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Analysis of diet-induced differential 
methylation, expression, and 
interactions of lncRNA and protein-
coding genes in mouse liver
Jose P. Silva1 & Derek van Booven2

Long non-coding RNAs (lncRNAs) regulate expression of protein-coding genes in cis through chromatin 
modifications including DNA methylation. Here we interrogated whether lncRNA genes may regulate 
transcription and methylation of their flanking or overlapping protein-coding genes in livers of mice 
exposed to a 12-week cholesterol-rich Western-style high fat diet (HFD) relative to a standard diet 
(STD). Deconvolution analysis of cell type-specific marker gene expression suggested similar hepatic 
cell type composition in HFD and STD livers. RNA-seq and validation by nCounter technology revealed 
differential expression of 14 lncRNA genes and 395 protein-coding genes enriched for functions in 
steroid/cholesterol synthesis, fatty acid metabolism, lipid localization, and circadian rhythm. While 
lncRNA and protein-coding genes were co-expressed in 53 lncRNA/protein-coding gene pairs, both were 
differentially expressed only in 4 lncRNA/protein-coding gene pairs, none of which included protein-
coding genes in overrepresented pathways. Furthermore, 5-methylcytosine DNA immunoprecipitation 
sequencing and targeted bisulfite sequencing revealed no differential DNA methylation of genes in 
overrepresented pathways. These results suggest lncRNA/protein-coding gene interactions in cis play 
a minor role mediating hepatic expression of lipid metabolism/localization and circadian clock genes in 
response to chronic HFD feeding.

More than 70% of the mammalian genome is transcribed as non-coding RNA (ncRNA) while only 1–2% of the 
mammalian genome is transcribed as protein-coding RNA1–3. NcRNAs can be classified as short and long ncR-
NAs (lncRNAs), which are defined as being shorter or longer than 200 bases, respectively4. According to current 
GENCODE nomenclature, lncRNAs can be further subclassified as: (i) antisense RNAs, which are transcribed 
from the opposite DNA strand of a protein-coding gene with intronic and/or exonic overlap; (ii) long intergenic 
non-coding RNAs (lincRNA); (iii) sense-intronic RNAs originating from an intron of a coding gene on the same 
strand with no exonic overlap; (iv) sense-overlapping RNAs containing in its introns a coding gene on the same 
strand with no exonic overlap; and (v) 3′-overlapping ncRNAs, which are transcribed from the 3′ untranslated 
region (3′ UTR) of a coding gene on the same strand. LncRNAs can be spliced, polyadenylated and capped4. They 
are predominantly located in the cell nucleus and usually expressed at much lower levels than protein-coding 
RNAs. LncRNAs also tend to display a low degree of sequence conservation across species, although lincRNAs 
with strong sequence conservation have been reported5,6. Expression of lncRNAs is cell type-specific and limited 
to specific developmental time windows5,7. LncRNAs can increase or decrease expression of protein-coding tran-
scripts in cis3,5,7 and in trans8, through epigenetic, transcriptional and post-transcriptional mechanisms. LncRNAs 
can interact with histone-modifying protein complexes such as the Trithorax group complex and the Polycomb 
repressive complex 29 or with DNA methyltransferases10,11 to activate or silence genes. Moreover, they can alter 
splicing, editing or stability of protein-coding RNAs12. The importance of lncRNAs in gene regulation is show-
cased in key biological processes such as X-chromosome inactivation in females, imprinting of parental genes, 
regulation of stem cell pluripotency, cell differentiation and proliferation, silencing of tumor suppressor genes, 
DNA damage and cellular stress responses9,12.
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RNA-sequencing (RNA-seq) is a sensitive and versatile genome technology for profiling lncRNA expression. 
RNA-seq is superior in terms of detection, resolution and quantification of very low abundance transcripts com-
pared to oligonucleotide-based microarrays13. Unlike conventional oligonucleotide-based microarrays, RNA-seq 
does not use a pre-defined set of complementary oligonucleotide probes for transcript identification. Instead 
the sequencing reads are reassembled to produce high resolution transcripts under consideration of the most 
recent sequence annotations. Furthermore, RNA-seq allows simultaneous quantification of protein-coding and 
non-coding antisense transcripts originating from complementary DNA strands.

Characterisation of functional diet-induced interactions between lncRNAs and coding genes is of interest for 
identifying novel genomic biomarkers and therapeutic targets for metabolic diseases. Here, we applied RNA-seq 
to explore the possible existence of cis-regulatory interactions of lncRNAs with protein-coding genes in mouse 
livers in response to chronic HFD feeding. Moreover, 5-methylcytosine DNA immunoprecipitation sequencing 
(5meDIP-seq) and targeted bisulfite sequencing (BS-seq) determined DNA methylation of protein-coding genes 
as a possible epigenetic endpoint of cis-acting lncRNA/coding gene interactions.

Figure 1.  Composition of the mouse hepatic transcriptome by total RNA (a) ncRNA (b) short ncRNA (c) 
lncRNA (d) and sense RNA (complementary to antisense RNA) (e). Only RNAs with average expression levels 
>1 CPM were considered for analysis.

Sample
Input read 
pairs

Uniquely mapped 
read pairs

Uniquely mapped 
read pairs (%)

HFD A 64811482 47999627 74.06%

HFD B 75925925 58699825 77.31%

HFD C 66170800 52564490 79.44%

STD A 62155721 47486909 76.40%

STD B 75900043 57932416 76.33%

STD C 55098436 41984291 76.20%

Average 66677068 51111260 76.62%

Average HFD (n = 3 pools) 68969402 53087981 76.94%

Average STD (n = 3 pools) 64384733 49134539 76.31%

Table 1.  RNA-seq alignment statistics. Three pools of 2 livers per diet (HFD A-C; STD A-C) were paired-end 
sequenced on the Illumina platform. Input read pairs passed Illumina’s internal quality control filters. Uniquely 
mapped read pairs are read pairs aligning to a unique site of the mouse genome with less than 2 mismatches.
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Results
Composition of the mouse liver transcriptome.  8-week old C57BL6/J male mice were subjected to 
a STD (n = 6) or cholesterol-rich Western-style HFD (n = 6). After 12 weeks on diet, the animals were eutha-
nised and their livers collected. Directional RNA-seq libraries were generated from 3 pools of 2 mouse livers 
per diet and paired-end sequenced. RNA-seq produced on average 67 million pass-filter read-pairs per library 
(HFD: 68.96 million; STD: 64.4 million) (Table 1). Read-pairs were aligned to the mouse genome by the STAR 
aligner14. On average, 51.1 million (HFD: 53.1 million; STD: 49.1 million) or 76.6% (HFD: 76.94%; STD: 76.31%) 
pass-filter read-pairs mapped to a unique site of the mouse genome with less than 2 mismatches and were used 
for further analysis (Table 1). The aligned read-pairs were run through HTSeq against the mouse mm10 reference 
genome for determination of read-pair counts by genes15. A total of 13365 genes with average expression levels 
across all RNA pools >1 CPM were considered for further analyses (Table S1). These genes consisted of 11993 
protein-coding genes, 765 pseudogenes, and 607 ncRNA genes (Fig. 1a). NcRNA genes comprised 146 short 
ncRNA genes, 343 lncRNA genes, and 118 processed transcripts (Fig. 1b). The number of short ncRNAs is likely 
underestimated because generation of sequencing libraries excluded RNA molecules shorter than 100 nucleo-
tides. Short ncRNA genes comprised 76 small nucleolar RNA (snoRNA) genes, 42 small nuclear RNA (snRNA) 
genes, 10 microRNA (miRNA) genes, 1 ribosomal RNA (rRNA) gene, and 17 miscellaneous RNA (miscRNA) 
genes (Fig. 1c). LncRNA genes comprised 182 lincRNA genes, 151 antisense RNA genes, 9 sense-intronic RNA 

Figure 2.  Differential gene expression analyses by edgeR and validation of expression differences by nCounter® 
technology. (a) Two-way clustering of differentially expressed genes by edgeR separates HFD- from STD-fed 
mouse liver pools. The color code reflects the expression value of a gene given as the log2 of counts per million 
(log2CPM). Only genes with average expression levels across all samples >1 CPM were considered for analysis. 
(b) Correlation analysis of fold-changes determined by edgeR and nCounter® technology for 95 protein-coding 
genes reveals tight concordance (Pearson’s correlation coefficient r = 0.97). (c) Biological processes modulated 
by HFD-induced protein-coding gene expression.
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genes, and 1 sense-overlapping RNA gene (Fig. 1d). Antisense RNA genes overlapped 144 protein-coding genes, 
25 ncRNA genes and 4 pseudogenes (Fig. 1e).

