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Abstract

This article considers Bayesian model averaging as a means of addressing uncertainty in the 

selection of variables in the propensity score equation. We investigate an approximate Bayesian 

model averaging approach based on the model-averaged propensity score estimates produced by 

the R package BMA but that ignores uncertainty in the propensity score. We also provide a fully 

Bayesian model averaging approach via Markov chain Monte Carlo sampling (MCMC) to account 

for uncertainty in both parameters and models. A detailed study of our approach examines the 

differences in the causal estimate when incorporating noninformative versus informative priors in 

the model averaging stage. We examine these approaches under common methods of propensity 

score implementation. In addition, we evaluate the impact of changing the size of Occam’s 

window used to narrow down the range of possible models. We also assess the predictive 

performance of both Bayesian model averaging propensity score approaches and compare it with 

the case without Bayesian model averaging. Overall, results show that both Bayesian model 

averaging propensity score approaches recover the treatment effect estimates well and generally 

provide larger uncertainty estimates, as expected. Both Bayesian model averaging approaches 

offer slightly better prediction of the propensity score compared with the Bayesian approach with 

a single propensity score equation. Covariate balance checks for the case study show that both 

Bayesian model averaging approaches offer good balance. The fully Bayesian model averaging 

approach also provides posterior probability intervals of the balance indices.

The distinctive feature that separates Bayesian statistical inference from its frequentist 

counterpart is its focus on describing and modeling all forms of uncertainty. The primary 

focus of uncertainty within Bayesian inference concerns prior knowledge about model 

parameters. In the Bayesian framework, all unknown parameters are assumed to be random, 

described by probability distributions. Bayesian inference encodes background knowledge 

about the unknown parameters in the form of the prior distribution (Gelman, Carlin, Stern & 

Rubin, 2003).

Within the Bayesian framework, parameters are not the only unknown elements. In fact, the 

Bayesian framework recognizes that models themselves possess uncertainty insofar as a 

particular model is typically chosen based on prior knowledge of the problem at hand and 

the variables that have been used in previously specified models. This form of uncertainty 

often goes unnoticed. Quoting Hoeting, Madigan, Raftery and Volinsky (1999),
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Standard statistical practice ignores model uncertainty. Data analysts typically 

select a model from some class of models and then proceed as if the selected model 

had generated the data. This approach ignores the uncertainty in model selection, 

leading to over-confident inferences and decisions that are more risky than one 

thinks they are. (p. 382)

An internally consistent Bayesian framework for model building and estimation must also 

account for model uncertainty. The current approach to addressing the problem of 

uncertainty lies in the method of Bayesian model averaging (BMA).

In this article, we investigate the use of Bayesian model averaging in propensity score 

analysis (Rosenbaum & Rubin, 1983) for quasi-experimental or observational studies. The 

organization of this article is as follows. In the next section we briefly review the two-step 

Bayesian propensity score approach proposed by Kaplan and Chen (2012). Next, we outline 

the method of Bayesian model averaging with an additional discussion of Occam’s window 

(Madigan & Raftery, 1994)—a method used to reduce the overall size of the model space. 

This is followed by the proposed approaches to Bayesian model averaging within the 

propensity score framework. Here we outline two approaches to Bayesian model averaging 

using existing packages in R (R Development Core Team, 2011). The first approach adopts 

the model-averaged propensity score estimates provided by the R package BMA (Raftery, 

Hoeting, Volinsky, Painter & Yeung, 2009). The second approach approach employs a 

Markov chain Monte Carlo (MCMC) procedure to obtain the posterior propensity scores in 

the selected models via the R packages BMA and MCMCpack (Martin, Quinn & Park, 

2010). The former approach is approximately Bayesian because the model selection 

criterion is Bayesian but the posterior mean estimates in the selected models are 

approximated by maximum likelihood estimates, whereas the latter approach is fully 

Bayesian insofar as it utilizes Bayesian model selection criteria but also simulates the 

posterior distribution of the propensity score using MCMC, allowing for the incorporation of 

priors into the selected propensity score models. After the elaboration of the methods, we 

outline the design of two simulation studies and their results. This is followed by the design 

and results of a real-data study case. The article concludes with a discussion.

BAYESIAN APPROACHES TO PROPENSITY SCORE ANALYSIS

In their seminal paper, Rosenbaum and Rubin (1983) proposed propensity score analysis as 

a practical tool for reducing selection bias through balancing treatment and control groups 

on measured covariates. Since then, a variety of propensity score techniques have been 

developed for both the estimation and the application of the propensity score. Models for 

estimating the propensity score equation have included parametric logit regression with 

chosen interaction and polynomial terms (e.g., Dehejia & Wahba, 1999; Hirano & Imbens, 

2001), and generalized boosting modeling (McCaffrey, Ridgeway & Morral, 2004). Methods 

for estimating the treatment effect while accounting for the propensity score include 

stratification, weighting, matching, and regression adjustment.

Rubin (1985) argued that a Bayesian approach to propensity score analysis should be of 

great interest to the applied Bayesian analyst, and yet propensity score estimation within the 
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Bayesian framework was not addressed until relatively recently. Hoshino (2008) developed a 

quasi-Bayesian estimation method for general parametric models, such as latent variable 

models, and developed a MCMC algorithm to estimate the propensity score. McCandless, 

Gustafson and Austin (2009) provided a practical Bayesian approach to propensity score 

stratification, estimating the propensity score and the treatment effect and sampling from the 

joint posterior distribution of model parameters via an MCMC algorithm. The marginal 

posterior probability of the treatment effect can then be obtained based on the joint posterior 

distribution. Similar to the McCandless et al. (2009) study, An (2010) presented a Bayesian 

approach that jointly models both the propensity score equation and outcome equation at the 

same time and extended this one-step Bayesian approach to propensity score regression and 

single nearest neighbor matching methods.

A consequence of the Bayesian joint modeling procedure utilized by McCandless et al. 

(2009) and An (2010) is that the posterior distribution of the propensity score may be 

affected by the outcome variable that is observed after treatment assignment, resulting in 

biased propensity score estimation. This is especially problematic if the relationship between 

the outcome and the propensity score is misspecified (McCandless, Douglas, Evans & 

Smeeth, 2010). To solve this problem, McCandless et al. (2010) utilized an approximate 

Bayesian technique introduced by Lunn, Best, Spiegelhalter, Graham and Neuenschwander 

(2009) for preventing undesirable feedback between the propensity score model and 

outcome model components. Specifically, McCandless et al. (2010) included the posterior 

distribution of the propensity score parameters as covariate input in the outcome model so 

that the flow of information between the propensity score and the outcome is restricted. This 

so-called sequential Bayesian propensity score analysis yields treatment effect estimates that 

are comparable to estimates obtained from frequentist propensity score analysis. 

