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Structure and topology of band structures in the
1651 magnetic space groups
Haruki Watanabe1*, Hoi Chun Po2*, Ashvin Vishwanath2†

The properties of electrons in magnetically ordered crystals are of interest both from the viewpoint of realizing
novel topological phases, such as magnetic Weyl semimetals, and from the application perspective of creating
energy-efficient memories. A systematic study of symmetry and topology in magnetic materials has been chal-
lenging given that there are 1651 magnetic space groups (MSGs). By using an efficient representation of allowed
band structures, we obtain a systematic description of several basic properties of free electrons in all MSGs in three
dimensions, as well as in the 528magnetic layer groups relevant to two-dimensional magneticmaterials. We compute
constraints on electron fillings and band connectivity compatible with insulating behavior. In addition, by contrasting
with atomic insulators, we identify band topology entailed by the symmetry transformation of bands, as determined
by the MSG alone. We provide an application of our results to identifying topological semimetals arising in periodic
arrangements of hedgehog-like magnetic textures.
INTRODUCTION
The recent discovery of topological insulators and other topological
phases (1) has revitalized the venerable subject of band theory. In addi-
tion to the explosion of understanding of different forms of band
topology and how symmetries protect or prevent them, researchers
are making rapid progress on several other fronts. For example, funda-
mental questions, such as the connection between electron count and
insulating behavior (2–10), as well as the constraints imposed by
crystal symmetries on the connectivity of bands (3–5, 10–17), have
been resolved. New information has also been gleaned by contrasting
real-space and momentum-space descriptions in all 230 crystal space
groups (SGs) of nonmagnetic materials (3–5, 8–10, 15, 16, 18).

Increasingly, attention is turning to electronic systems that com-
bine magnetism with band topology. Here, a further panoply of novel
topological phenomena is anticipated. Examples that scientists have
already realized, to name just a few, include the quantized anomalous
Hall effect in magnetic topological insulators (19, 20) and the topological
Hall effect in skyrmion crystals (21–25). Researchers are also now study-
ingmagneticWeyl semimetal candidates intensively (26–28). In addition
to the fundamental physics interest of these novel phases, current-driven
magnetic textures, such as domain walls or skyrmions, could be har-
nessed in technological applications, for example, in the development of
energy-efficient memory devices (29).

Despite these strongmotivations, the pace of discovery ofmagnetic
topological materials has been relatively slow compared to their non-
magnetic counterparts. There are at least two reasons for this: First,
magnetic materials are necessarily correlated, making the prediction
of the magnetic structure and properties more challenging. Conse-
quently, the set of well-characterized magnetic materials is relatively
small. Second, the sheer complexity of combiningmagnetic structures
with SGs makes an exhaustive study of the theoretical possibilities
daunting. There are a total of 1651 different magnetic SGs (MSGs),
which were only tabulated in the 1950s. In addition, unlike for the
230 nonmagnetic SGs (2, 30), relevant group-representation informa-
tion is not always readily available.
Here, we will tackle the second problem by providing a systematic
understanding of electronic band structures (BSs) in the 1651 MSGs.
Inspired by the recent synthesis of atomically thinmagnets (31, 32), we
also discuss the 528 magnetic layer groups (MLGs), relevant to two-
dimensional (2D) magnetic materials. We report the results for three
key properties, which are tabulated in section S1 and described below.

First, we determine electron fillings that can be compatible with
insulating behavior in all MSGs. The electron count is a fundamental
characteristic of an electronic crystal. The presence of nonsymmorphic
symmetries, such as glides and screws, enforces connectivity of bands
that raises the required fillings for realizing band insulators (3–5, 12).
These conditions may be useful in the search for magneticWeyl semi-
metals, as one can target fillings that, while forbidding band insulators,
are nonetheless consistent with nodal-point Fermi surfaces (13, 33, 34).

Next, it has long been known that representations of energy levels
at high-symmetry points must connect in specific ways in obtaining a
set of isolated bands (11).We can view this as a refinement of the filling
condition, which imposes additional constraints on BSs (14–17). The
solutions to these constraints are most conveniently represented as a
vector space (but with integer coefficients, so more accurately a
“lattice” in mathematical terminology) (14, 15, 35) and are described
using only a handful of basis vectors whose precise number dBS de-
pends on the MSG.

Last, we contrast the general BSs defined in the momentum space
with the subset of those obtained from “atomic insulators” (AIs), in
which electrons are tightly bound to sites in the lattice furnishing orbi-
tals with different symmetries. Significantly, we find that this produces
a vector space of the same dimension, which in mathematical terms, is
summarized by the equality dAI = dBS. However, the bases for BSs and
AIs do not generally coincide, and we determine the classes of BSs that
cannot be reduced to any atomic limit. This leads to an obstruction to
finding symmetric localized Wannier states (36, 37) and corresponds
to a band topology that one can diagnose without detailed information
about the electronic wave functions. We give an example of how this
can be used to diagnose topological semimetals and also an example of
a nodal-line semimetal diagnosed through its filling. The latter consists
of hedgehog-antihedgehog magnetic order with a lone electron at the
core of these defects, leading to a gapless behavior.