Differential gene expression analysis.  The edgeR bioconductor package16 determined differential 
gene expression. Only genes with average expression levels across all samples >1 CPM were considered for 
analysis. EdgeR yielded 425 differentially expressed genes (DEG) with False Discovery Rate (FDR)-adjusted 
p-values < 0.05 (Table S2). DEG comprised 395 protein-coding genes, 6 lincRNA genes, 7 antisense RNA genes, 
2 processed transcript genes, 13 pseudogenes, and 2 snRNA genes. Hierarchical clustering clearly separated the 
gene expression signatures of HFD and STD livers (Fig. 2a). nCounter® (Nanostring) technology, a digital bar-
coding detection system for multiplexed expression analysis of RNAs17, validated expression of 95 protein-coding 
genes in individual mouse livers (n = 6 per diet). nCounter® technology confirmed edgeR-calculated fold-change 
values for most examined protein-coding genes (Pearsson’s correlation coefficient r = 0.97; Fig. 2b and Table S3).

Virtual deconvolution of hepatic cell type composition.  To exclude that gene expression changes 
were related to differences in hepatic cell type composition, we estimated cell type frequencies by deconvolving 
cell-type specific marker gene expression (Table 2) using the Digital Sorting Algorithm (DSA)18 and the mean-
Profile algorithm in the CellMix1.6 package19. The estimation of cell type frequencies focused on hepatocytes, 
Kupffer cells, and sinusoidal endothelial cells, which represent 52%, 18%, and 22%, respectively, of the number 
of cells in the mouse liver20. Other resident cell populations such as hepatic stellate cells and cholangiocytes were 
not considered for analysis since their contribution to the total hepatic cell number is below 10% at which point 
they cannot be estimated accurately18. Importantly, inflammatory cell infiltrates and fibrosis as factors influencing 
cell type frequencies in HFD livers were excluded by histological analysis, which showed a centrolobular micro- 
and macrovesicular lipidosis (Fig. S1). Both DSA and meanProfile algorithms estimated similar proportions of 
hepatocytes, Kupffer cells and sinusoidal endothelial cells in both STD and HFD livers (Table 2). These results 
suggested similar cell type composition in HFD and STD livers.

Pathway analysis of differentially expressed genes.  We conducted pathway analysis of the 425 DEG 
using DAVID (Database for Annotation, Visualization and Integrated Discovery)21 and the BiNGO add-on appli-
cation to Cytoscape 3.222. DAVID and BiNGO/Cytoscape3.2 mapped 390 and 350 DEG, respectively, to biological 
processes. Both uncovered a significant overrepresentation of DEG in steroid biosynthesis, cholesterol metabo-
lism, fatty acid (FA) metabolism, lipid localization, and circadian rhythm (Table 3).

Steroid biosynthesis and cholesterol metabolism.  DAVID and BiNGO/Cytoscape3.2 mapped 20 and 21 DEG func-
tioning in steroid biosynthesis (GO-ID: 6694), as well as 17 and 22 DEG functioning in cholesterol metabolism 
(GO-ID: 8203) (Table S4). In addition, we identified 6 unmapped DEG functioning in cholesterol metabolism 

Algorithm Cell type STD Mean (%) STD SEM (%) HFD Mean (%) HFD SEM (%) p-value t test

DSA Hepatocytes 49.7 0.3 50.3 0.3 0.23

DSA Kupffer cells 25.2 0.2 24.8 0.2 0.23

DSA Sinusoidal endothelial cells 25.2 0.2 24.8 0.2 0.23

meanProfile Hepatocytes 44.4 0.3 44.2 0.3 0.51

meanProfile Kupffer cells 28.3 0.1 28.4 0.2 0.44

meanProfile Sinusoidal endothelial cells 27.2 0.1 27.2 0.0 0.88

Table 2.  Estimation of hepatic cell type proportions by deconvolution analysis. The Digital Sorting Algorithm 
(DSA) and meanProfile algorithm in the CellMix1.6 package estimated frequencies of hepatocyte, Kupffer cells 
and sinusoidal endothelial cells by deconvolving cell type specific marker gene expression. The p-values are 
from two-sided t tests comparing the estimated frequencies of a given cell type in STD livers versus HFD livers.

Biological Process GO-ID
FDR 
DAVID

FDR BiNGO/
Cytoscape3.2

DEG 
DAVID

DEG BiNGO/
Cytoscape3.2

Steroid biosynthetic process 6694 1.6E-13 6.2E-21 20 21

Cholesterol metabolic process 8203 1.0E-10 1.42E-22 17 22

Fatty acid metabolic process 6631 6.8E-04 3.1E-08 16 17

Lipid localization 10876 5.6E-03 1.3E-05 12 11

Circadian rhythm 7623 6.1E-02 8.01E-04 6 6

Table 3.  Pathway analysis. DAVID and BiNGO/Cytoscape3.2 determined statistical overrepresentation of 
biological processes using the Benjamini-Hochberg method. Only DEG with average expression levels across 
all samples >1 CPM were considered for enrichment analysis. Biological processes are denoted by their official 
gene ontology names. GO-ID refers to the official Gene Ontology Identity Number. FDR DAVID and FDR 
BiNGO/Cytoscape3.2 refer to the False Discovery Rate-adjusted p-value calculated by DAVID and BiNGO/
Cytoscape3.2, respectively. DEG DAVID and DEG BiNGO/Cytoscape3.2 refer to the number of DEG assigned 
by DAVID and BiNGO/Cytoscape3.2, respectively, to a biological process.
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(Table S4). HFD-feeding lowered expression of numerous genes of the cholesterol synthesis pathway. Consistent 
with previous gene expression studies of livers of HFD-fed C57BL/6 mice, the transcript levels of the cholesterol 
synthesis genes Cyp5123–25, Dhcr723–25, Fdft123,26, Fdps23–25,27, Hmgcr23,24, Hmgcs123,24,26, Hsd17b723, Idi124–26, Lss23, 
Mvd23, Mvk23, Msmo123–26, Nsdhl23–27, Pmvk23,24, Sc5d23, Sqle23,24,26,27, and Tm7sf223–25,27 were significantly decreased 
in HFD livers. Since Srebf1 and Srebf2 activate transcription of cholesterol synthesis genes and this activation 
is blocked by excess cholesterol, we scanned these differentially expressed cholesterol synthesis genes for puta-
tive Srebf1 and Srebf2 transcription factor binding sites using the Search Motif Tool in the Eukaryotic Promoter 
Database (EPD)28. Most of these genes contained predicted Srebf1 and Srebf2 binding sites in their promoters, 
−5000 bp to +1000 bp relative to the transcription start site and many of these binding sites were shared between 
Srebf1 and Srebf2 (Table S12). To support these predictions experimentally, we searched for peaks from mouse 
Srebf1 chromatin immunoprecipitation sequencing (ChIP-seq) experiments in the Gene Transcription Regulation 
Database (GTRD)29. We found Srebf1 peaks overlapping the promoters of most differentially expressed cholesterol 
synthesis genes in liver and other tissue samples (Table S12), supporting the notion that these genes have functional 
Srebf1 and Srebf2 binding sites. Further in line with previous studies, HFD-feeding also led to gene expression 
changes promoting hepatocellular cholesterol uptake, namely upregulation of CD3623,25,30 and down-regulation of 
Pcsk924. CD36 encodes a high affinity receptor for the cellular uptake of cholesterylester from high density lipopro-
tein (HDL). Pcsk9 encodes a protein that mediates degradation of the low-density lipoprotein receptor (LDLR). 
Its downregulation in HFD livers is expected to increase hepatic LDLR levels and consequently hepatocellular 
cholesterol uptake as earlier shown in Pcsk9 knockout mice31. Further in line with previous studies, HFD feeding 
also up-regulated transcript levels of the following genes mediating hepatocellular cholesterol efflux, cholesterol 
to bile acid conversion, bile acid detoxification and bile acid excretion: (i) Abca123,25,30 encoding an ATP-binding 
cassette (ABC) transporter for the hepatocellular efflux of cholesterol onto apolipoprotein A 1 (Apoa1) for HDL 
formation; (ii) Cyp7a124 catalyzing a rate-limiting step in the conversion of cholesterol to bile acid; (iii) the nuclear 
receptors Nr1i2 (Pxr) and Nr1i3 (Car)32 driving transcription of bile acid detoxification and excretion genes; iv) 
Cyp3a1124,26,27,32 and Cyp3a25, which mediate bile acid detoxification and whose expression is unregulated by 
Pxr and Car. Further in line with previous studies, HFD-intake decreased expression of Cyp8b125, an enzyme 
of the alternative bile acid synthesis pathway, and increased expression of the steroid hormone synthesis genes 
Hsd3b225,30, Hsd3b325,30 and Hsd17b11. In summary, HFD-feeding decreased expression of cholesterol synthesis 
genes, and increased expression of hepatocellular cholesterol uptake, cholesterol-to-bile acid conversion, bile acid 
detoxification and excretion, and steroid hormone synthesis genes (Fig. 2c).

