1XR) based on recent 

evidence from the literature. Any fusion failing to satisfy at least one of these requirements 

was excluded from subsequent pathway analyses (although some additional fusions that are 

clinically actionable based on OncoKB where included in Figure 7 for completeness). The 

final set of all fusion calls used in our manuscript is provided as Table S8.

Generation of Genomic Alteration Matrices (GAMs)—To integrate all the genomic 

data in a format readily usable in the downstream analyses, the complexity of mutation and 

CNV data was summarized into a binary Genomic Alteration Matrix (GAM) representing 

the occurrence of gene alterations across samples, provided as Table S4. This matrix 

includes the set of functionally relevant mutations and CNVs selected for each gene and 

summarized in the onco-query language column provided as part of each pathway template 

in Table S3. In the alteration level version of this matrix, copy number events and point 

mutation events affecting the same gene were kept distinct. We also included epigenetic 

silencing of CDKN2A based on DNA methylation analysis of the gene promoter and the 

epigenetic silencing of 15 additional genes uncovered by RESET. The resulting table has 

entries for 9,125 samples and 410 alterations, for a total of 33,355 occurrences. For 

completeness, in Table S4 we also provide a version of the GAM where alterations are 

aggregated at the gene level and a third version were alterations are aggregated at the 

pathway level for the ten pathways in our analysis.

Analysis of conditional selection between alterations—SELECT, a method that 

infers conditional selection dependencies between alterations from occurrence patterns 

(Mina et al., 2017), was run on the PancanPathway GAM. The default parameters of the R 

package implementation were used, with 5,000 random permutations. SELECT analysis was 

performed at alteration level, considering as separate features the point mutations, copy 

number changes, silencing and fusion events affecting the same gene. Alteration type, tumor 

type and tumor subtype were used as covariates in the analysis. Only alterations with more 

than 5 occurrences were considered (0.05% of the samples). In total, SELECT produced a 

list of 268 high scoring motifs between 316 alterations.

Pathway-level analysis of conditional selection—The dependency motifs were 

summarized at pathway level by considering independently (i) the sum of motif scores 

between each pair of pathways, and (ii) the number of significant motifs. The significance of 

pathway-level interactions was empirically estimated by comparing the observed sum of 

motif scores and number of significant motifs to the null distribution obtained by randomly 

permuting the pathway annotation of the genes. The two metrics were first tested 

independently, and the two P values were then combined using Stouffer’s method. 

Combined P values were then corrected with the Benjamini-Hochberg method. Corrected P-

values smaller than 0.25 were deemed to be significant.

Curation of Clinical Trials—The list of clinical trials for genes in pathways not 

represented in OncoKB was manually curated from ClinicalTrials.gov (http://
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clinicaltrials.gov). Clinical trials with drug compounds targeting pathway members or which 

described pathway members in their inclusion or exclusion criteria are reported. Focus was 

given to ongoing clinical trials. A description of data retrieved from particular clinical trials 

is in the README worksheet of Table S5. If available, PubChem Compound IDs (https://

pubchem.ncbi.nlm.nih.gov/) are given for drug compounds.

Quantification and statistical analysis

Quantitative and statistical methods are described above within the context of individual 

analyses in the Method Details section.

Data and software availability

All the genomics and clinical data used in our analysis is available through the Genomic 

Data Commons portal of the National Cancer Institute (https://portal.gdc.cancer.gov/).

Data can also be visualized and downloaded using a dedicated section of the cBioPortal for 

Cancer Genomics (www.cbioportal.org/pancanatlas/).

Additional resources

Pathway diagrams were curated using PathwayMapper (Bahceci et al., 2017), a tool that 

allows visualization and design of pathway diagrams stylized as in classical TCGA 

publications. This tool is publicly available online at www.pathwaymapper.org. Our curated 

templates provided in Table S3 are accessible as pre-defined pathway diagrams that have 

been incorporated to the PahtwayMapper interface. PathwayMapper also acts as an 

interactive resource that allows to easily overlay user-inputed alteration frequencies on top 

of these predefined diagrams.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Alteration map of 10 signaling pathways across 9,125 samples from 33 cancer 

types

• Reusable, curated pathway templates that include a catalogue of driver genes

• 57% of tumors have at least one potentially actionable alteration in these 

pathways

• Co-occurrence of actionable alterations suggests combination therapy 

opportunities
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Figure 1. TCGA PanCanAtlas Pathways data set and workflow
(A) Distribution of cancer types in the cohort, including molecular subtypes analyzed. (B) 