Nevertheless, as McCandless et al. (2010) pointed out, their method is only approximately 

Bayesian and also encounters the difficulty that the Markov chain is not guaranteed to 

converge.

In order to maintain a fully Bayesian framework while overcoming the conceptual and 

practical difficulties of the joint modeling methods of McCandless et al. (2009) and An 

(2010), a two-step Bayesian propensity score approach (BPSA) was recently developed by 

Kaplan and Chen (2012) that can incorporate prior information on the model parameters of 

both the propensity score equation and outcome model equation. Consistent with Bayesian 

theory (see, e.g., Finetti, 1974), specifying prior distributions on the model parameters is a 

natural way to quantify uncertainty— here in both the propensity score and outcome 

equations. We develop the Bayesian model averaging approaches based on the Kaplan & 

Chen’s approach to Bayesian propensity score analysis and discuss its method and 

properties in the next section.

A TWO-STEP BAYESIAN PROPENSITY SCORE ANALYSIS

As noted earlier, a recent paper by Kaplan and Chen (2012) advanced a two-step approach to 

Bayesian propensity score analysis that was found to quite accurately estimate the treatment 

effect while at the same time preventing undesirable feedback between the propensity score 
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model and the outcome model. We apply Bayesian model averaging to the Kaplan & Chen 

model and describe that model in this section.

Specification of the Two-Step Bayesian PSA Model

In the Kaplan and Chen (2012) two-step Bayesian propensity score approach (BPSA), the 

propensity score model specified was the following logit model.

Log  e(x)
1 − e(x) = α + βx, (1)

where α is the intercept, β refers to a vector of slopes, and x represents a set of chosen 

covariates. For this step, Kaplan & Chen use the R package MCMClogit (Martin et al., 

2010) to sample from the posterior distributions of α and β using a random walk Metropolis 

algorithm. After the posterior propensity scores are obtained, a Bayesian outcome model is 

fit in the second step to estimate the treatment effect via various propensity score methods 

such as stratification, weighting, and optimal full matching.

To illustrate the Kaplan and Chen (2012) approach, consider a posterior sampling procedure 

of a chosen Bayesian logit model with 1, 000 iterations and a thinning interval of 1. Then for 

each observation, there will be m = 1, 000 posterior propensity scores e(x) calculated using 

propensity score model parameters α and β as follows:

e(x) = exp(α + βx)
1 + exp(α + βx) . (2)

Based on each posterior propensity score, there will be J = 1, 000 posterior draws of the 

treatment effect γ generated from its posterior distribution. Assuming that y is the outcome 

and T is the treatment indicator, Kaplan and Chen (2012) then provide the following 

treatment effect estimator,

E(γ | x, y, T) = m−1J−1 ∑
i = 1

m
∑
j = 1

J
γ j(ηi), (3)

where J−1∑ j = 1
J γ j(ηi) is the posterior sample mean of γ in the Bayesian outcome model 

based on the ith set of propensity scores ηi, i = 1, …, m and j = 1, …, J. This posterior 

sample mean is then averaged over m sets of posterior propensity scores. The posterior 

variance of γ is then based on the total variance formula,

Var(γ | x, y, T) = m−1 ∑
i = 1

m
σγ(ηi)

2 + (m − 1)−1 ∑
i = 1

m
μγ(ηi)

− m−1 ∑
i = 1

m
μγ(ηi)

2
, (4)

where
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σγ(ηi)
2 = (J − 1)−1 ∑

j = 1

J
γ j(ηi) − J−1 ∑

j = 1

J
γ j(ηi)

2
(5)

is the posterior sample variance of γ in the Bayesian outcome model under the ith set of 

propensity scores and

μγ(ηi)
= J−1 ∑

j = 1

J
γ j(ηi), (6)

is the posterior sample mean of γ in the same Bayesian outcome model. Notice that two 

sources of variation are present in Equation (4). The first source of variation is the average of 

the posterior variances of γ across the posterior samples of propensity scores, represented by 

the first part of the right hand side of Equation (4), and the second source of variation comes 

from the variance of the posterior means of γ obtained across the posterior samples of 

propensity scores, estimated by the second part of the right-hand side of Equation (4) 

(Kaplan & Chen, 2012).

A graphical display of the Kaplan and Chen (2012) two-step Bayesian propensity score 

model is shown in Figure 1. On the left-hand side, Step 1 shows a Bayesian logistic 

regression with model parameters α and β as in Equation (2). For each of the 1,000 draws 

from the posterior distribution of the propensity score model parameters, 1,000 draws are 

then obtained from the posterior distribution of treatment effect γ.

Kaplan and Chen (2012) conducted three simulation studies as well as a small case study 

comparing frequentist propensity score analysis with the two-step Bayesian alternative 

focusing on the estimated treatment effect and variance estimates. The effects of different 

sample sizes, true treatment effects, and choice of priors on the treatment effect and variance 

estimates were also evaluated. Consistent with Bayesian theory, Kaplan and Chen’s findings 

showed that lower prior precision of the treatment effect is desirable when no prior 

information is available in order to obtain estimates similar to frequentist results but wider 

intervals that account for propensity score uncertainty; or, higher prior precision is 

preferable when accurate prior information regarding treatment effects is attainable in order 

to obtain more accurate and precise treatment effect estimates. For the case of small sample 

size, the Bayesian approach shows slight superiority in the estimation of the treatment effect 

compared with the frequentist counterpart.

A further study of the covariate balance properties of the Kaplan and Chen (2012) approach 

was given in a case study by Chen and Kaplan (2014). Their results revealed that both 

Bayesian and frequentist propensity score approaches substantially reduced initial imbalance 

as expected, and their performance on covariate balance was similar with regard to the 

standardized mean/proportion differences and variance ratios in the treatment group and 

control group. Similar performance was also found with respect to the 95% bootstrap 

intervals and posterior probability intervals. That is, although the frequentist propensity 
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score approach provided slightly better covariate balance for the propensity score 

stratification and weighting methods, the two-step Bayesian approach offered slightly better 

covariate balance under optimal full matching method. Results of the Chen and Kaplan 

simulation study indicated similar findings. In addition, the Bayesian propensity score 

approach with informative priors showed equivalent balance performance compared with the 

Bayesian approach with noninformative priors, indicating that the specification of the prior 

distribution did not greatly influence the balance properties of the two-step Bayesian 

approach. The optimal full matching method, on average, offered the best covariate balance 

compared with stratification and weighting methods for both Bayesian and frequentist 

propensity score approaches. Chen and Kaplan also found that the two-step Bayesian 

approach under optimal full matching with either noninformative or informative priors 

provided, on average, the smallest standardized mean/proportion difference and variance 

ratio of the covariates between the treatment and control groups.