Fatty acid metabolism.  DAVID and BiNGO/Cytoscape3.2 mapped 16 and 17 DEG functioning in FA metabolism 
(GO-ID: 6631) (Table S4), respectively. In addition, we found 8 unmapped DEG participating in FA metabolism 
(Table S4). As reported in previous studies of livers of HFD-exposed C57BL/6 mice, HFD-feeding stimulated 
expression the FA uptake gene CD3623,25,30, and the intracellular FA transport gene Fabp223–25. In further alignment 
with previous studies, HFD-feeding increased expression of genes involved in FA β-and ω-oxidation: (i) Ehhadh23 
and Acaa1b23 encoding enzymes of the peroxisomal β-oxidation pathway; (ii) Cyp4a1024,26 encoding an enzyme of 
the microsomal ω-oxidation pathway; (iii) Cpt1α24,26 encoding a transport protein for the import of long-chain FAs 
into mitochondria for β-oxidation; (iv) Pparα23,26,33 encoding a nuclear receptor and key transcriptional activator 
of the β-and ω-oxidation pathways; (v) Dio130 encoding an enzyme that activates the prohormone thyroxine (T4) 
to its active form tri-iodothyronine (T3), which in turn stimulates transcription of β-oxidation genes34; (vi) Pex11a 
encoding a membrane elongation factor required for peroxisome biogenesis; (vii) Acot1, Acot2, Acot3, Acot4, and 
Acot11 encoding enzymes that release free FAs from acyl-CoA esters in peroxisomes for their subsequent import 
into mitochondria35. Consistent with earlier reports, HFD-feeding also upregulated several genes mediating tri-
glyceride (TG) synthesis and storage: (i) Srebf123,25,30,33 encoding a key transcription factor driving expression of 
FA and TG synthesis genes; (ii) Scd124,25 encoding a FA desaturase and transcriptional target of Srebf136 that desat-
urates stearic acid to oleic acid for its incorporation into TGs; (iii) Thrsp encoding an activator of FA and TG 
synthesis37, as well as transcriptional target of Srebf138; iv) G0s224,30 encoding an intracellular storage protein for 
TGs39. Moreover, we found putative transcription factor binding sites for Srebf1 in the promoters of Scd1 and Thrsp 
(Table S12), supporting the notion that they are transcriptional targets of Srebf1. As reported earlier, HFD-feeding 
also led to gene expression changes decreasing FA synthesis: (i) downregulation of genes encoding enzymes of 
the FA synthesis pathway, namely Acss223,27, Elovl123 and Elovl324,25; (ii) upregulation of Erbb4 and Nrg4, encoding 
an epidermal growth factor receptor and its agonist, that shut off transcription of FA synthesis genes in liver40. In 
summary, HFD-induced transcriptional gene expression promoted uptake, intracellular transport and oxidation 
of FAs, decreased FA synthesis, and stimulated synthesis and storage of TGs (Fig. 2c).

Lipid localization.  DAVID and BiNGO/Cytoscape3.2 mapped 12 and 11 DEG functioning in lipid localiza-
tion (GO-ID: 10876) (Table S4), respectively. Furthermore, we identified 4 unmapped DEG modulating lipid 
localization (Table S4). HFD-feeding up-regulated CD36, encoding a cholesterol and FA uptake transporter, and 
Fabp2, encoding an intracellular FA transport protein. Consistent with previous studies, HFD-feeding downreg-
ulated genes mediating intracellular cholesterol transport, namely Stard427 and Cav141. Stard4 is a hypothesized 
intracellular cholesterol transport protein containing a cholesterol-binding STAR-related lipid transfer (START) 
domain42. Cav1 transfers newly synthesized cholesterol from the endoplasmic reticulum to plasma mem-
brane invaginations called caveolae, where cholesterol helps anchoring plasma membrane proteins43. Further 
in line with previous studies, HFD-feeding up-regulated Abcg223,25, Abcg523,25,27,44, and Abcg823,25,44. These genes 
encode membrane-associated ABC transporters mediating the biliary excretion of cholesterol and bile acids. 
HFD-feeding also led to previously reported gene expression changes altering reverse cholesterol transport, a 
process, whereby HDL particles move cholesterol in plasma from peripheral tissues to the liver: (i) up-regulation 
of Abca123,25 encoding a membrane transport protein required for the hepatic formation of HDL particles45; (ii) 
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up-regulation of Apoa423,24,27 encoding a secreted protein that facilitates sequestration of cholesterol into HDL 
particles; (iii) down-regulation of Pltp24,25,27 encoding a secreted protein that facilitates loading of cholesterol 
onto HDL in peripheral tissues. Consistent with previous studies, HFD-feeding also upregulated genes encoding 
intracellular lipid storage proteins, namely Cidea27,46, Cidec24,46 and G0s224,30. In summary, HFD-induced gene 
expression promoted cellular uptake of FAs and cholesterol, intracellular FA transport, intracellular TG storage, 
bile acid and cholesterol excretion, and reverse cholesterol transport (Fig. 2c).