We note that scientists have recently made a great deal of progress
on related problems for nonmagnetic SGs (9, 10, 15, 16, 18). However,
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in the case ofMSGs, these problems have only been attacked in certain
restricted settings, for example, in generalizing the parity criterion (38) in
order to identifyWeyl semimetals, Chern insulators, and axion insulators
(35, 39–42). In this study, we carry out a systematic study of all MSGs. In
particular, it is important to emphasize that, although our approach has
several features in commonwithK-theory–based classifications (14, 43–45),
we do not seek to fully classify crystalline electronic phases here. As dis-
cussed in a recent insightful work (14) for 2D wallpaper groups, part of
such a general classification includes band structure connectivities, a
problem that has been posed since the early days of band theory (11).
Using a result we proved below, we construct a framework that greatly
simplifies these computations, which enables an extension of previous
results (9, 10, 15) to the physically important case of MSGs.

In addition, topological distinctions revealed using our symmetry-
based indicators fit naturally into well-established frameworks
(14, 15, 43, 45) and remain stable upon the addition of trivial degrees
of freedom. Yet, our approach is inherently symmetry-based, and so
for crystals with low symmetry, that is, with only lattice translations,
one cannot diagnose topological insulators without further knowledge
of the wave functions. A similar caveat pertains to the complementary
quantum chemistry approach of (16), which elaborates on the theory
developed by (3), and takes a specific set of orbitals at fixed locations in
the crystal as an input. While convenient for representing quantum
chemistry information, it is less suited to capture stable topological
distinctions that survive the inclusion of additional trivial bands. In
addition, one forgoes the simplification arising from the vector space
such as representation of energy bands that allowed us to generate
results for all MSGs, while the work of Bradlyn et al. (16) is currently
confined to just the 230 SGs.
MATERIALS AND METHODS
Magnetic BSs
Let us begin by reviewing some background materials concerning
electronic BSs arising from a magnetic material. There are a total of
1651MSGs and 528MLGs (2, 30, 46–48). Among the 1651MSGs, 230
of them were identical to SGs, in which only unitary spatial symme-
tries were considered (type I MSGs). All other MSGs had an equal
number of unitary and antiunitary elements: M ¼ GþA. The uni-
tary partGwas identical to 1 of the 230 SGs, and the antiunitary partA
could be generally written in the form ~T G, where ~T ≡T g0 is the pro-
duct of a spatial operation g0 and time reversal (TR) T . When g0 be-
longs to G, the MSG is simply the direct product of an SG G and ZT

2 .
This led to another 230 MSGs, one for each SG, that are called type II.
When g0 is not an element of G, there are two types further differen-
tiated bywhether g0 is a pure translation (type IV) or not (type III). For
type II to IV MSGs, the little group of k and the site-symmetry group
of xmay also have an antiunitary part, in addition to the usual unitary
part. Note that in the literature [for example, (49)], our definition of
type III and IV MSGs are sometimes called type IIIa and IIIb, respec-
tively. In addition, there are two common labeling schemes for MSGs:
Opechowski-Guccione and Belov-Neronova-Smirnova (BNS). In this
study, we followed the BNS notation, where an MSG was labeled by a
pair of integers written as S. L, with S corresponding to 1 of the 230 SG
andL corresponding to an extra label to differentiate between different
magnetic descendants. [Refer to, for example, (50) for the precise
meaning of these numbers.]

Next, we introduced a general formalism for the efficient analysis of
BS properties based on representations of the little group (14, 15, 35).
Watanabe et al., Sci. Adv. 2018;4 : eaat8685 3 August 2018
Ourmain focus here was to address how the formalism developed for
SGs could be readily applied to MSGs. We defined a BS as a set of
bands isolated from others by band gaps above and below at all high-
symmetry momenta, where by a high-symmetry momentum, we re-
ferred to a k in the Brillouin zone at which the unitary part of the little
group, Gk , is necessarily larger than the translation subgroup T. In
3D, they can be high-symmetry points, lines, or planes. A BS can be
characterized by the set of nonnegative integersn ¼ fnakg that count
the number of times an irreducible representation (irrep) uak of Gk

appears. As we are interested in systems of spinful electrons, the irreps
uak here are generally projective because of the spin-

1/2 nature of elec-
trons (also called “double-valued”). Since fnakg cannot be changed
smoothly without gap closing or symmetry breaking, n ¼ fnakg serves
as “topological invariants” defined for each BS.