Chen and Kaplan (2014) argued that a benefit of conducting Bayesian propensity score 

analysis is that one can obtain the posterior distribution of the propensity score and thus the 

posterior distribution of corresponding balance indices (e.g., Cohen’s d and variance ratio) 

so that the variation in balance indices can be studied in addition to the point estimates to 

assist in balance checking. Good balance is achieved if both the point estimates and the 

posterior probability intervals of the balance indices fall into the desirable range.

The Bayesian propensity score approaches described in the preceding paragraphs all assume 

that the propensity score model itself is, in some sense, fixed. Returning to the quote by 

Hoeting, Madigan, Raftery and Volinsky (1999), we argue that it is incorrect to treat the 

propensity score equation as fixed. Rather, as a model for treatment selection, it is 

reasonable to assume that many possible models could have been chosen. Thus, we argue 

that a full accounting of uncertainty in propensity score analysis should also address model 

uncertainty, and thus the purpose of this article is to explore Bayesian model averaging in 

the propensity score context.

In their paper, Kaplan and Chen (2012) noted that their approach addressed uncertainty in 

the parameters of the propensity score equation and outcome equation in a sensible fashion. 

However, they also noted that their approach did not address uncertainty in the choice of 

covariates to be used in the propensity score equation. The problem of covariate choice has 

been discussed in Steiner, Cook and Shadish (2011) and Steiner, Cook, Shadish and Clark 

(2010), who demonstrate important strategies for covariate selection that directly concern 

the assumption of strong ignorability of treatment assignment. However, uncertainty with 

regard to strong ignorability is captured in the disturbance term of the propensity score 

equation. As stated in the introduction, the purpose of this article is to provide two Bayesian 

approaches to addressing uncertainty in the choice of a propensity score model via Bayesian 

model averaging.

BAYESIAN MODEL AVERAGING

To begin, consider a quantity of interest such as a future observation or a parameter. 

Following the notation given in Madigan and Raftery (1994, see also Hoeting et al., 1999), 

Kaplan and Chen Page 6

Multivariate Behav Res. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we denote this quantity as Δ. Next, consider a set of competing models Mk, k = 1, 2, …, K, 

that are not necessarily nested. For this study, Mk could be k possible propensity score 

models. The posterior distribution of Δ given data y can be written as

p(Δ | y) = ∑
k = 1

K
p(Δ | Mk, y)p(Mk | y), (7)

where p(Δ|Mk, y) is the posterior distribution of the quantity of interest given model Mk and 

p(Mk|y) is the posterior probability of model Mk written as

p(Mk | y) =
p(y | Mk)p(Mk)

∑l = 1
K p(y | Ml)p(Ml)

, l = 1, 2, …, K . (8)

An important feature of Equation (8) is that p(Mk) will likely be different for different 

models. The term p(y|Mk) can be expressed as an integrated likelihood

p(y | Mk) = p(y |θk, Mk)p(θk | Mk)dθk, (9)

where p(y|θk, Mk) is the likelihood under model Mk and p(θk|Mk) is the prior density of θk 

under model Mk (Madigan & Raftery, 1994).

It can be difficult to obtain an analytic solution to the integrated likelihood in Equation (9) 

because it is often of very high dimension. To resolve this problem one can use an 

approximation to the Bayesian information criterion (BIC), written as

2 log p(y | Mk) ≈ 2 log p(y |θk) − dk log(n) = − BICk, (10)

where dk is the number of independent parameters in Mk and θ̂k is the maximum likelihood 

estimator for the parameters in Mk. Thus, BMA provides an approach for combining models 

specified by researchers. The advantage of BMA has been discussed in Madigan and Raftery 

(1994) who showed that BMA provides better predictive performance than that of a single 

model. Given that the propensity score is the predicted probability of treatment assignment 

given a set of covariates, we hypothesize that BMA should provide estimated propensity 

scores at least as good as that obtained from assuming a fixed single propensity score 

equation. We evaluate the quality of the BMA approach to estimating the propensity score 

by comparing treatment effects across methods and examine covariate balance in a case 

study.

Occam’s Window

As pointed out by Hoeting et al. (1999), BMA is difficult to implement. In particular, they 

noted that the number of terms in Equation (7) can be quite large, the corresponding 
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integrals are hard to compute (though possibly less so with the advent of MCMC), the 

specification of p(Mk) may not be straightforward, and choosing the class of models to 

average over is also challenging. The problem of reducing the overall number of models that 

one could incorporate in the summation of Equation (7) has led to a solution based on the 

notion of Occam’s window (Madigan & Raftery, 1994).

To motivate the idea behind Occam’s window, consider the problem of finding the best 

subset of predictors in a linear regression model. Following closely the discussion given in 

Madigan and Raftery (1994), we consider an initially large number of predictors, but 

perhaps the goal is to find a subset that provides accurate predictions.1 As noted in the 

earlier quote by Hoeting et al. (1999), the concern in drawing inferences from a single “best” 

model is that the choice of a single set of predictors ignores uncertainty in model selection. 

Occam’s window (Madigan & Raftery, 1994) provides such an approach for Bayesian model 

averaging by reducing the subset of models under consideration.

The Occam’s window algorithm proceeds in two steps (Madigan & Raftery, 1994). In the 

first step, models are eliminated if they predict the data less well than the model that 

provides the best predictions. Formally, consider a set of models Mk, k = 1 … K, and a 

cutoff value C chosen in advance by the analyst. Then, we can create the set ′ such that

𝒜′ = Mk:
maxl{p(Ml | y)}

p(Mk | y) ≤ C . (11)

We see that Equation (11) compares the model with the largest posterior model probability, 

maxl{p(Ml|y)}, to a given model p(Mk|y). If the ratio in Equation (11) is less than or equal to 

a chosen value C, then it is to be included in the model averaging.

In the second step, models are discarded from consideration if they receive less support from 

the data than simpler submodels. Formally, we consider a set ℬ, where

ℬ = Mk: ∃Ml ∈ 𝒜′, Ml ⊂ Mk,
p(Ml | y)
p(Mk | y) > 1 . (12)

Equation (12) states that there exists a model Ml within the set ′ and where Ml is simpler 

than Mk. If the simpler model receives more support from the data than the more complex 

model, then it is included in the set ℬ. Notice that the second step corresponds to the 

principle of Occam’s razor (Madigan & Raftery, 1994).