Circadian rhythm.  DAVID and BiNGO/Cytoscape3.2 mapped 6 DEG regulating the circadian rhythm (Table S4). 
In addition, we identified 3 unmapped DEG known to control the circadian rhythm (Table S4). Livers in the STD 
and HFD groups were collected at the same time of the day, thus excluding the time of collection as confounding 
factor. Metabolic processes are transcriptionally regulated as 24-hour oscillations of gene expression by clocks 
present in most peripheral tissues. The core of these clocks consists of a set of transcription factors encoded by 
the Clock, Arntl, Period (Per), and Cryptochrome (Cry) genes. Clock and Arntl form a heterodimer that activates 
transcription of the Period and Cryptochrome genes as well as other clock and metabolic genes. When Per and Cry 
proteins accumulate above a threshold level, they block Clock/Arntl transcriptional activity. This negative feed-
back occurs every 24 h resulting in rhythmic expression of core clock genes and metabolic genes. Consistent with 
previous studies of livers of HFD-fed C57BL/6 mice, HFD-feeding down regulated the core clock genes Clock33 
and Arntl24,25,33, and up-regulated the core clock genes Per225,33, and Per325. HFD-feeding also altered expression of 
genes participating in accessory inhibitory feedback loops to the core clock, namely Rev-Erb-α (Nr1d1), Usp2, Ciart 
and Prox1. It down regulated Rev-Erb-α (Nr1d1) and up-regulated Usp2, Ciart and Prox1. While previous studies 
reported the downregulation of Rev-Erb-α (Nr1d1)33 and upregulation of Usp224 in livers of HFD-fed C57BL/6 
mice, the HFD-induced upregulation of Ciart and Prox1 are novel observations. In summary, HFD-feeding altered 
transcriptional regulation of the core circadian clock and its accessory negative feedback loops (Fig. 2c).

Gene symbol
edgeR FC 
(H/S)

edgeR 
FDR

nCounter 
FC (H/S)

nCounter 
p-Value

nCounter targeted 
transcript isoforms

A330076H08Rik 0.02 1.9E-03
0.74 3.29E-01 ENSMUST00000181804

0.45 1.17E-02 ENSMUST00000181187

A530040E14Rik 0.06 6.0E-02

0.39 1.95E-02
ENSMUST00000161666

ENSMUST00000162453

0.29 3.47E-03

ENSMUST00000162353

ENSMUST00000093501

ENSMUST00000161150

AY512915 0.01 2.2E-03

0.39 1.81E-02 ENSMUST00000089303

0.67 1.78E-01 ENSMUST00000159751

0.54 3.85E-02 ENSMUST00000162315

0.55 9.59E-02 all transcript isoforms

Dlx6os1 0.01 1.8E-04 0.39 2.42E-02 ENSMUST00000159827

Gm12002 0.003 3.8E-03
0.38 4.16E-03 ENSMUST00000153794

0.72 7.83E-03 ENSMUST00000174550

Gm13582 0.02 2.1E-04 0.50 5.06E-02 all transcript isoforms

Gm16025 0.06 3.95E-02
0.56 1.67E-02 ENSMUST00000161282

0.81 2.11E-02 all transcript isoforms

Gm16028 0.06 1.5E-02 0.20 7.95E-03 all transcript isoforms

Gm20631 0.06 9.1E-03

0.40 7.51E-03 ENSMUST00000177239

0.39 2.00E-02 ENSMUST00000177268

0.48 1.34E-02 all transcript isoforms

Gm21846 0.04 1.7E-02 0.52 6.53E-03 All transcript isoforms

Wt1os 0.003 3.1E-05
0.67 1.96E-01

ENSMUST00000172701

ENSMUST00000174870

0.42 1.97E-02 ENSMUST00000135153

Gm26870 0.19 1.5E-08 n.d. n.d. n.d.

Gm11399 0.07 6.4E-03 n.d. n.d. n.d.

D230017M19Rik 0.1 2.7E-03 n.d. n.d. n.d.

Table 4.  Diet-induced differential expression of lncRNA genes. Differential expression of lncRNA genes 
was validated by nCounter® technology in individual livers (n = 6/diet). nCounter® probes targeted all or 
specific transcript isoforms of a lncRNA gene. Specifically targeted transcript isoforms are denoted by their 
Ensembl transcript IDs. nCounter® fold-change values were not determined (n.d.) for Gm26870, Gm11399, 
D230017M19Rik due to lack of specific nCounter® probes. FC (H/S) refers to the fold-change (FC) in 
expression in HFD livers (H) relative to STD livers (S). nCounter® p-values were calculated by two-sided t test. 
edgeR FDR refers to the False Discovery Rate-adjusted p-value calculated by edgeR.
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Expression profiling of lncRNA genes.  We ranked hepatic expression of lncRNA genes based on average 
expression levels across all STD and HFD liver RNA pools (Table S5). 343 lncRNAs (182 lincRNAs, 151 antisense 
RNAs, 9 sense-intronic RNAs and 1 sense-overlaping RNA) were expressed at levels >1 CPM. The ten most abun-
dant lncRNAs were Yam1, Malat1, Gm26870, RP23-181K4.2, B430119L08Rik, 1700020I14Rik, Neat1, Kcnq1ot1, 
Gm15564, and Brip1os.

Co-expression analysis of lncRNA and protein-coding genes in cis.  We conducted co-expression 
analyses of lncRNA genes with their nearest flanking or overlapping protein-coding genes. Only lncRNA and 
protein-coding genes with average expression levels across all samples >1 CPM were considered for analysis. 
We found 299 lncRNA/protein-coding gene pairs formed by 283 lncRNA genes and 281 protein-coding genes. 
In 53 lncRNA/protein-coding gene pairs formed by 52 lncRNA genes and 52 protein-coding genes, lncRNA and 
protein-coding genes were co-expressed, as evidenced by the Pearson’s correlation coefficient (critical r value: 
>0.73 or <−0.73 for one-tailed test, n = 6, p < 0.05; Table S6). Co-expressed lncRNA genes comprised lincRNA 
genes (32 or 61.5%), antisense RNA genes (19 or 36.5%) and sense-intronic RNA genes (1 or 2%). LncRNA 
and protein-coding gene expression correlated positively in 69.8% and negatively in 30.2% of all co-expressed 
lncRNA/protein-coding gene pairs (Table S6). LncRNA genes were located up- or downstream of their 
co-expressed protein-coding gene. Furthermore, lncRNA genes overlapped the protein-coding gene promoter 
and body in 58.5% and 41.5% of all co-expressed lncRNA/protein-coding gene pairs, respectively (Table S6). 
We found no overlap of co-expressed lncRNA genes with known mouse enhancers annotated in VISTA47, a 
comprehensive database for highly conserved human and mouse enhancers, suggesting those lncRNA genes may 
not be enhancer derived RNAs (eRNAs). LncRNA genes displayed most frequently lower expression levels than 
their co-expressed protein-coding genes (Table S6). Gene ontology classification by biological processes revealed 
that co-expressed protein-coding genes function in lipid metabolism (Ap2a2, Crot, Hsd17b7, Pecr, Smpd3), cell 
adhesion (Col4a3, Hmcn1, Sorbs2), cell division (Cep83, Kmt2e, Mafg, Nacc2, Rassf1, Seh1l, Sfi1, Sin3a, Smpd3, 
St3gal5), cell migration/movement (Cep83, Sorbs2), apoptosis (Jade1, Sin3a), proteolysis (Adamts9, Hmces, Pcbp2, 
Serpinb6a, Ube4b), endocytosis/exocytosis (Als2, Apa2a, Dnm3, Rapgef4), cellular transport of small molecules, 
lipids and proteins (Als2, Ap2a2, Kif5b, Mup3, Scyl1, Slc1a2, Slc3a2), signal transduction (Als2, Dnm3, Pik3r2, 
Phb2, Rapgef4, Rgs16, Sin3a, Tulp3), chromatin remodeling (C130026I21Rik, Jade1, Nacc2, Kmt2e, Mettl4), RNA 
processing (Dhx15, Ints2, Mettl4), and transcription (Zbtb5, Irf2, Ints2, Jade1, Mrpl12, Mafg, Tulp3, Zfp148, 
Kmt2e, Zfp619, C130026I21Rik) (Table S6).

Diet-responsive lncRNA genes.  EdgeR identified 14 differentially expressed lncRNA genes with aver-
age expression values across all livers >1 CPM (Tables 4 and S3). nCounter® technology confirmed differential 
expression of 11 examined lncRNA genes (Table 4). Expression differences could not be validated for 3 lncRNA 
genes due to unavailability of target-specific genomic nCounter® probes. Fold-change values determined by 
nCounter® technology were smaller than those determined by RNA-seq. This is not surprising because RNA-seq 
tends to overestimate fold-changes of very rare transcripts with low read counts such as lncRNAs.