Workflow for pathway curation and analysis. Genes were curated from previous TCGA 

efforts and the scientific literature. Only genes with evidence for statistically recurrent or 

known driver alterations in the uniformly processed TCGA PanCanAtlas data set were 

included in the curated pathway templates. TCGA disease codes and abbreviations: AML: 

Acute Myeloid Leukemia; ACC:Adrenocortical carcinoma; BRCA:Breast cancer; 

CESC:Cervical cancer; KICH:Chromophobe renal cell carcinoma; KIRC:Clear cell kidney 

carcinoma; CRC: colorectal adenocarcinoma; SKCM:Cutaneous melanoma; DLBC:Diffuse 
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large B-cell lymphoma; GBM:Glioblastoma multiforme; HNSC:Head and neck squamous 

cell carcinoma; LIHC:Liver hepatocellular carcinoma; LGG:Lower Grade Glioma; 

LUAD:Lung adenocarcinoma; LUSC:Lung squamous cell carcinoma; OV:Ovarian serous 

cystadenocarcinoma; KIRP:Papillary kidney carcinoma; THCA:Papillary thyroid carcinoma; 

STAD:Stomach adenocarcinoma; PRAD:Prostate adenocarcinoma; BLCA:Urothelial 

bladder cancer; UCS:Uterine carcinosarcoma; UCEC:Uterine corpus endometrial 

carcinoma; ESCA:Esophageal cancer; PCPG:Pheochromocytoma & Paraganglioma; 

PAAD:Pancreatic ductal adenocarcinoma; MESO:Mesothelioma; UVM:Uveal melanoma; 

SARC:Sarcoma; CHOL:Cholangiocarcinoma; TGCT:Testicular germ cell cancer; 

THYM:Thymoma; STES:Stomach and esophageal cancer; EBV:Epstein-Barr Virus; 

HPV:Human Papillomavirus; DDLPS:Dedifferentiated liposarcoma; LMS:Leiomyosarcoma; 

MFS/UPS:Myxofibrosarcoma/Undifferentiated Pleomorphic Sarcoma; ESCC:Esophageal 

Squamous Cell Carcinoma; GS:Genomically Stable; CIN:Chromosomal Instability; 

MSI:Microsatellite Instability.
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Figure 2. Curated Pathways
Pathway members and interactions in the ten selected pathways. Genes are altered at 

different frequencies (color intensity indicates the average frequency of alteration within the 

entire data set) by oncogenic activations (red) and tumor suppressor inactivations (blue). The 

types of somatic alteration considered for each gene (copy-number alterations, mutations, 

fusions or epigenetic silencing) are specified using a set of four vertical dots on the left of 

each gene symbol. An expanded version including cross-pathways interactions is provided 

as Figure S1.
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Figure 3. Pathway alteration frequencies
Fraction of altered samples per pathway and tumor subtype. Pathways are ordered by 

decreasing median frequency of alterations. Increasing color intensities reflect higher 

percentages. Average mutation count, as well as number of unbalanced segments and 

fraction genome altered (two measures of the degree of copy-number alterations) per cancer 

subtype are also provided. The MSI and POLE subtypes were grouped in this figure in 

colorectal, stomach and endometrial cancers.
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Figure 4. RTK-RAS pathway alterations
(A) Altered genes and their functional relationships in the RTK-RAS pathway. Shades of red 

indicate frequencies of activating events (known or likely activating mutations or fusions, 

amplifications) and shades of blue indicate frequencies of inactivating events (known or 

likely inactivating mutations or fusions, homozygous losses). (B) Detailed heatmap of 

alteration frequencies in members of the RTK-RAS pathway. Only known or likely 

oncogenic alterations in each gene are considered, as described in Methods. The individual 

gene alteration frequencies may add up to more than the total for each tumor type, as some 

tumor samples may have multiple alterations. Color side bars show the fraction of samples 

Sanchez-Vega et al. Page 32

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



affected by each type of somatic alteration (or a combination of them) for each pathway 

gene. Top color bars show the proportion of different types of alterations for each cancer 

subtype. (C) Recurrent or known functional mutations in SOS1. Recurrent or known 

mutations are color-coded by tumor type, all other mutations observed in the gene are 

considered variants of unknown significance (grey). Three singleton mutations involved in a 

3D hotspot are not shown for space reasons: D89A in a UCS sample, A93D in CRC, and 

S92P in UCEC.