With Step 1 and Step 2, the problem of Bayesian model averaging is simplified by replacing 

equation (7) with

1In the frequentist framework the notion of “best subset regression” is controversial because of concern over capitalization on chance. 
However, in the Bayesian framework with its focus on predictive accuracy, finding the best subset of predictors is less of a problem.
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p(Δ | y, 𝒜) = ∑
Mk ∈ 𝒜

p(Δ | Mk, y)p(Mk | y, 𝒜), (13)

where  is the relative complement of ′ and ℬ. That is, the models under consideration 

for Bayesian model averaging are those that are in ′ but not in ℬ.

Madigan and Raftery (1994) then outlined the approach to choosing between two models to 

be considered for BMA. Specifically, now consider just two models M1 and M0, where M0 

is the smaller of the two models. This could be the case where M0 contains fewer predictors 

than M1 in a regression analysis. If the log-posterior odds are positive, indicating support for 

M0, then we reject M1. If the log-posterior odds are large and negative, then we reject M0 in 

favor of M1. Finally, if the log-posterior odd lies in between the preset criterion, then both 

models are retained.

METHODS

An excellent and freely available open source program for Bayesian model averaging is the 

R package BMA (Raftery et al., 2009). We apply the Bayesian model averaging method 

utilized in the BMA program (Raftery et al., 2009) to obtain the model-averaged propensity 

score estimate, which uses maximum likelihood estimates to approximate posterior means of 

the selected models and then average them with posterior model probabilities as weights. 

This approach is referred to as BMA-Approx in this article. However, the BMA program 

cannot directly provide posterior samples of the propensity score, and so the uncertainty of 

propensity score cannot be incorporated into the outcome equation. Therefore, in this article, 

we propose a fully Bayesian MCMC methodology of Bayesian model averaging for 

propensity score analysis, accounting for both model uncertainty and parameter uncertainty 

in the propensity score model. For these two BMA approaches, both frequentist and 

Bayesian outcome models are examined. In addition, the two-step Bayesian propensity score 

approach developed by Kaplan and Chen (2012) is evaluated and compared with the BMA-

based propensity score approaches. The R programs MCMC logit and MCMCregress within 

MCMCpack (Martin et al., 2010) are implemented to obtain posterior propensity score and 

treatment effect, respectively. Methods of implementation include propensity score 

stratification (e.g., Rosenbaum & Rubin, 1983, 1984), weighting (e.g., Hirano & Imbens, 

2001; Lunceford & Davidian, 2004), optimal full matching (e.g., Hansen, 2004; Rosenbaum, 

1989), and regression adjustment (e.g., Rubin, 1979; Schafer & Kang, 2008).

Bayesian Model Averaging (BMA) Approaches to Propensity Score Analysis

For the BMA-Approx propensity score approach, we first estimate the propensity score 

using the “bic.glm” routine in the BMA package. Specifically, a weighted average of the 

approximate posterior mean estimates, with the posterior model probabilities as weights, is 

used to create the model-averaged propensity score estimates. Then, based on the propensity 

score estimates, the treatment effects are estimated in the outcome model via propensity 

score stratification, weighting, optimal full matching, and regression adjustment methods. 

The benefit of this BMA approach is that it accounts for the uncertainty in the selection of 
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propensity score models and also the program runs very fast. However, the approximate 

BMA approach is limited in that each unit of analysis has only one estimated propensity 

score and thus the uncertainty of the propensity score itself is ignored in the treatment effect 

estimation. The posterior distribution of the propensity score cannot be directly obtained and 

has to be normally approximated using the posterior mean and standard deviation estimates 

provided by the BMA package.

To address the problem associated with ignoring uncertainty in the propensity score, we 

propose a fully MCMC Bayesian model averaging procedure within the propensity score 

framework. We refer to this approach as BMA-MCMC later. For our approach, we use the R 

software packages BMA (Raftery et al., 2009) and MCMCpack (Martin et al., 2010). We 

have found these programs the most flexible for our needs, but it is, of course, possible that 

our approach could be implemented using other existing programs, or through original R 

programming.

The detailed steps of our approach are as follows:

Step 1: Select propensity score models (covariates) using the R program BMA. In 

some cases where a large quantity of models with small posterior model probabilities 

are selected, certain cumulative posterior model probabilities (e.g., top 50%, 70%, 

and 90%) can be used to limit the selected models to the most crucial ones.

Step 2: Use the Bayesian logistic regression program MCMClogit within 

MCMCpack (Martin et al., 2010) to obtain the posterior distribution of the propensity 

score for each selected model. If prior research or expert opinion can be brought to 

bear on the process of selection into treatment, then priors in the Bayesian logit 

model can be specified in this step.

Step 3: Sample from the posterior distribution of the propensity score in each model 

with the model’s posterior probability as weight to get the final posterior distribution 

of the propensity score.

Step 4: Based on each posterior draw of the propensity score, a treatment effect 

estimate and a variance estimate can be produced through the outcome model via 

stratification, weighting, optimal full matching, or regression adjustment. In this 

study, there are 1,000 posterior draws of the propensity score and thus 1,000 

treatment effect and variance estimates are obtained.

Step 5: The final treatment effect estimate and variance estimate can be calculated by 

Equation (3) and Equation (4), respectively, as proposed by Kaplan and Chen (2012).

DESIGN OF SIMULATION STUDIES

We conduct two simulation studies to assess the performance of the two Bayesian model 

averaging approaches to covariate choice in propensity score analysis. In both simulation 

studies, data are generated with one continuous outcome, one binary treatment, and 10 

covariates with different distributions. The details of our procedure are as follows:
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1. Independently generate random variables x1, x2, …, x10 as 10 covariates under 

sample size n = 200, such as

x1 N(0, 1) x6 Bernoulli(0.3)

x2 Poisson(2) x7 N( − 1, 3)

x3 Bernoulli(0.5) x8 N(2, 2)

x4 N(0, 2) x9 N(1, 0.8)

x5 Bernoulli(0.6) x10 N(2, 1) .

These distributions are chosen to imitate different types of covariates found in 

practice such as continuous variables, count data, and dichotomous (e.g., yes/no) 

variables.

2. Let x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)′ be the vector of covariates. Obtain 

the true propensity scores by the model

ei(x) =
exp(α + βxi)

1 + exp(α + βxi)
, (14)

where the generating coefficients are α = 0 and β = (0.6, 0.1, −0.3, −0.4, 0.2, 

−0.3, −0.2, 0.2, 0.5, 0.3).

3. Calculate the treatment assignment vector T by comparing the propensity score 

ei(x) with a random variable Ui generated from the Uniform (0, 1) distribution, 

where i = 1, …, n. Assign Ti = 1 if Ui ≤ ei (x), Ti = 0 otherwise.