The integers n ¼ fnakg cannot be chosen freely, since symmetries
demand that they satisfy a collection of compatibility relations (2, 11).
Since G is a subgroup of M ¼ GþA, the full list of compatibility
relationC imposed on anM-symmetric BS can be split into two sets,
CG arising fromGand~CA fromA. Let us denote byfBSgGphys and {BS}phys
the set of all n’s satisfying CG and C, respectively. Here, the subscript
“phys” indicates that all nak ’s in n ¼ fnakg are non-negative, which is
required for interpreting them as themultiplicities of irreps in a physical
BS. We will introduce another set fBSgðGÞ that relaxes this nonnegative
condition later. Note thatfBSgGphys and {BS}phys differed only in the im-
position of ~CA. In general, the antiunitary partA requires a pairing of
b ∈ fBSgGphys with another b′∈ fBSg

G
phys, unless b itself is already sym-

metric under ~T . The pairing type can be easily determined using the
Herring rule (2). (In section S4, we provided a more elaborated review
on the compatibility relations and the Herring rule.)

Band topology
Having described some generalities about BSs, we now review
how knowledge about the real space can inform band topology
(9, 15). We defined the trivial class of BSs by the AIs, which were
band insulators that were smoothly connected to a limit of vanishing
hopping and hence were deformable to product states in real space.
Equivalently, an AI admits symmetric, exponentially localizedWannier
functions.

To specify an AI, one should choose a position x in real space at
which electrons were localized and the type of the orbital put on that
site. All inequivalent choices of the position x were classified by
Wyckoff positions (51). The orbital can be chosen from the (co-)irreps
of the site-symmetry group of x (section S5). Given these choices, an
M-invariant AI can be constructed by placing a symmetry-related
orbital on each site of the M-symmetric lattice and filling them by
electrons. TheAI has a specific combination of irreps in themomentum
space, which automatically satisfies C ¼ CG þ ~CA. We listed up all dis-
tinct n’s corresponding to an AI by varying x and the orbital type. We
listed up all distinct n’s corresponding to an AI by varying the po-
sition x and the orbital type, and we obtained {AI}phys, a subset of
{BS}phys. If one replacesMabovewithG, one gets the set of G-symmetric
AIs, fAIgGphys.

Now, we are ready to tell which elements of {BS}phys must be topo-
logically nontrivial and which elements can be trivial. This can be
judged by contrasting the elements of {BS}phys with those in {AI}phys.
Namely, any b ∈ {BS}phys not belonging to {AI}phys necessarily features
nontrivial band topology because, by definition, there does not exist any
atomic limit of the BS with the same combinations of irreps. This is a
sufficient (but not necessary) condition to be topologically nontrivial:
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SC I ENCE ADVANCES | R E S EARCH ART I C L E
Here, we exclusively focused on the band topology that can be diag-
nosed by the set of irreps at high-symmetry momenta.

The simplest way of exploring the nontrivial elements of {BS}phys is
thus to consider the complement of {AI}phys in {BS}phys, as in (15) and
(52). However, this set has a complicated mathematical structure. To
simplify the analysis, we allowed for the formal subtraction of bands
and extended the values of nak to any integer, including the negative
ones, à la a K-theory analysis. {BS}phys then becomes an abelian group
fBSg ¼ ZdBS (known as a “lattice” in themathematical nomenclature)
(14, 15, 35). In other words, there are dBS basis “vectors” fbigdBSi¼1, and
{BS} can be expressed as f∑dBSi¼1mibijmi ∈ Zg. Similarly, by allowing
negative integers when taking superposition of AIs, we got another
abelian group fAIg ¼ ZdAI , which is a subgroup of {BS}. The band
topology we are interested in is now encoded in the quotient group

XBS≡fBSg=fAIg ð1Þ

dubbed the symmetry-based indicator of band topology (15). As we
will see shortly, the quotient group is always a finite abelian group
and hence must be a product of the form ∏iZni .

Constructing BSs from AIs
To compute XBS, the natural first step was to identify ~CA , the extra
compatibility relations enforced by the antiunitary symmetries. Con-
trary to this expectation, we now show that, on the basis of our previ-
ous results on SGs, one can directly compute {BS} and XBS for any
MSGM without deriving ~CA. This served to demonstrate the power
of the present approach: Symmetry content and connectivity of BSs
could be readily extracted without the large overheads mandated by
the conventional approach.

To this end, we first revisited the relevant aspects of the theory for
an SGG. By definition, fAIgG is a subgroup of fBSgG, and therefore, a
priori, it could be the case that dGAI < dGBS strictly. However, by an ex-
plicit computation for all the 230 SGs, Po et al. (15) found that dGBS ¼
dGAI always holds. This statement has an important implication: Every

b ∈ fBSgG can be expanded as b=∑iqiaiwith rational coefficientsqi ∈ Q
using a basisfaig

dGAI
i¼1 offAIg

G. In otherwords, full knowledge of the group

fBSgG can be obtained from that of fAIgG.
On the basis of this result for SGs, we will now prove the same

statement, namely, dBS = dAI, for any MSG M. This result enabled
us to efficiently compute {BS} and XBS for all MSGs and MLGs using
only information contained in {AI}, which could be readily extracted
from the tabulated Wyckoff positions (46–48).