Diet-responsiveness of co-expressed lncRNA/protein-coding gene pairs.  Only 4 co-expressed 
lncRNA/protein-coding gene pairs were responsive to the diet as reflected by the differential expression of 
both, lncRNA gene and coding gene (Gm26870/Gm10717, Gm11399/Sfi1, A530040E14Rik/C130026I21Rik, 
Gm16025/C130026I21Rik) (Table S7). Co-expressed diet-responsive protein-coding genes had functions in cell 
division (Sfi1), possibly in transcription and chromatin remodeling (C130026I21Rik) or had unknown function 
(Gm10717). Hence, none of the co-expressed diet-responsive protein-coding genes functioned in overrepre-
sented biological processes.

Sample
Number 
of reads

Number of 
alignments

Number of unique 
alignments

Number of unique alignments 
without duplicate reads

HFD A 33550731 31488970 15502775 10051886

HFD B 33370167 31294850 16434763 10894779

HFD C 36995355 34708215 19888168 14948873

STD A 37931887 35475014 19716455 13654052

STD B 39045552 36407892 20167366 14222042

STD C 36576656 34298870 19934085 14208816

Average 36245058 33945635 18607269 12996741

Average HFD (n = 3 pools) 34638751 32497345 17275235 11965179

Average STD (n = 3 pools) 37851365 35393925 19939302 14028303

Table 5.  5meDIP-seq alignment statistics. 5-methylcytosine DNA immunoprecipitates (n = 3 pools of 2 livers/
diet) were single-end sequenced. The number of alignments is the number of reads that aligned with no more 
than 2 mismatches to the mouse genome. The number of unique alignments refers to the number of reads 
that aligned to a unique site of the mouse genome with no more than 2 mismatches. The number of unique 
alignments without duplicate reads is the number of reads that aligned to a unique site of the mouse genome 
with less than 2 mismatches and were not exact duplicates produced by PCR amplification of the sequencing 
libraries. Of these, exactly 10 million reads were used for methylation analysis.
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Genome-wide assessment of DNA methylation by 5meDIP-seq.  We studied diet-induced DNA 
methylation of coding genes as a potential epigenetic endpoint of lncRNA/protein-coding gene interactions. To 
this end, we conducted 5meDIP-seq of the same STD (n = 3) and HFD (n = 3) liver pools used for RNA-seq. 
Methylated DNA was immunoprecipitated with a mouse monoclonal antibody raised against 5-methylcytosine. 

Figure 3.  Heatmap of DNA methylation in STD and HFD livers determined by 5meDIP-seq. (a) K-means clustering of 
154664 methylated regions (y-axis) by peak signal (fragment counts) from −2000 bp to +2000 bp relative to midpoint 
(x-axis). (b) K-means clustering of 16026 CpG islands (y-axis) annotated in the UCSC genome browser by peak signal 
(fragment counts) from −2000 bp to +2000 bp relative to midpoint (x-axis). The color code in (a and b) reflects the number of 
fragments at the specified position. All heatmaps were generated using seqplots and a default cluster size of 5.
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Real-time PCR amplification of known methylated sites in the Zc3h13 and Grik3 genes and one unmethylated site 
in the untranscribed region Untr6 confirmed efficient and specific pulldown of 5-methylcytosine DNA (Fig. S2). 
Sequencing libraries were prepared from the DNA immunoprecpitates and single-end sequenced. The reads were 
aligned to the mouse genome by the Burrows Wheeler Aligner48. On average, 12996741 pass-filter reads (STD: 
14028303; HFD: 11965179) aligned with no more than 2 mismatches to a unique genomic site and were not exact 
duplicates resulting from the PCR amplification of the sequencing library (Table 5). Of these, 10 million reads were 
fed into the SICER algorithm49 for peak detection relative to reads obtained from input (not immunoprecipitated) 
DNA pooled from all the samples. Overlapping peaks across all samples were grouped into “methylated regions”, 
whose margins were defined by the start coordinate of the most upstream peak region and the end coordinate of 
the most downstream peak region across all samples. When a peak was detected only in one sample, that peak 
defined the methylated region. Between 59000 and 97000 methylated regions were detected in each of the six liver 
pools (Table S8), for a total of 154664 detected methylated regions. 36383 methylated regions were shared by all six 
liver pools. Methylated regions were distributed across intergenic sequences (65105 or 42%) and genes (89559 or 
58%) within boundaries of 10 kb from the genes’ first and last exon (Fig. S3a). These intragenic methylated regions 
were located in protein-coding genes, non-coding genes and pseudogenes, mapping foremost to the gene body 
only (59562 or 67%; Fig. S3b). Less frequently, they mapped to the 10 kb upstream region only (9111 or 10%), the 
10 kb downstream region only (8036 or 9%), or combinations of the 10 kb upstream region, gene body, and 10 kb 
downstream region of the same gene, adjacent genes or overlapping genes (12850 or 14%) (Fig. S3b). Finally, 1690 
methylated regions mapped to annotated CpG Islands (CGIs), most of which were intragenic (Fig. S3c).

Analysis of diet-induced DNA methylation by 5meDIP-seq.  We assessed differential DNA methyl-
ation by comparing the average extended read (fragment) counts of corresponding methylated regions in STD 
and HFD livers by the t test, followed by correcting the p-values for multiple testing by the family-wise error rate 
(FWER) and the less stringent false discovery rate (FDR). While we found a number of methylated regions with 
non-adjusted p-values < 0.05, none of them showed significant p-values < 0.05 after FWER correction by the 
Bonferroni, Holm, or Hochberg method or FDR correction by the Benjamini/Hochberg or Benjamini/Yekutieli 
methods (Table S9; Fig. 3). Moreover, methylated regions with non-adjusted p-values < 0.05 showed very weak 
peaks of less than 10 or 20 fragment counts, which are likely to be more variable. We also tested for differen-
tial methylation by evaluating differences in read abundance between corresponding methylated regions using 
DESeq2 (see Methods). This program was originally developed for the analysis of RNA-seq data, but DESeq2 is 
now also used for the differential analysis of ChIP-seq peaks. For example it is used internally in the DiffBind pro-
gram (https://bioconductor.org/packages/release/bioc/html/DiffBind.html) as well as in the ChIP-seq pipelines 
of Genomatix (https://www.genomatix.de/online_help/help_regionminer/ChIPSeqWorkflow.html) and Homer 
(http://homer.ucsd.edu/homer/ngs/peaksReplicates.html). DESeq2 confirmed the absence of differentially meth-
ylated regions with significant FDR-adjusted p-values < 0.1 (Table S9). Therefore, 5meDIP-seq revealed only very 
slight differences in DNA methylation between STD and HFD livers and these were not significant with the 
statistical methods applied.

Analysis of diet-induced DNA methylation by targeted BS-seq.  To validate the assessment of 
differential DNA methylation by 5meDIP-seq, we bisulfite-sequenced 10 methylated regions mapping to the 
Apoa4, Cidec, Ddit4, Dio2, Ehhadh, Lpin2, Mvd, Per2, Tank, and Wwc1 genes (Table S10). These methylated 
regions were selected for analysis because some of them were potentially weakly differentially methylated by 
5meDIP-seq (non-adjusted p-values < 0.05; Table S9) and the respective protein-coding genes (Apoa4, Cidec, 
Mvd, Per2) were differentially expressed and functioned in one of the overrepresented pathways. BS-seq was 
performed in the same liver pools (n = 3/diet) used for RNA-seq and 5meDIP-seq. Each methylated region con-
tained between 4 and 16 CpG sites (Table S10). For BS-seq, the genomic DNA was first treated with bisulfite to 
convert non-methylated cytosine to uracil. Methylated regions were then PCR-amplified. The PCR products were 
concatamerized, fragmented by sonication and single-end sequenced. Reads were aligned to the mouse reference 
genome using the Bismark alignment program (v 0.7.7)50. Between 5–6 million reads were analyzed per sample. 
The alignment coverage for each CpG site varied moderately but was much over 1000 in all liver pools (Table S10). 
Most methylated regions showed strong CpG site methylation in all liver pools (Table S10). STD and HFD liver 
pools displayed no differences in CpG site methylation in 9 of the 10 sequenced methylated regions (Table S10), 
consistent with lack of significant adjusted p-values for differences in DNA methylation by 5meDIP-seq. However, 
one methylated region in the Wwc1 gene showed a trend for decreased CpG site methylation in HFD livers. Very 
low non-CpG site methylation (<1%) was observed in several methylated regions (Table S11). This is expected, 
as these C-residues are usually not methylated in mammalian cells. In summary, BS-seq confirmed the absence of 
diet-induced DNA methylation in 9 of 10 examined methylated regions.