4. Generate outcomes y1, …, yn using the model

yi = λxi + γT i + εi, (15)

where λ = (0.2, 0.1, 0.2, −0.1, −0.2, 0.2, −0.2, 0.1, 0.2, 0.1), ~ N(0, 1) and γ is 

the true treatment effect taking the value of 5.

5. Data = {(yi, xi, Ti), i = 1, …, n; n = 200}.

6. Replicate the aforementioned steps 200 times.

Note that Step 6 provides an evaluation of the frequentist properties of the proposed BMA 

propensity score methods. The issue of providing a frequentist evaluation of Bayesian 

methods in general is based on original ideas of Box (1980) and Rubin (1984) and was 

developed by Little (2006, 2011, 2013), who referred to the idea as calibrated Bayes.

In simulation Study 1, all 10 generating covariates are used in the propensity score 

estimation model for all the methods investigated in this article. Specifically, for the 

Bayesian model averaging approach using model-averaged propensity score estimates 

provided by the original BMA program, we evaluate the effects of Occam’s window on the 
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accuracy and precision of the treatment effect estimation. When Occam’s window is on, the 

default value 20 in the BMA program is used as the maximum ratio for excluding models in 

Occam’s window. When Occam’s window is off, all the models are selected and used for 

obtaining the averaged propensity score estimates.

For the fully MCMC Bayesian model averaging propensity score approach, three different 

cumulative posterior model probabilities (50%, 70%, and 90%) are adopted to investigate 

whether the number and quality of the selected models affect the treatment effect estimation. 

Also, both noninformative and informative prior distributions are utilized in the propensity 

score model at Step 2, where the generating coefficients in the propensity score model are 

used as informative hyperparameters for the prior distributions.

In simulation Study 2, only 8 out of 10 generating covariates are included in the propensity 

score model to examine the performance of the proposed Bayesian model averaging 

methods when the propensity score model is misspecified. The covariates x9 and x10 are 

excluded for the propensity score estimation. For the sake of brevity, we only explore the 

BMA-MCMC approach for models with the top 50% cumulative posterior model 

probabilities and with noninformative priors.

RESULTS OF SIMULATION STUDY 1

With the exception of a small number of cases described later, all models showed 

convergence of the Gibbs sampler based on inspection of trace and density plots. Table 1 

shows that, overall, Occam’s window does not influence treatment effect estimation for the 

approximate Bayesian model averaging approach. The proposed fully Bayesian model 

averaged propensity score methods perform similarly when the models with the top 50%, 

70%, or 90% cumulative posterior model probabilities are used for propensity score 

estimation. In other words, these findings indicate that models using the top 50% cumulative 

posterior model probabilities contribute the most to the parameter estimation and bias 

reduction.2 Priors on the propensity score model parameters have little impact on the 

treatment effect estimation, but it is important to point out that this finding could be due to 

the particular choice of priors in this study.

Among all the methods examined, the proposed BMA-MCMC approach based on models 

using the top 50% cumulative posterior model probabilities provides slightly less biased 

treatment effect estimate and the more accurate uncertainty estimate for the weighting 

approach. On average, BMA-Approx provides slightly less biased treatment effect estimates. 

However, BMA-Approx slightly underestimates the uncertainty in the treatment effect for 

the weighting method (0.18 vs. 0.21 and 0.18 vs. 0.24, respectively). The proposed BMA-

MCMC approach overall produces larger uncertainty estimates as expected, but it tends to 

overestimate the variation. This might be due to the small number of replications in the 

simulation study. When we increased the number of data replications to 500 for the BMA-

MCMC propensity score model with the ordinary least squares (OLS) outcome model, the 

2For this article, we are not computing a percentage under-or over estimation to represent “bias”. We are simply comparing the 
obtained treatment effects from the simulations with the true parameter value.
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treatment effect and uncertainty estimates were very similar to the results with 200 data 

replications. The R code for simulation study 1 is available upon request.

RESULTS OF SIMULATION STUDY 2

From Table 2, we observe that all of the Bayesian propensity score methods are quite robust 

to the misspecification of propensity score model. Specifically, the BMA-Approx approach 

provides slightly less biased estimates for optimal full matching and weighting methods, 

whereas the BMA-MCMC approach offers somewhat better treatment effect estimate for the 

weighting method. In terms of the uncertainty estimates, the BMA-Approx slightly 

underestimates the variation in the treatment effect. Out of all the Bayesian methods 

investigated, the proposed BMA-MCMC approach under weighting and the BMA-Approx 

approach under optimal matching offer the closest standard error estimates to the 

approximately true uncertainty (0.24 vs. 0.23 and 0.20 vs. 0.19, respectively). The R code 

for simulation Study 2 is also available upon request.

DESIGN OF THE CASE STUDY

In order to further investigate the properties of the proposed BMA procedures for propensity 

score analysis, we conducted a case study using real data from the Early Childhood 

Longitudinal Study Kindergarten cohort of 1998 (ECLS-K; National Center for Education 

Statistics, 2001). The sampled children attended either full-day or part-day kindergarten 

programs and had diverse socioeconomic and racial/ethnic backgrounds. Also, a number of 

variables assessing early childhood (pre-K) experiences were collected in the ECLSK, thus 

propensity score approaches can be fruitfully applied. This article investigates the treatment 

effect of full-day versus part-day kindergarten attendance on children’s reading achievement 

at the end of 1998 fall kindergarten.

A sample of 1,000 children were randomly selected proportional to the number of children 

in full-day or part-day kindergarten in the population. This resulted in 538 children in full-

day programs and 462 children in part-day programs. Fourteen covariates were chosen for 

estimating the propensity scores, including gender, race, mother’s employment status, 

child’s age at kindergarten entry, child’s age at first nonparental care, primary type of 

nonparental care, both parent language to child, number of siblings, family composition, 

mother’s employment between child’s birth and kindergarten, number of nonparental care 

arrangements (pre-K), social economic status, parent’s expectation of child’s degree, and 

how often parent reads to child. Missing data were handled via the multivariate imputation 

by chained equations using the R function mice in the mice package (Van Buuren & 

Groothuis-Oudshoorn, 2011) with one iteration. The diagnostics were performed as default 

and the chains converged.

Similar to the first simulation study, we examine the effects of Occam’s window on the 

accuracy and precision of the treatment effect estimation for the approximate Bayesian 

model averaging propensity score approach. When Occam’s window is on, the default value 

20 in the BMA program is utilized as the maximum ratio for excluding models in Occam’s 

window, and this yields four selected models with the posterior model probabilities 0.31, 
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0.29, 0.23, and 0.17, respectively. When Occam’s window is off, there are 184 models being 

selected and used for obtaining the model averaged propensity score estimates. For the 

BMA-MCMC approach, we utilize all four selected models when Occam’s window is on. 