Our proof was centered on the following observation: RecallM ¼
GþA, where G is unitary andA ¼ ~T G is the antiunitary part gener-
ated by ~T ¼ T g0 for some spatial symmetry g0. Note that, for type II
MSGs, g0 ∈ G and can be chosen to be the identity, whereas for types
III and IV, g0 ̸ G. Now, consider aG-symmetric collection of fully filled
local orbitals in real space, which defines an AIa ∈ fAIgGphys. This AI is
not generally symmetric underM,; that is, itmay not be invariant under
the action of ~T . However, if we stack it together with its ~T -transformed
copy, we will arrive at an M-symmetric AI. Algebraically, this means
aþ ~T a∈fAIgphys.

In themomentum space, a similar symmetrization procedure could
be performed on the representation content. Suppose that {|k, i〉} is a
basis of an irrep uak of Gk. Then, the ~T -transformed copy,f ~T jki〉g, forms
a basis of an irrep ua′k′ of Gk′ (section S4). When b represents a BS that
contains uakn

a
k-times, we denote by ~T b a BS that contains ua′

k′
the same
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number of times. For anyb ∈ fBSgG,bþ ~T b satisfies the compatibility
conditions ~CA and hence belongs to {BS}. We presented the explicit
form of ~T b in section S6.

We are now ready to prove the statement. Observe that any B ∈
{BS} also belongs to fBSgG, and as dGBS ¼ dGAI, it can be expanded on
the basis of fAIgG

B ¼ ∑iqiai; qi∈ℚ ð2Þ

Now, we symmetrize both sides of Eq. 2 by ~T . Since B isM-invariant,
Bþ ~T B ¼ 2B, so

B ¼ 1
2
ðBþ ~T BÞ ¼ ∑i

1
2
qiðai þ ~T aiÞ ð3Þ

As argued, ai þ ~T ai ∈ fAIg (note that linearity was invoked when we
extended the argument form fAIgGphys to a general element of fAIgG).
This proves that any B ∈ {BS} can be expanded in terms of {AI} (using
rational coefficients), an equivalent statement of dAI = dBS. Furthermore,
it implies that the quotient group XBS = {BS}/{AI} does not contain any
Z-factor and hence is a finite abelian group of the form ∏iZni .

To summarize, we showed that the set of AIs and BSs was identical
as far as their dimensionality goes. This is a powerful statement, since
it means that we could simply focus onAIs, study their symmetry rep-
resentations in momentum space, and then take rational combinations
to generate all BSs. However, we caution that one has to properly rescale
the entries of n when an irrep is paired with another copy of itself
according to the Herring rule. For full details of the treatment, we refer
interested readers to (15).

Following this strategy, we performed the first calculation of dBS,
XBS, and nBS for all of the 1651 MSGs and 528 MLGs. The full list of
the computation results are tabulated in tables S1 to S7. For readers’
convenience, we reproduced a few examples from these tables in
Tables 1 and 2.
RESULTS
Representation-enforced semimetals
As an application of our results, here, we introduce new classes of
representation-enforced semimetals (reSMs). A BS is said to be a reSM
Table 1. Characterization of BSs in aMSG (excerpt from tables S1 to S6).
MSG*
 d†
 XBS
‡
 nBS

§

2.4
 I
 9
 (2, 2, 2, 4)
 1
2.7
 IV
 5
 (2)
 2
3.4
 IV
 3
 (2)
 2
209.51
 IV
 3
 (1)
 2a
*MSG number in the BNS notation, followed by a Roman numeral I,…, IV in-
dicating its type. †Number of linearly independent BSs. ‡Symmetry-
based indicator of band topology, which takes the form∏iZni , denoted by the
collectionofpositive integers (n1,n2,⋯). §Formost of theMSGs, the set of
physical BS fillings {n}BS and the set of AI fillings {n}AI agree with each other,
and they take the form fngBS ¼ fngAI ¼ nBSN. The superscript letter a indi-
cates violation to this rule, as detailed in table S8.
3 of 9



SC I ENCE ADVANCES | R E S EARCH ART I C L E
when (i) there are gap closings at some generic (that is, not high
symmetry) momenta in the Brillouin zone and (ii) the gaplessness is
mandated by the combination of irreps at high-symmetry momenta.
Note that only unitary symmetries are incorporated in defining a
high-symmetry momentum, and the notion of a BS only requires a
continuous gap at all high-symmetry points, lines, and planes. reSMs
arise when the topological band gap closings are buried in the low-
symmetry regions of theBrillouin zone, rendering themhard todiagnose
in conventional electronic structure calculations, but are nonetheless
readily detectable and are robust against numerical uncertainty because
of their representation-enforced nature. All previously known examples
of reSMs concern TR-broken systems in 3D with either the inversion
(35, 41) or �4 rotation symmetry (42). The new classes we propose here
are realized in spin-orbit–coupled systems in 2D or 3D and are asso-
ciated with type III or IV MSGs.