Sanchez-Vega et al. Page 33

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. The most commonly altered genes in nine signaling pathways
Oncogenic alteration frequencies per gene and tumor subtype for the most frequently altered 

genes in each pathway (for RTK-RAS see Figure 4). Red: activating events; blue: 

inactivating events; frequency of occurrence scale with color intensity. Last row for each 

pathway: overall alteration frequency of that pathway per tumor type. The individual gene 

alteration frequencies may add up to more than the total for each tumor type, as some tumor 

samples have multiple alterations. Color side bars show the fraction of samples affected by 

each type of somatic alteration (or a combination of them) for each pathway gene. 
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Comprehensive heat maps with alterations for every gene in each pathway are in Figure S2 

and Figure S3.
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Figure 6. Co-occurrence and mutual exclusivity of pathway alterations
A–B) Mutual exclusivity (purple) and co-occurrence (green) of gene alterations within 

pathways (A) and between pathways (B). Asterisks indicate significant relationships (Q 

value < 0.1). (C) Co-occurrence and mutual exclusivity of individual gene alterations in the 

PI3K and NRF2 pathways. (D) Breakdown of the co-occurrence of gene alterations in the 

PI3K and NRF2 pathways by tumor subtype. Green bars: percentage of samples with 

alterations in both PI3K and NRF2 pathways. Pathways are sorted by decreasing percentage 

of samples with alterations in both pathways. (E) Details of gene alterations in select genes 

(PIK3CA, STK11, NFE2L2 and KEAP1) within and between PI3K and NRF2 pathways, 
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with co-occurrence and mutual exclusivity between alterations. Samples are shown from left 

to right, and the number of samples in each group (bottom; note: the changing scale, 

indicated by solid and dashed lines). (F) Pathway representation of the link between the 

PI3K and NRF2 pathways. (G) Dependencies between single alterations in the RTK and 

RAS/ERK pathways. Only the 22 alterations with at least one significant interaction 

(average sum correction, ASC score > 0.24, (Mina et al., 2017)) included. (H) Breakdown of 

the interactions involving EGFR amplifications and mutations, corresponding to the 

bounding boxes in panel G. Left side: mutually exclusive interactions. Right side: co-

occurring interactions.
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Figure 7. Therapeutic actionability and drug combinations
(A) Frequencies of clinical actionability by cancer subtype, broken down by level of 

evidence (Levels 1–4). Samples are classified by the alteration that carries the highest level 

of evidence. Tumor type–specific samples are analyzed by variants considered actionable, 

oncogenic but not actionable, or variants of unknown significance (VUS). (B) Frequencies 

of actionable alterations per gene across cancer subtypes. For genes with different levels for 

different alterations, multiple rows are shown. Genes are grouped by pathway. Six additional 

genes not in the ten pathways (BRCA1, BRCA2, ERCC2, IDH1, IDH2, ESR1) are included 

and taken into account in the overall frequencies. (C) Fraction of samples with a given 
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number of actionable alterations per tumor type. (D) Frequencies of possible drug 

combinations indicated by the co-alteration of actionable variants in each tumor type for the 

most frequent drug class combinations.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and processed clinical, 
array and sequence data.

NCI Genomic 
Data Commons

https://portal.gdc.cancer.gov/ cBioPortal: http://www.cbioportal.org/pancanatlas/

Digital Pathology Images Cancer Digital 
Slide Archive

http://cancer.digitalslidearchive.net/

Software and Algorithms

PathwayMapper (Bahceci et al., 
2017)

http://www.pathwaymapper.org/

SELECT (Mina et al., 
2017)

http://ciriellolab.org/select/select.html

GISTIC 2.0 (Mermel et al., 
2011)

http://archive.broadinstitute.org/cancer/cga/gistic

MutSigCV (Lawrence et al., 
2014)

http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/MutSigCV

STAR-Fusion Hass et al., 
bioRxiv https://
doi.org/
10.1101/120295

https://github.com/STAR-Fusion/STAR-Fusion/wiki

Breakfast See link https://github.com/annalam/breakfast

EricScript (Benelli et al., 
2012)

https://sites.google.com/site/bioericscript/

RESET (Saghafinia, Mina 
et al., manuscript 
under review)

http://ciriellolab.org/

Other

OncoKB (Chakravarty et 
al., 2017a)

www.oncokb.org

CancerHotspots (Chang et al., 
2016b)

www.cancerhotspots.org

3D Hotspots (Gao et al., 
2017a)

www.3dhotspots.org

cBioPortal Memorial Sloan 
Kettering Cancer 
Center, New York, 
NY

www.cbioportal.org/pancanatlas

TCGA Batch Effects The University of 
Texas MD 
Anderson Cancer 
Center

http://bioinformatics.mdanderson.org/tcgambatch/

Pathway Commons (Cerami et al., 
2011)

http://www.pathwaycommons.org/
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