Here, however, we do not examine the BMA-MCMC approach when Occam’s window is off 

because there are 184 selected models in total and the estimation of the Bayesian logit 

models encounter problems for many models with small posterior model probabilities that 

include very few variables. In this case, certain cumulative posterior model probabilities 

(e.g., top 50%) can be used to restrict the selected models to the most predictive ones or 

Occam’s window can stay open.

Covariate Balance

For this case study, we also examine the covariate balance performance of the Bayesian 

model averaging approaches. The continuous covariates and categorical covariates are 

evaluated separately. The balance indices used in this study are the standardized mean/

proportion difference (Cohen’s d; Cohen 1988) and variance ratio for each continuous 

covariate/each level of categorical covariates between treatment group and control group. 

Specifically, the standardized mean difference for a continuous covariate is obtained by

B1 = (xt − xc)/ (st
2 + sc

2)/2, (16)

where x̄t and x̄c are the sample mean of each covariate in treatment and control groups, 

respectively, and st
2 and sc

2 are corresponding sample variances. The variance ratio for a 

continuous covariate, R1, is defined as st
2/sc

2. All the categorical covariates are dummy 

coded. Then for each categorical level, we evaluate the standardized difference in 

proportions between different treatment conditions, consistent with Harder, Stuart and 

Anthony (2010). The standardized proportion difference is calculated by

B2 = (pt − pc)/ [pt(1 − pt) + pc(1 − pc)]/2, (17)

where p̂t and p̂c are proportions of participants in the treatment group and control group, 

respectively, for a specific level of categorical covariates. The variance ratio for a certain 

categorical level, R2, is calculated by p̂t(1 − p̂t)/p̂c(1 − p̂c).

In addition to the aforementioned point estimates, the BMA-MCMC approach provides the 

95% posterior probability intervals (PPI) of the standardized mean/proportion difference and 

the 95% PPI of the variance ratio based on the posterior distribution of the propensity score 

parameters. For each posterior propensity score drawn from the posterior distribution, we 

can obtain a point estimate of each balance index. As we have 1,000 posterior draws of the 

propensity score, a distribution of the balance index with 1,000 points can be obtained and 

the mean of this posterior distribution provides the point estimate of the covariate balance 

and the 2.5 and 97.5 percentiles to form the corresponding 95% PPI.
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Note that the optimal full matching method matches subjects as fine as possible to minimize 

the total distance among all the matched strata. Optimal full matching yields more than 300 

optimal strata in our case study, many of which have only one subject in the treatment group 

or in the control group such that the calculation of covariate variance within each stratum 

becomes infeasible. Also, it is hard to obtain covariate variance for treatment group and 

control group, respectively, in the regression adjustment method where the posterior 

propensity scores are utilized as a covariate in the outcome model. So we use the unadjusted 

covariate variances in the treatment group and in the control group to calculate Cohen’s d for 

the optimal matching and regression adjustment methods and do not show the variance ratio 

for these two methods.

Prediction of the Propensity Score

This case study also assessed the predictive performance of the two Bayesian model 

averaging propensity score approaches and compared them with the Bayesian propensity 

score approach with a single propensity score equation. As we are interested in the 

prediction of the propensity score for a binary treatment scenario, that is, the predicted 

probability of being in the full-day kindergarten, we adopted the Brier score (Brier, 1950) to 

evaluate the quality of the predicted posterior propensity scores. The Brier score has been 

used to evaluate the predictive performance of Bayesian model averaging in the context of 

binary responses (Yeung, Bumgarner & Raftery, 2005). The literature on Bayesian model 

averaging suggests that predictive performance under Bayesian model averaging should be 

better than prediction obtatined under any single model (Madigan & Raftery, 1994).

In this study, we first randomly split the data set into two halves, one training data set and 

one testing data set. The propensity score model parameters are estimated using the training 

data set and then the predicted posterior propensity scores are obtained based on the testing 

data set and the estimated propensity score model parameters. The posterior mean of the 

predictive propensity scores for each student is denoted as pi. Let Ti denote the treatment 

selection, half-day or full-day kindergarten program, for student i, where Ti = 0 or 1. Then 

the Brier score is defined as ∑i = 1
n (T i − pi)

2, which is the sum of squares of the differences 

between the treatment selection and the predicted probability over n students. The smaller 

the model’s Brier score across competing models, the better prediction the model makes. To 

account for the randomness of data splitting, we randomly split the data set into two equal 

halves 100 times and then take the average of the Brier score across 100 data splittings for 

the models investigated here.

RESULTS OF THE CASE STUDY

We conducted a Bayesian regression with the full-day or half-day kindergarten selection as 

the only predictor for children’s reading achievement in the fall kindergarten and obtained 

the unadjusted treatment effect 1.74 with standard error 0.77. This result serves as a 

“negative benchmark” to check whether the propensity score approaches investigated in this 

study adjust the bias due to self-selection of the treatment conditions. For comparison 

purposes, we also fit a Bayesian covariate-adjusted regression with the full-day or half-day 
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kindergarten selection and all the 14 covariates as predictors. The treatment effect estimate is 

2.30 with standard error 0.72.

The treatment effect and standard error estimates of the case study shown in Table 3 indicate 

that all the propensity score methods adjusted the selection bias to some extent. Bayesian 

model averaging approaches provide results comparable to other propensity score 

approaches. The effects of Occam’s window vary across different propensity score methods. 

Turning Occam’s window on or off does not unduly influence treatment effect estimation for 

stratification, weighting, and regression adjustment. However, turning Occam’s window on 

or off does slightly affect the treatment effect estimates under the optimal full matching 

method. In addition, using OLS or Bayesian outcome models has little impact on treatment 

effect estimation. The R code for the BMA-Approx and BMA-MCMC propensity score 

analyses for the case study is available upon request.

The covariate balance results of the case study are presented in Table 4. Overall, the average 

absolute standardized mean/proportion differences across all the covariates are within the 

ideal range (± 0.1 standard deviation) for all the investigated propensity score approaches, 

indicating that the propensity score adjustments effectively reduced the selection bias in the 

covariates. Bayesian model averaging approaches provide comparably good covariate 

balance compared to the two-step Bayesian propensity score approach without model 

averaging. According to the balance criteria presented in Rubin (2001), the average variance 

ratios in the treatment group and control group across all the covariates fall in the acceptable 

range (between 1/2 and 2) for all the examined propensity score approaches. The average 

variance ratios for all the examined Bayesian approaches are in the desirable range (between 

4/5 and 5/4).