Discussion
Exposure of C57BL6/J mice to a 12-week Western-style HFD altered hepatic expression of 395 protein-coding 
genes, which were statistically overrepresented for functions in steroid and cholesterol metabolism, FA metabo-
lism, lipid localization, and circadian rhythm. Deconvolution analysis of cell-type specific marker gene expression 
revealed no substantial differences in cell type composition between STD and HFD livers, suggesting that differ-
ences in gene expression were not primarily due to differences in cell type composition.

The majority of gene expression changes were enriched for functions in steroid and cholesterol metab-
olism. This is expected from the supplementation of cholesterol in the HFD. HFD-feeding repressed expres-
sion of numerous cholesterol synthesis genes and increased expression of genes mediating cholesterol uptake, 
cholesterol-to-bile acid conversion, bile acid detoxification and biliary excretion of cholesterol and bile acids. 

https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://www.genomatix.de/online_help/help_regionminer/ChIPSeqWorkflow.html
http://homer.ucsd.edu/homer/ngs/peaksReplicates.html
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HFD-feeding also led to gene expression changes enhancing reverse cholesterol transport. The repression of cho-
lesterol synthesis genes can be explained by hepatocyte accumulation of cholesterol and subsequent feedback 
inhibition of Srebf1 and Srebf2, two key transcription factors driving expression of cholesterol synthesis genes. 
In support of this notion, our bioinformatics search for transcription factor binding sites and peaks from pre-
vious ChIP-seq experiments indicated the presence of putative Srebf1 and Srebf2 binding sites in the promoters 
of most differentially expressed cholesterol synthesis genes. Repression of cholesterol synthesis genes may also 
be explained by ligand-activation of the nuclear receptor Lxr-α by cholesterol metabolites, so-called oxyster-
ols. In turn, Lxr-α represses transcription of the cholesterol synthesis genes Cyp5151, Fdft151, Hmgcs52, Hmgcr52. 
Furthermore, Lxr-α is known to drive transcription of the cholesterol efflux transporter gene Abca153 and the 
cholesterol and bile acid excretion genes Abcg554 and Abcg854. Hence, its activation may also account for hepatic 
up-regulation of cholesterol efflux and excretion genes in response to chronic cholesterol feeding.

The second and third most frequent diet-induced expression changes regarded genes functioning in FA metab-
olism and lipid localization, respectively. Genes mediating the uptake, intracellular transport and β-oxidation of 
FAs, as well as the synthesis and storage of TGs were upregulated while FA synthesis genes were downregulated. 
Moreover, genes mediating cellular uptake of cholesterol, biliary excretion of cholesterol and bile acids, and for-
mation of HDL particles for reverse cholesterol transport were upregulated.

Finally the fourth most frequent diet-induced expression changes concerned genes regulating the circadian 
clock. HFD altered expression of core clock genes and genes participating in negative feedback loops to the core 
clock. The manner whereby HFD-feeding alters the liver core clock, in terms of amplitude or phase of circadian 
expression of clock genes and clock-controlled metabolic genes, remains to be clarified. Diet-induced dysregu-
lation of the liver circadian clock may contribute to diet-induced expression changes of lipid metabolism genes. 
Indeed, a HFD was found to increase the circadian mRNA amplitudes of Pparα and Pparγ33 or shift the phase of 
the circadian mRNA oscillations of Srebf133. In addition, it is conceivable that HFD feeding might have altered 
circadian behavior and feeding patterns of mice to impact circadian gene expression in liver.

RNA-seq detected hepatic expression of 343 lncRNA genes expressed at levels >1 CPM. Of these, 14 lncRNA 
genes of yet unknown function were differentially expressed in response to HFD feeding. Co-expression analyses 
suggested cis-regulatory interactions for 53 lncRNA/protein-coding gene pairs at an expression cut-off >1 CPM. 
Of the above 14 diet-responsive lncRNA genes only 4 were co-expressed with adjacent or overlapping differ-
entially expressed protein-coding genes none of which had biological functions in overrepresented pathways. 
Hence, in mouse liver, transcription of lncRNA genes is not linked to transcription of adjacent or overlapping 
lipid metabolism, lipid localization and circadian clock genes in response to HFD feeding.

This modest number of diet-responsive co-expressed lncRNA/protein-coding gene pairs may be explained by 
the low number or fraction of differentially expressed potein-coding genes (100 of 395; 25.3%) that are flanked or 
overlapped by annotated lncRNA genes. In addition, the vast majority of these flanking or overlapping lncRNA 
genes (132 of 144; 92%) were not expressed at all or expressed at extremely low levels below the expression cut-off 
of 1 CPM. And only 12 lncRNA genes were expressed above this threshold and available for co-expression analy-
sis. It is possible that non-expressed or extremely rare lncRNAs are transcribed during liver development or in a 
subset of specific cell types55, and thus escape detection. More sensitive and complex RNA-seq technologies and 
data analyses to detect diet-responsive lncRNA/protein-coding gene interactions may clarify these considerations. 
These include RNA-seq of specific cell type populations; RNA-seq of the nuclear or the chromatin-associated 
RNA fractions; computational discovery of non-annotated lncRNAs through de novo re-assembly of the mouse 
hepatic transcriptome; and analysis of alternative non-linear lncRNA/protein-coding gene interactions.

5meDIP-seq revealed no differential DNA methylation of differentially expressed genes. Moreover, targeted 
BS-seq confirmed the vast absence of diet-induced differential DNA methylation in 9 of 10 examined methylated 
gene regions. These results contrast with previous studies reporting differentially methylated genes in rodent56–58 
and human59,60 fatty livers. The reasons for these contrasting study outcomes remain to be clarified. They may 
relate to differences in the micro- or macronutrient composition of the diets, as well as to diet-induced differences 
in hepatic cell type composition, species-specific genetic background, or genome technologies used for profil-
ing DNA methylation. We cannot exclude that diet-induced DNA methylation occurs in a subset of cell types 
and might have escaped detection. Therefore, future studies should readdress the occurrence of diet-induced 
DNA methylation in specific cell type populations. Ideally this would be done at single base resolution by whole 
genome BS-seq, which would likely provide more detailed information than 5meDIP-seq. However, for mamma-
lian systems, BS-seq currently requires a lot more sequencing and data analysis to make it a feasible and affordable 
alternative to 5meDIP-seq.

Methods
Ethics Statement.  Care of mice and animal procedures were carried out with the approval of the 
Institutional Animal Care and Use Committee of the University of Miami and in accordance with the relevant 
guidelines and regulations.