Our example is the type IV MSG 3.4 (Pa112) that is generated by
C2z (the p rotation about z axis) and ~T ≡ T T1

2a1
(half translation by

1
2 a1 , followed by TR) apart from lattice translations. (The type III
MSG 13.69 can also host a Dirac semimetal by means of a nearly iden-
tical mechanism; see section S8.) According to Table 1, this MSG has
two classes of combinations of C2z eigenvalues, as indicated by XBS ¼
Z2 . As we shall see now, the 3D BS belonging to this nontrivial class
hosts at least four Weyl points, where the Weyl points with opposite
charities are maximally separated in the k3 direction.

To understand this band topology step by step, let us first remove the
lattice translation in z and take a single layer parallel to the xy plane. The
MSG then reduces to the MLG pa112, which corresponds to the entry
3.4 (1) in Table 2 withXBS ¼ Z2. The rotation C2z is a symmetry at the
four TR-invariant momenta (TRIMs) of the 2D BZ, whose eigenvalues
are either ± i for spinful electrons. When k1 = 0, the antiunitary
symmetry ~T with ~T 2 ¼ ð�1ÞF̂ T̂ a1 ¼ �1 demands the pairing of
the two eigenvalues of C2z. In contrast, when k1 = p, ~T 2 ¼ þ1, and
no pairing is required. For this MLG, XBS ¼ Z2 , and the topological
index distinguishing the two classes is given by

h ¼ ∏
n:occupied

∏
k¼ðp;0Þ;ðp;pÞ

hn;k ð4Þ

where hn,k is theC2z eigenvalue of then-th band. h=+1 for anyAI,while
h = −1 for nontrivial BSs. Note that this invariant is similar to those
identified in some previous works (35, 38, 41, 42, 53).

Next, we show that the nontrivial BSwith h=−1 corresponds to 2D
magnetic Dirac reSMs (twofold degeneracy at the gapless point)
Watanabe et al., Sci. Adv. 2018;4 : eaat8685 3 August 2018
enabled by a strong spin-rotation symmetry breaking, as illustrated
in Fig. 1.Denoting the standard Paulimatrices bys0,…,3, the combined
symmetry ~T C2z dictates that the local 2-by-2 Hamiltonian h(k) near a
gapless point takes the form

hðkÞ ¼ ∑
2

i¼0
giðkÞsi ð5Þ

that is, the s3 term is missing. Since the number of tunable para-
meters k1 and k2 is the same as the number of relevant coefficients
[g1(k) and g2(k)], the gaplessness is stable against perturbations
respecting the symmetries (54). To see this more explicitly, we
note that the symmetry ~T C2z quantizes the Berry phase Bðk1Þ ¼
∫p�pdk2A2ðk1Þto be 0 orp at any k1. The topological indexh=−1dictates
that B(0) ≠ B(p), implying the presence of a gap closing somewhere
in 0 < k1 < p. Using a k ⋅ p analysis, one can confirm that the bands dis-
perse linearly, leading to a Dirac node. We note that, compared to the
protection ofDirac node by an eigenvalue exchange of nonsymmorphic
symmetries (34, 55–57), the present Dirac node has a more topological
character.

Given this understanding of the 2D layer withMLG 3.4, let us now
recover the third dimension by stacking the copies of 2D layers with
generic interlayer couplings. The resulting BS, fully symmetric under
MSG 3.4, host a total of fourWeyl points: two on the k3 = 0 plane and
the other two on the k3 = p plane, as depicted in Fig. 1D. Note that the
two Weyl points on the k3 = 0 plane are related by C2z rotation (or
equivalently in this setup, ~T ) symmetry and so must have the same
chirality. Consequently, the twoWeyl points on the k3 = p plane have
the opposite chirality. This large separation of the Weyl points with
opposite chiralities dictates the presence of long Fermi arcs on the sur-
face. Let us stress again that this nontrivial BS is indicated by the ro-
tation eigenvalues at TRIMs via the formula in Eq. 4 applied to the k3 =
0 plane of the 3D BS. This illustrates how the ideas described in the
present work can guide the search for ideal magnetic Weyl semimetals.
We leave a full analysis of magnetic reSMs to future works.

Filling-enforced semimetals
As another application of our theory, we attack the following problem:
Given an MSGM, what are the electron fillings n at which band in-
sulators are allowed? One of the primary interests in solving this prob-
lem lies in the search of topological semimetals: If a material has an
electron filling incompatible with any band insulator, it must have
symmetry-protected gaplessness near the Fermi energy, provided that
a band theory description is applicable. We refer to these systems as
filling-enforced (semi)metals. Once the MSG describing the magnetic
order is identified, one can readily predict these systems using our
results on nBS. For stoichiometric compounds with perfect crystalline
order and commensurate magnetism, one can further show that spa-
tial symmetries quantize the physically allowed fillings, which in turn,
allows one to further diagnose the fermiology of the filling-enforced
(semi)metals.We relegate a detailed discussion to section S2 and sum-
marize the results on the predicted fermiology in tables S9 to S12.