In addition to the mean estimates, the BMA-MCMC approach and the two-step Bayesian 

propensity score approach also offer the 95% posterior probability intervals of the balance 

indices (Cohen’s d and variance ratio here) so that the variation in the estimated balance 

indices can be captured. For instance, although the mean Cohen’s d estimates of the 

Bayesian propensity score approaches are quite similar for stratification, optimal matching, 

regression, and weighting, the 95% posterior probability intervals of the Cohen’s d and 

variance ratio for the weighting method are wider than the intervals for stratification, 

optimal matching, and regression methods, implying more uncertainty in the estimation of 

balance indices for the weighting method.

In terms of the predictive performance, across 100 data splittings, the average Brier Scores 

of the BMA-Approx approach and the BMA-MCMC approach are 121.83 and 121.84, 

respectively, whereas the average Brier Score of the two-step Bayesian propensity score 

approach with a single propensity score equation is 122.34. Thus, as theoretically expected, 

both Bayesian model averaging propensity score approaches showed advantage in the 

prediction of the propensity score compared with the Bayesian propensity score approach 

that ignored model uncertainty. The R code for the covariate balance check and the 

predictive performance check of the case study are available upon request.
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SUMMARY AND CONCLUSION

The purpose of this article is to provide a Bayesian model averaging approach within the 

propensity score framework. In particular, we propose a fully Bayesian approach to 

propensity score analysis to account for uncertainty in the propensity score model itself. In 

this sense, our fully Bayesian model averaging approach addresses the problem of covariate 

choice as a problem of model choice and directly recognizes that such uncertainty needs to 

be accounted for in the creation of the propensity score.

To sum up, our simulation studies reveal that both Bayesian model averaging propensity 

score methods perform similarly when models/covariates using the top 50%, 70%, or 90% 

cumulative posterior model probabilities are used for propensity score estimation. For this 

study, priors on the propensity score model parameters were shown to have little impact on 

the treatment effect estimation. This might not always hold true, particularly in the case 

where high precision is placed on poorly elicited prior values or in the case of 

noninformative priors in the context of small sample size problems. Our new BMA-MCMC 

approach using models that have the top 50% cumulative posterior model probabilities 

provides slightly less biased treatment effect estimates for the weighting approach compared 

with the BMA-Approx approach. Our proposed BMA-MCMC approach overall produces 

somewhat larger uncertainty estimates as expected, but it tends to overestimate the variation. 

As noted earlier, we increased the number of data replications to 500 for the BMA-MCMC 

propensity score model with the frequentist ordinary least squares outcome model, but the 

treatment effect and uncertainty estimates are very similar to the results with 200 data 

replications. This slight overestimation in uncertainty has been observed in other Bayesian 

research (e.g., Yuan & MacKinnon, 2009) and might be because the simulation studies 

follow the frequentist framework, thus favoring a frequentist outcome.

With regard to omitted variables in the propensity score equation, we found that all 

propensity score methods were robust to misspecification of the propensity score model. 

Although differences are small, the BMA-Approx approach provides the least biased 

estimates for optimal full matching and regression adjustment methods, whereas the BMA-

MCMC approach offers the best treatment effect estimate for the weighting method. In 

terms of the uncertainty estimates, the BMA-Approx under the weighting approach 

underestimates the variation in the treatment effect. Out of all the Bayesian methods 

investigated, our proposed BMA-MCMC weighting approach and the BMA-Approx under 

optimal matching approach offer the closest standard error estimates to the approximately 

true uncertainty.

We also conducted a real-data study, where the ECLS-K data set is used for examining the 

recovery of the treatment effect estimates in the quasi-experiment via different propensity 

score methods. In addition, the effects of Occam’s window on the treatment effect estimates 

are evaluated. Results reveal that the impact of Occam’s window varies slightly across 

different propensity score methods, but overall, Bayesian model averaging propensity score 

approaches perform well and are comparable to other propensity score approaches and some 

other bias-reduction methods such as covariate-adjusted regression. The proposed Bayesian 
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model averaging approaches also provide good covariate balance and better prediction of the 

propensity score compared with the Bayesian approach that ignores model uncertainty.

A number of open questions remain that were beyond the scope of this article to explore. In 

particular, we chose either accurate priors (based on the generating coefficients of the 

propensity score model) or noninformative priors based on the uniform distribution. It would 

be important to explore the sensitivity of our results to other choices of priors—particularly 

the case where priors are poorly elicited. This would reflect the case of demonstrating 

relative certainty around incorrect prior values. Our simulations and case study were also 

examined under simple default conditions regarding the width of Occam’s window. Here too 

it would be important to explore the sensitivity of our approach to widely varying choices of 

the width of Occam’s window. Finally, future studies should examime the case where all 

models have small posterior model probabilities. A question that can be raised is whether 

Bayesian model averaging in the case of small posterior model probabilities still provides 

improved posterior prediction compared with the use of any one model.

To conclude, this article addresses covariate selection in propensity score analysis as a 

problem of model selection. From a Bayesian perspective, the problem of model selection is 

a problem of model uncertainty. At present, the main approach to addressing model 

uncertainty in Bayesian inference is through Bayesian model averaging. Thus, our article 

accomplishes two goals. First, we provide an extension of Kaplan and Chen’s (2012) two-

step propensity score approach by addressing the problem of model selection from a 

Bayesian standpoint. Second, we provide a new fully Bayesian approach to model averaging 

within the propensity score context and compare it with an existing approximate approach to 

Bayesian model averaging. Overall, the differences are slight, and so choosing either the 

BMA-Approx approach or the BMA-MCMC approach are not likely to dramatically affect 

subsequent inferences. To conclude, we offer a Bayesian propensity score analysis that 

accounts fully for model and parameter uncertainty and can be adopted by those who wish to 

do causal inference within the Bayesian paradigm.
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FIGURE 1. 
Graphical display of two-step Bayesian propensity score analysis.
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TABLE 1

Treatment (Trt) Effect and Standard Error (SE) Estimates in Simulation Study 1 (Avg. Trt Effect(SD of Trt 

Effect Estimates)/Avg. SE(SD of SE Estimates))

Method Stratification Opt. Matching Regression Weighting

BMA-Approx+OLS

  Occam’s window on 4.93(.19)/.23(.03) 4.98(.18)/.21(.02) 4.99(.17)/.20(.01) 4.92(.21)/.18(.01)

  Occam’s window off 4.94(.20)/.23(.03) 4.99(.17)/.21(.02) 4.99(.17)/.20(.01) 4.91(.21)/.18(.01)

