Skip to main content
. Author manuscript; available in PMC: 2018 Aug 1.
Published in final edited form as: Multivariate Behav Res. 2014 Nov-Dec;49(6):505–517. doi: 10.1080/00273171.2014.928492

TABLE 1.

Treatment (Trt) Effect and Standard Error (SE) Estimates in Simulation Study 1 (Avg. Trt Effect(SD of Trt Effect Estimates)/Avg. SE(SD of SE Estimates))

Method Stratification Opt. Matching Regression Weighting
BMA-Approx+OLS
  Occam’s window on 4.93(.19)/.23(.03) 4.98(.18)/.21(.02) 4.99(.17)/.20(.01) 4.92(.21)/.18(.01)
  Occam’s window off 4.94(.20)/.23(.03) 4.99(.17)/.21(.02) 4.99(.17)/.20(.01) 4.91(.21)/.18(.01)
BMA-Approx+Bayes
  Occam’s window on 4.93(.19)/.23(.03) 4.99(.18)/.21(.02) 4.99(.17)/.19(.01) NA
  Occam’s window off 4.93(.20)/.23(.03) 4.99(.18)/.21(.02) 4.99(.17)/.19(.01) NA
BMA-MCMC+OLS (Noninformative)
  Top 50% 4.89(.19)/.25(.04) 4.92(.17)/.24(.02) 4.93(.17)/.21(.02) 4.99(.24)/.25(.06)
  Top 70% 4.88(.18)/.26(.04) 4.92(.17)/.24(.02) 4.93(.17)/.22(.02) 4.97(.23)/.25(.06)
  Top 90% 4.88(.18)/.26(.04) 4.92(.17)/.24(.02) 4.92(.17)/.22(.02) 4.97(.23)/.25(.06)
BMA-MCMC+Bayes (Noninformative, 50%) 4.88(.18)/.25(.04) 4.93(.17)/.24(.02) 4.93(.17)/.21(.02) NA
BMA-MCMC+OLS (Informative)
  Top 50% 4.89(.18)/.26(.04) 4.93(.17)/.24(.02) 4.93(.17)/.22(.02) 4.98(.23)/.25(.06)
  Top 70% 4.88(.18)/.26(.04) 4.92(.17)/.24(.02) 4.93(.17)/.22(.02) 4.97(.23)/.25(.06)
  Top 90% 4.88(.18)/.26(.04) 4.92(.17)/.24(.02) 4.92(.17)/.22(.02) 4.97(.23)/.25(.06)
  Two-step BPSA 4.88(.18)/.26(.04) 4.93(.17)/.25(.02) 4.93(.17)/.22(.02) NA

Note. The Bayesian propensity score weighting approach with Bayesian outcome model is not discussed here due to the absence of Bayesian weighted regression in the propensity score literature.

BPSA = Bayesian propensity score analysis; BMA-Approx+OLS = Approximate Bayesian model averaging with ordinary least squares outcome model; BMA-Approx+Bayes = Approximate Bayesian model averaging with Bayesian outcome model; BMA-MCMC+OLS = Fully Bayesian model averaging with OLS outcome model; BMA-MCMC+Bayes = Fully Bayesian model averaging with Bayesian outcome model.