While one can perform a systematic analysis of filling-enforced
semimetals (feSMs) using the tables mentioned above, it is instructive
to discuss a physical picture linking a real-space description of the
magnetic ordering to the momentum-space obstruction to realizing
any band insulator. To this end, we first contrast the effect of topolog-
ically trivial and nontrivial magnetic orders on local electronic energy
Table 2. Characterization of MLGs through the corresponding MSG
(excerpt from table S7).
MSG*
 d†
 XBS
†
 vBS

†

2.5 (1)
 II
 5
 (2)
 2
2.5 (2)
 II
 5
 (2)
 2
2.5 (3)
 II
 5
 (2)
 2
3.4 (1)
 IV
 3
 (2)
 2
3.4 (2)
 IV
 2
 (1)
 2
*The numbers in parentheses label the different ways to project the MSG
down to 2D planes (section S7). †Defined as in Table 1.
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levels. When the surrounding magnetic moments order ferromagnet-
ically, as in Fig. 2A, the electronic levels are Zeeman-split and nonde-
generate. In contrast, when the moments are arranged into the
hedgehog defect shown in Fig. 2B, the magnetic point group symme-
tries at the defect core demand that all single-particle local energy
levels exhibit even degeneracies; that is, such a magnetic order forbids
a gapped state when a lone electron is localized to the defect core.

To be compatible with lattice translations, however, theremust be a
balance betweendefects and antidefects in eachunit cell. An interesting
situation arises when the positions of the defects and antidefects are
further related by symmetries prohibiting them from annihilation.
As an example, consider the diamond lattice with one sublattice occu-
pied by hedgehogdefects, and the other sublattice, symmetry-related to
the first by a glide mirror, occupied by antihedgehogs (Fig. 2C). The
symmetries of this system are described by MSG 227.131 (type III).
Suppose the defect core (that is, the diamond sites) corresponds to
an atomwith an odd atomic number, which leads to an electron filling
of n = 2 mod 4 per primitive unit cell. According to the previous argu-
ment, it should be impossible to obtain an AI by localizing all the elec-
trons. This suggests that the electron fillingmight lead to an obstruction
to forming a band insulator and hence enforcing a (semi)metallic be-
Watanabe et al., Sci. Adv. 2018;4 : eaat8685 3 August 2018
havior. Our result of nBS = 4 for thisMSG (table S6) implies that all band
insulators are ruled out at the specified filling of n = 2 mod 4. In table
S10, we further see that this corresponds to a feSM with movable nodal
features.

Curiously, the hypothetical structure depicted in Fig. 2C could be
relevant for materials with the chemical formula AB2O4 taking the
spinel structure, where the A atoms, occupying the diamond sites,
are surrounded by the B atoms sitting at the pyrochlore positions. If
the B atoms are magnetically ordered into the all-in-all-out configura-
tion (Fig. 2D), it can be viewed as a lattice realization of the described
hedgehog-antihedgehog lattice in MSG 227.131. This suggests the
following tight-binding model as an example of the feSM described

Ĥ ¼ ∑
〈ij〉
ĉ†i ðts0 þ 4tJdij ⋅ sÞ̂cj þ i8l∑

〈〈ij〉〉
ĉ†i ðdli � dljÞ⋅ sĉj ð6Þ

where ĉi and ĉ
†
i represent the fermion operators corresponding to an

s-orbital localized to the diamond site i (spin indices are suppressed),
〈ij〉 and 〈〈ij〉〉, respectively, denote first- and second-nearest-neighbor
bonds, and dij is the vector connecting the site j to i (the lattice constant
of the conventional cell is set to 1). In the termº l, we let l denote the
k3

k1

k2

A B C

k2

k1

E

D

Fig. 1. Magnetic reSM. (A) Example tight-bindingmodel for reSM. There are two sublattices per unit cell (shaded) due to an antiferromagnetic ordermx, producing a total
of four bands. On-site potential J stands for the exchange coupling�Jmx⋅c†xscx. In addition to the standard nearest-neighbor hopping t, a spin-dependent hopping ± tJsx is
included, which can be viewed as originating from an exchange coupling to a magnetic moment in the middle of the nearest-neighbor bonds (section S8). (B) Dispersion
relation at J/t = 1 and tJ/t = 1/4. In this case, h in Eq. 4 is +1, and the dispersion is gapped between the second and the third bands. (C) Dispersion relation at J/t = 1 and tJ/t = 3/4.
Now, h=−1, and a pair of Dirac nodes exist as predicted. (D) Fermi surface of the 3D version of the reSM. The twoWeyl points on the k3 = 0 (k3 = p) plane have the chirality +1
(–1), indicating a huge Fermi arc on some 2D surfaces. The signs on the TRIMs indicate the product of the C2z rotation eigenvalues of occupied bands in this model.
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common nearest neighbor of i and j. Note that one can physically in-
terpret tJ as a modulation of the nearest-neighbor hopping by ex-
change coupling with the magnetic moment at pyrochlore sites, and
l parameterizes the symmetry-allowed spin-orbit coupling between
the second-nearest-neighbor sites.