Animals
Animals used throughout the study were males of the C57BL6/J mouse strain (RRID:IMSR_JAX:000664, Jackson 
Laboratories, Bar Harbor, Maine). 6-week old males were group-housed in cages of 4 animals prior to the start 
of the study at the age of 8 weeks when they were single housed with environmental enrichment until the end of 
the study. All mice were housed in a pathogen-free barrier animal facility and kept in a temperature- (22 ± 0.5 °C) 
and humidity- (50%) controlled animal room on a 12-hour light/dark schedule with light on at 0700 h and free 
access to food and water.



www.nature.com/scientificreports/

1 1ScIentIFIc REPortS |  (2018) 8:11537  | DOI:10.1038/s41598-018-29993-4

Diets.  C57BL/6J male mice were fed a STD with a metabolizable energy density of 3.1 kcal/g derived from 24% 
kcal protein, 60% kcal carbohydrates, and 16% kcal fat (2020x, Teklad Diets, Harlan, Madison, WI, USA). At the 
age of 8 weeks, a subset of the animals was subjected to a HFD with a metabolizable energy density of 4.7 kcal/g 
derived from 17% kcal protein, 43% kcal carbohydrates, and 41% kcal fat, containing 0.21% (w/w) Cholesterol for 
12 weeks (Western Diet, Research Diets Inc., New Brunswick, NJ, USA).

Tissue harvesting.  At the end of the 12-week STD or HFD, non-fasted animals were sacrificed in the morn-
ing between the hours of 0900 and 1200. Livers were immediately collected, frozen on dry ice and stored at −80 C 
until further use.

RNA extractions.  Equal amounts of frozen liver samples (30 mg) were homogenized in lysis buffer at 
room temperature for 4 minutes using a ball mixer mill (Retsch, Germany). Total RNA was immediately 
column-purified and DNAse digested using the RNeasy kit (Qiagen, USA). The Agilent 2100 Bioanalyzer system 
(Agilent, California, USA) yielded RNA integrity numbers between 7.4 and 9.5, thus confirming high-level integ-
rity of all liver RNA extracts.

RNA sequencing.  3 pools of 2 mouse livers in the STD and HFD groups were RNA sequenced. A directional 
RNA-seq library was generated for each RNA pool using the ScriptSeq™ v2 RNA-Seq Library Preparation Kit 
(Epicentre, Wisconsin, USA). RNA-seq libraries were paired-end sequenced on Illumina’s HiSeq2000 sequencer. 
The read length was 99 bp. Pass-filter read-pairs were aligned to the mouse reference mm10 genome using the 
STAR aligner14. Only read-pairs aligning to a unique site of the genome with less than 2 mismatches were used for 
analyses. The aligned read-pairs were run through HTSeq (RRID:SCR_005514; http://www-huber.embl.de/users/
anders/HTSeq/) for determination of read-pair counts by genes under consideration of strand-specificity against 
the GENCODE reference gtf file vM4 for the mouse mm10 genome15. Expression of a gene was normalized by 
dividing the number of read-pairs mapped to its exons by the number of all read-pairs mapped to the genome. 
The resulting value was expressed in counts per million (CPM). Expression of individual alternative transcript 
isoforms was not assessed. After genes had been quantified by HTSeq, the data was run through the differen-
tial expression calculator edgeR (RRID:SCR_012802; http://www.bioconductor.org/packages/release/bioc/html/
edgeR.html)16. EdgeR uses an overdispersed Poisson model to account for both biological and technical variabil-
ity, as well as Empirical Bayes methods to moderate the degree of overdispersion across transcripts, improving the 
reliability of inference. A False discovery rate (FDR) threshold <0.05 prioritized genes of interest. For two-way 
clustering, dendrogram and heatmap generation, the default parameters of the heatmap.2 function within the 
R package gplots v2.16.0 (http://cran.rproject.org/web/packages/gplots/index.html) was used. Gene ontology 
and pathway analyses were conducted using DAVID (Database for Annotation Visualization and Integrated 
Discovery, RRID:SCR_003033; http://david.abcc.ncifcrf.gov/)21 and the BiNGO (BiNGO: A Biological Networks 
Gene Ontology tool, RRID:SCR_005736; http://www.psb.ugent.be/cbd/papers/BiNGO/Home.html) add-on 
application to Cytoscape 3.2 (RRID:SCR_003032; http://cytoscape.org)22. Cell type frequencies in liver were 
calculated in R using the Digital Sorting Algorithm (DSA)18 and meanProfile algorithm within the CellMix1.6 
package19 by deconvolving expression of the following cell-type specific marker genes: a) hepatocytes: Baat, Hpx, 
Apoa5, Itih1, F12; b) Kupffer cells: Mrc1, Fcgrt, Vsig4; c) sinusoidal endothelial cells: Clec4g, Stab2, Flt1.

nCounter® digital gene expression measurement.  The nCounter® analysis system (NanoString 
Technologies, Seattle, WA, USA) is a liquid phase direct hybridization technology for detection of target RNAs 
using color-coded barcodes attached to target-specific probes and allowing multiplexed expression analysis of 
target RNAs17. Assayed mouse livers were the same ones used for RNA-seq. Total RNA was extracted from indi-
vidual mouse livers, analyzed on an Agilent BioAnalyzer and showed RNA integrity numbers ranging from 7.4 to 
9.5. Total RNA was assayed following the manufacturers standard gene expression assay protocol. 100 ng and 1 μg 
of total RNA were used for determination of mRNA and lncRNA levels, respectively. 12 housekeeping genes were 
assayed simultaneously for normalizing transcript counts. Transcript counts were calculated using the nSolver 
Analysis Software 1.1 (RRID:SCR_003420; http://www.nanostring.com/products/nSolver).

5-methylcytosine DNA immunoprecipitation sequencing.  5meDIP-seq was conducted by Active 
Motif (Carlsbad, CA, USA; RRID:SCR_013589). 3 pools of 2 mouse livers in the STD and HFD groups were sub-
jected to 5meDIP-seq. Liver pools were the same used for RNA-seq. DNA was extracted from the liver pieces 
by digestion with proteinase K, extractions with phenol-chloroform (2:1) and chloroform, followed by eth-
anol precipitation in the presence of 2 M NH4Ac. The ethanol precipitated DNA was resuspended in TE (Tris 
10 mM, pH 8, EDTA 1 mM) and digested with RNAse A, followed by organic extraction and ethanol pre-
cipitation as described above. DNA was sonicated using a Misonix Sonicator 300 equipped with a microtop. 
Illumina PE adaptors61 were added to 5 μg of sonicated DNA essentially following the protocol described by 
Lister et al.62. Adapter-ligated DNA was immunoprecipitated using a mouse monoclonal antibody against 
5-methylcytosine (5meC) (Clone 33D3, Active Motif, Carlsbad, CA, USA) following the protocol outlined 
in the Active Motif MeDIP kit (Active Motif, Catalog No. 55009). This antibody shows no cross-reactivity 
with 5-hydroxymethylcytosine as determined by Active Motif. Specific pulldown of 5meC DNA was con-
firmed by real-time PCR using primers to known methylated sites in the Zc3h13 and Grik3 genes and to one 
unmethylated site in an untranscribed region called “Untr6”. The primer sequences were as follows: Grik3-A, 
ATGGTCTTGGGGGAACAGTA; Grik3-B, CAATTCCTCGGGCTCATAAA; Zc3h13-A, AGGAAGAAGCC 
CGCAGTTAT; Zc3h13-B, CAGGCAGTTCTGGACCTCTC; Untr6-A, AATACCAATGTCCACCCTCTG; 
Untr6-B CAACATCCACACGTCCAGTG. Deep sequencing libraries were generated from the DNA immunopre-
cipitates and input DNA by the standard consecutive enzymatic steps of end-polishing, dA-addition, and adaptor 
ligation. After a final PCR amplification step using barcoded primers, the resulting DNA libraries were quantified 