BMA-Approx+Bayes

  Occam’s window on 4.93(.19)/.23(.03) 4.99(.18)/.21(.02) 4.99(.17)/.19(.01) NA

  Occam’s window off 4.93(.20)/.23(.03) 4.99(.18)/.21(.02) 4.99(.17)/.19(.01) NA

BMA-MCMC+OLS (Noninformative)

  Top 50% 4.89(.19)/.25(.04) 4.92(.17)/.24(.02) 4.93(.17)/.21(.02) 4.99(.24)/.25(.06)

  Top 70% 4.88(.18)/.26(.04) 4.92(.17)/.24(.02) 4.93(.17)/.22(.02) 4.97(.23)/.25(.06)

  Top 90% 4.88(.18)/.26(.04) 4.92(.17)/.24(.02) 4.92(.17)/.22(.02) 4.97(.23)/.25(.06)

BMA-MCMC+Bayes (Noninformative, 50%) 4.88(.18)/.25(.04) 4.93(.17)/.24(.02) 4.93(.17)/.21(.02) NA

BMA-MCMC+OLS (Informative)

  Top 50% 4.89(.18)/.26(.04) 4.93(.17)/.24(.02) 4.93(.17)/.22(.02) 4.98(.23)/.25(.06)

  Top 70% 4.88(.18)/.26(.04) 4.92(.17)/.24(.02) 4.93(.17)/.22(.02) 4.97(.23)/.25(.06)

  Top 90% 4.88(.18)/.26(.04) 4.92(.17)/.24(.02) 4.92(.17)/.22(.02) 4.97(.23)/.25(.06)

  Two-step BPSA 4.88(.18)/.26(.04) 4.93(.17)/.25(.02) 4.93(.17)/.22(.02) NA

Note. The Bayesian propensity score weighting approach with Bayesian outcome model is not discussed here due to the absence of Bayesian 
weighted regression in the propensity score literature.

BPSA = Bayesian propensity score analysis; BMA-Approx+OLS = Approximate Bayesian model averaging with ordinary least squares outcome 
model; BMA-Approx+Bayes = Approximate Bayesian model averaging with Bayesian outcome model; BMA-MCMC+OLS = Fully Bayesian 
model averaging with OLS outcome model; BMA-MCMC+Bayes = Fully Bayesian model averaging with Bayesian outcome model.
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TABLE 2

Treatment (Trt) Effect and Standard Error (SE) Estimates in Simulation Study 2 (Avg. Trt Effect(SD of Trt 

Effect Estimates)/Avg. SE(SD of SE Estimates))

Method Stratification Opt. Matching Regression Weighting

BMA-Approx+OLS 4.95(.19)/.22(.03) 4.99(.19)/.20(.02) 5.01(.17)/.19(.01) 4.95(.21)/.18(.01)

BMA-Approx+Bayes 4.95(.19)/.22(.03) 5.00(.19)/.21(.02) 5.01(.17)/.19(.01) NA

BMA-MCMC+OLS (Noninf, 50%) 4.91(.18)/.24(.03) 4.95(.17)/.23(.02) 4.96(.17)/.20(.02) 5.00(.23)/.24(.06)

BMA-MCMC+Bayes (Noninf, 50%) 4.91(.18)/.23(.03) 4.96(.18)/.23(.02) 4.96(.17)/.20(.02) NA

  Two-step BPSA 4.92(.18)/.24(.03) 4.96(.17)/.23(.02) 4.97(.17)/.20(.02) NA

Note. BPSA = Bayesian propensity score analysis; BMA-Approx+OLS = Approximate Bayesian model averaging with ordinary least squares 
outcome model; BMA-Approx+Bayes = Approximate Bayesian model averaging with Bayesian outcome model; BMA-MCMC+OLS = Fully 
Bayesian model averaging with OLS outcome model; BMA-MCMC+Bayes = Fully Bayesian model averaging with Bayesian outcome model.
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TABLE 3

Treatment Effect (Trt) and Standard Error (SE) Estimates in the Case Study (Trt(SE))

Method Stratification Opt. Matching Regression Weighting

Propensity score methods

BMA-Approx+Bayes

  Occam’s window on 2.23(.75) 2.56(.86) 2.51(.78) NA

  Occam’s window off 2.23(.75) 2.52(.83) 2.51(.78) NA

BMA-Approx+OLS

  Occam’s window on 2.25(.78) 2.55(.83) 2.51(.79) 2.52(.76)

  Occam’s window off 2.25(.78) 2.48(.86) 2.51(.79) 2.52(.76)

BMA-MCMC+Bayes

  Occam’s window on 2.08(.81) 2.42(.87) 2.47(.81) NA

BMA-MCMC+OLS

  Occam’s window on 2.09(.84) 2.42(.86) 2.47(.82) 2.57(.84)

Two-step BPSA 2.02(.83) 2.22(.95) 2.23(.84) NA

Other methods Estimate(S.E.)

  Bayes unadjusted regression 1.74(.77)

  Bayes covariate-adjusted regression 2.30(.72)

Note. BPSA = Bayesian propensity score analysis; BMA-Approx+OLS = Approximate Bayesian model averaging with ordinary least squares 
outcome model; BMA-Approx+Bayes = Approximate Bayesian model averaging with Bayesian outcome model; BMA-MCMC+OLS = Fully 
Bayesian model averaging with OLS outcome model; BMA-MCMC+Bayes = Fully Bayesian model averaging with Bayesian outcome model.
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TABLE 4

Average Absolute Standardized Mean/Proportion Difference (Cohen’s d) and Variance Ratio Between 

Treatment and Control Group Across All Covariates in the Case Study

Method Stratification Opt. Matching Regression Weighting

BMA-Approx. approach

  Cohen’s d 0.06 0.05 0.05 0.09

  Variance ratio 1.01 0.82

BMA-MCMC approach

  Cohen’s d
0.07 (0.06, 0.09) 0.06 (0.05, 0.07) 0.06 (0.05, 0.07) 0.10 (0.06, 0.15)

  95% PPI of Cohen’s d

  Variance ratio
1.01 (0.96, 1.07) 1.01 (0.61, 1.93)

  95% PPI of variance ratio

Two-step BPSA

  Cohen’s d
0.05 (0.04, 0.07) 0.05 (0.04, 0.07) 0.04 (0.03, 0.06) 0.08 (0.05, 0.12)

95% PPI of Cohen’s d

  Variance ratio
1.00 (0.95, 1.06) 1.00 (0.52, 2.13)

95% PPI of variance ratio

Note. The adjusted variances in the treatment group and in the control group are not available for the optimal full matching and regression 
adjustment. Therefore, the Cohen’s d for these two methods are calculated based on the unadjusted variances and the variance ratios of these two 
methods are not shown.

PPI = Posterior probability interval.
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