When tJ = 0, Eq. 6 is TR-symmetric (corresponding to the type II
MSG 227.129) and reduces to the undistorted Fu-Kane-Mele model
defined on the diamond lattice hosting three symmetry-related Dirac
points (table S9) (58). Unlike lattice distortions, which lead to
topological insulators (58), TR-symmetry breaking described by tJ ≠
0 leads to a feSM. The Dirac points in the original Fu-Kane-Mele
model are unstable toward this perturbation, and our results indicate
that the semimetallic behavior is enforced by a more delicate band
connectivity (table S10). This is explicitly verified in the example
BSs plotted in Fig. 2 (E to H), showing how the Dirac points split into
(doubly degenerate) nodal rings as tJ increases from 0.

This example serves only as a particular instance of the 421 MSGs
we identified to be compatible with feSMs (section S2). A full list of
these MSGs is presented in tables S9 and S10. Armed with this list, we
studied the magnetic structures listed on the Bilbao Crystallographic
Server (50) and found that the experimentally characterized magnetic
materials YFe4Ge2 and LuFe4Ge2 (and related compounds) in the type
III MSG 58.399 are realistic magnetic feSM candidates (59, 60). For
these compounds, a nonmagnetic atom with an odd atomic number
(Lu or Y) sits at amaximal symmetry site ofmultiplicity 2, whereas their
surrounding magnetic moments (Fe) ordered into a pattern symmetric
under the combined symmetry of spatial inversion and TR. Such a
magnetic ordering falls into our broad description of nontrivial defect
lattices, and these compounds are expected to feature Dirac points,
pinned to high-symmetry momenta, near the Fermi energy (table S9).

We remark that the method described here can be readily applied
to any other commensuratemagnetic crystalswhere both the chemical
Watanabe et al., Sci. Adv. 2018;4 : eaat8685 3 August 2018
formula and the MSG describing the magnetic order have been iden-
tified. In particular, a local-moment description is inessential: The
filling criterion established on the basis of our computation of nBS ap-
plies equally well to systems exhibiting itinerant magnetism, as long as
a band theory description remains applicable.

Indicator for antiferromagnetic topological insulator
As the last application of our results, let us make a connection of
symmetry-based indicators of MSGs, fully computed in this work, to
some previously studied topological insulators in TR-broken settings.
As a canonical example, we discuss the type IV MSG 2.7 generated by
the inversion symmetry I and the half translation, followed by TR,
~T ≡ T T 1

2az
. This MSG has two classes of the combination of inversion

parities, as indicated by XBS ¼ Z2 in Table 1. The topological index
distinguishing the two classes is given by

x ¼ ð�1Þ
1
4∑n:occupied∑TRIMs

xn;k ¼ ±1 ð7Þ

Here, xn,k is the parity of the n-th occupied band. To understand
this formula, note first that even- and odd-parity bands form aKramers
pair at the TRIMs with kz = p. This is because I and ~T anticommute
when kz = p. Thus, the four TRIMs with kz = p never contribute to the
index. On the other hand, when kz = 0, I and ~T commute, and ~T 2 ¼
�1. Thismeans that the same parity eigenvalue appears twice at TRIMs
with kz = 0. In Fig. 3A, we illustrated an example of the parity combi-
nation with x = −1.

As demonstrated in (61), the index x =−1 implies a nontrivial band
topology, the so-called “antiferromagnetic topological insulator” that
supports gapless surface Dirac modes. The antiferromagnetic
topological insulator can be understood as a staggered stacking of
Chern insulators, in which a Chern insulator with C = +1 (described
Local
 energy

levels

Magnetic
order

A

E

C DB

4

2

0

−2

4

2

0

−2

F G H

Fig. 2. Magnetic feSMs. (A and B) Symmetries of a magnetic order can prohibit AIs at odd-site fillings. (A) The magnetic point group symmetries of a ferromagnetic
arrangement are compatible with nondegenerate local energy levels. (B) However, those of the depicted hedgehog defect force all the energy levels to exhibit even
degeneracies, which forbids AIs when a lone electron is localized to the purple site. (C) When hedgehog and antihedgehog defects are arranged into a diamond lattice,
the previous argument suggests that no AI is allowed whenever the site fillings at the defect cores are odd. (D) The hypothetical magnetic structure in (C) could be
realizable in spinel structures if the diamond sites are occupied by atoms with odd atomic numbers (purple) and the magnetic atoms (blue) at the pyrochlore sites
exhibit an all-in-all-out magnetic order. (E to H) feSMs arising from the magnetically ordered Fu-Kane-Mele model (Eq. 6). (E) When the magnetically modulated
hopping tJ is weak compared to the spin-orbit coupling l, the fermiology is governed by rings of gap closing (circled in red), growing out from the original Dirac
points at X when tJ = 0. (F) The positions of the rings in the Brillouin zone are shown in red. (G and H) For tJ ≥ 2

ffiffiffi

2
p

l, the nodal rings become connected at the
momentum W. Thin lines indicate copies of the gapless momenta in the repeated zone scheme, included to illustrate the connectivity of the rings.
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by red disks in Fig. 3B) is on every z = n (n∈Z) plane and the one with
C = −1 (blue disks) is on z ¼ nþ 1

2(n ∈ Z) plane. All these Chern
insulators are related by the ~T symmetry.

If we introduce a perturbation that breaks the ~T symmetry, the
C = +1 Chern insulator at z = n (n ≠ 0) and the C = −1 Chern in-
sulator at z ¼ n∓signðnÞ 12 can pair-annihilate with each other in an
inversion symmetric manner, leaving only the C = +1 Chern insulator
on the z = 0 plane, as shown in Fig. 3C. This 1D chiral edge state on
the surface of 3D topological insulators has been studied by Sitte et al.
(62) and Zhang et al. (63) and its counterparts in many other
symmetry settings have been found recently (64–71). Assuming that
the inversion symmetry is unbroken, we see that one can diagnose this
phase by another symmetry-based indicator for the type I MSG 2.4,
which is simply the SG with only the inversion I apart from the lattice
translation. According to Table 1, this MSG has Z2 � Z2 � Z2 � Z4

classification, and the insulator hosting the 1D chiral edge mode con-
structed here belongs to the class (0, 0, 0, 2) in this classification.
CONCLUSION
Here, we revisit the old problem of assigning a global irrep label to
each connected branch of a BS (11), generalizing our recent results
on TR-symmetric systems (15) to all 1651 MSGs. Our central results
are the computation of three fundamental quantities associated with
magnetic BSs, which are tabulated in section S1: (i) dBS, which char-
acterizes the number of independent building blocks of energy bands;
(ii) XBS, which, akin to the Fu-Kane parity criterion (38), serves as a
symmetry-based indicator of band topology; and (iii) nBS, which dic-
tates the electron fillings at which band insulators are possible. We
further demonstrate the utility of these results by applying them to
the study of topological semimetals, focusing on cases where the absence
of a band gap is either diagnosed through the symmetry representa-
tions at isolated high-symmetry points or mandated by the electron
filling. In particular, we identify the exhaustive list of MSGs capable
of hosting feSMs (section S2).

Although a full database on our computation of the basis vectors of
the groups {BS} and {AI} is not included, we note that one can readily
generate such a database (15): Our proof of dBS = dAI for all MSGs
implies that full knowledge on {BS} is encoded in that of {AI}, and
the latter can be computed by analyzing, for instance, hypothetical
structures constructed by combining irreps of the site-symmetry groups
to each of theWyckoff positions. As long as all high-symmetrymomen-
ta are included in the analysis and the doubling of any irrep (according
Watanabe et al., Sci. Adv. 2018;4 : eaat8685 3 August 2018
to the Herring rule) is incorporated, {BS} can be recovered by form-
ing linear superpositions of the entries in {AI} using rational coef-
ficients, subjected only to the constraint that the resultant irrep
multiplicities must all be integer-valued. One can perform these cal-
culations without deriving the compatibility relations, and this cir-
cumvents the careful convention-fixing required in both tabulating
and using these results. In view of this, we refrain from providing a
database on them.

We close by highlighting several interesting open questions that we
leave for future studies: (i) performing a comprehensive study on the
identification and characterization of reSMs in all 2D and 3D MSGs;
(ii) developing a theory of quantized physical responses, or a proof of
the absence thereof, for each nontrivial class in the exhaustive list ofXBS

we computed; and (iii) finding realistic topological materials based on
systematic searches using the diagnostics our theory provides. Finally,
we remark that some aspects of our filling criterion generalize to the
interacting setting (72), similar to the corresponding relation between
the results for TR symmetric crystals (8, 10).
SUPPLEMENTARY MATERIALS
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Fig. 3. Symmetry indicators for antiferromagnetic topological insulators. (A) Example of the inversion parity combination of valence bands in the Z2 nontrivial
phase of MSG 2.7. (B) Realization of theZ2 nontrivial phase by staggered stacking of Chern insulators. The red (blue) disks represent a Chern insulator with C = +1 (C = −1).
(C) Breaking the ~T symmetry (the half translation in z, followed by the TR) leads to a “higher-order” state with a 1D equatorial chiral mode on the surface (62–71).
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