http://www-huber.embl.de/users/anders/HTSeq/
http://www-huber.embl.de/users/anders/HTSeq/
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://david.abcc.ncifcrf.gov/
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http://cytoscape.org
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and sequenced on Illumina’s Hi-Seq2000. Pass-filter 50-nt sequence reads were mapped to the mouse mm9 ref-
erence genome using the Burrows Wheeler Aligner (BWA, RRID:SCR_010910; http://bio-bwa.sourceforge.net/) 
with default settings. Only reads that aligned with no more than 2 mismatches, mapped to a unique genomic site, 
and were not exact duplicates and thus the result of the PCR library amplification during library production were 
used for subsequent analyses. Exactly 10 million sequence reads were used for further analyses. Since the sequence 
reads represented the 5′-ends of the IP-fragments, the reads were extended in silico using proprietary software from 
Active Motif at their 3′-ends to a length of 150 bp to match the fragment length of the library. The genome was 
divided into 32-nt bins and the number of fragments in each bin was determined. The resulting metric (“fragment 
density”) was used for the peak metrics in Table S9 (columns G-L, Count Avg Val; and columns T-Y, Count Peak 
Val) in the Supplemental data as well as for the heatmaps shown in Fig. 3. SICER (RRID:SCR_010843; http://home.
gwu.edu/~wpeng/Software.htm)49 detected local enrichments in aligned reads (“peaks”) in individual 5meDIP 
samples relative to input control DNA pooled from all samples as a reference at a significance threshold of FDR 
1E-10, window size of 200 bp, gap size of 0 bp, and fragment size of 150 bp. To account for differences in the loca-
tions and lengths of the peaks, overlapping peaks were grouped into methylated regions, which were defined by the 
start coordinate of the most upstream peak and the end coordinate of the most downstream peak across all samples, 
using a proprietary script by Active Motif. In locations, where only one sample had a peak, that peak defined the 
methylated region. After defining the methylated regions, their nearest or overlapping CpG islands, promoters and 
genes were determined. Differences in DNA methylation between STD and HFD groups were determined by com-
paring average fragment counts of corresponding methylated regions by t test. P-values were corrected for multiple 
testing by the family-wise error rate (FWER) using the Bonferroni, Holm, or Hochberg method and by the false 
discovery rate (FDR) using the Benjamini/Hochberg or Benjamini/Yekutieli methods. Differences in DNA meth-
ylation between STD and HFD groups were also determined using the DESeq2 software63. Even though this pro-
gram was originally developed for the differential analysis of RNA-seq data, it is now also used for the differential 
analysis of ChIP-seq data and related assays that involve peak finding: the DiffBind program (https://bioconductor.
org/packages/release/bioc/html/DiffBind.html) uses the DESeq2 algorithm internally, and the ChIP-Seq pipelines 
of Genomatix (https://www.genomatix.de/online_help/help_regionminer/ChIPSeqWorkflow.html) and Homer 
(http://homer.ucsd.edu/homer/ngs/peaksReplicates.html) use DESeq2. The first step of this differential analysis 
extracts the read counts for all SICER-defined methylated regions (see above) from the unnormalized BAM files of 
the 6 samples. PCR duplicates and multi-mapping reads are excluded from the counts as in our standard analysis 
described above. DESeq2 then normalizes the counts and calculates p-values and adjusted p-values (FDR). The 
default threshold for the identification of significantly differential regions is FDR = 0.1 For the heatmaps shown in 
Fig. 3, the fragment densities across the 154664 methylated regions and at 16026 CpG islands were clustered by the 
K-means of their fragment counts from −2000 bp to +2000 bp relative to midpoint. K-means clusters and heat-
maps of methylated regions and CpG islands were generated using the Bioconductor R package “seqplots” (http://
przemol.github.io/seqplots) and a cluster default size of 5.

Bisulfite sequencing.  BS-seq was carried out by Active Motif (Carlsbad, CA, USA; RRID:SCR_013589). 
BS-seq determined CpG site methylation of 10 selected methylated regions in the same liver pools used for 
RNA-seq and 5meDIP-seq. PCR primers to the target regions were designed with the MethPrimer program 
(RRID:SCR_010269; http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi) to the plus strand64. 
Genomic DNA was bisulfite-converted using the EZ DNA Methylation-Gold kit (Zymo Research, Irvine, CA, 
USA, D5005). Target regions were amplified by PCR from the bisulfite-treated DNA using Invitrogen Supermix 
(ThermoFisher Scientific, Waltham, MA, USA, 10572–014). Equal amounts of the 10 PCR products were con-
catemerized with T4 DNA ligase (New England Biolabs, Ipswich, MA, USA, M0202), sonicated to an average 
fragment length of 150–300 bp, processed into standard, barcoded Illumina sequencing libraries and single-end 
sequenced on Illuminas HiSeq2500 sequencer. 50-nt reads were analyzed using the Bismark alignment program 
(v 0.7.7) (RRID:SCR_005604; http://www.bioinformatics.babraham.ac.uk/projects/bismark/)50. A set of chro-
mosomes in the mouse reference genome mm9 containing the target regions was used as reference sequence. 
Between 5–6 million pass-filter reads were analyzed per sample. Differences in CpG site methylation percentages 
were assessed by two-tailed, unpaired t test and two-tailed Mann-Whitney test using Prism 5 (GraphPad Software 
Inc., La Jolla, CA, USA). A p-value < 0.05 was considered significant.

Search for putative Srebf1 and Srebf2 transcription factor binding sites.  We scanned the promot-
ers of differentially expressed genes mediating cholesterol, fatty acid and triglyceride synthesis for Srebf11 and 
Srebf2 binding sites using the Eukaryotic Promoter Database (EPD; https://epd.vital-it.ch/)28. The EPD contains 
an annotated collection of eukaryotic POL II promoters, for which the transcription start site has been deter-
mined experimentally. It provides a search tool for transcription factor motifs contained in the JASPAR Core 2018 
Vertebrates library. From the application’s main website we input a single mouse gene and then selected Srebf1 and 
Srebf2 in the Search Motif Tool to scan for putative binding sites −5000 bp to +1000 bp from the transcription start 
site (TSS) and at a cutoff p-value of 0.001. The search engine returned the 5′-end nucleotide position of the hits 
relative to the TSS with negative values indicating a position upstream of the TSS and positive values indicating a 
position downstream of the TSS. We then downloaded the promoter nucleotide sequence using the EPD Sequence 
Retrieval Tool and manually retrieved the binding motifs shown in Table S12, assuming a binding motif length 
of 10 nucleotides. Furthermore, to obtain experimental evidence for the presence of transcription factor binding 
sites, we studied the locations of peaks from previous ChIP-seq experiments in the Gene Transcription Regulation 
Database (GTRD; http://gtrd.biouml.org)29. GTRD is a database of transcription factor binding sites identified by 
ChIP-seq experiments for human and mouse. In GTRD, raw ChIP-seq data obtained from ENCODE and SRA were 
aligned and peaks called by different peak callers (MACS, SISSRs, GEM and PICS). We retrieved ChIP-seq peaks 
for mouse Srebf1 by going to the Advanced Search subsection called “Binding sites near the specified gene” and 

http://bio-bwa.sourceforge.net/
https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://www.genomatix.de/online_help/help_regionminer/ChIPSeqWorkflow.html
http://homer.ucsd.edu/homer/ngs/peaksReplicates.html
http://przemol.github.io/seqplots
http://przemol.github.io/seqplots
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
http://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://epd.vital-it.ch/
http://gtrd.biouml.org
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manually inputting the organism, gene symbol and the transcription factor of interest (1.2.6.3.1 Srebf1). ChIP-seq 
data for mouse Srebf2 was not available in GTRD. The available options for cell line and treatment were left at “any”. 
We changed the data set tab to the peak caller of interest (MACS, SISSRs, GEM or PICS). The maximum gene dis-
tance was set to 5000. The browser was selected as output type to visually inspect the location of the peaks relative 
to promoters and gene body regions. By clicking on the individual bars representing the peaks, we retrieved the 
chromosomal coordinates in the mouse mm10 (GRCm38) genome as well as the tissue and cell type for that peak. 
This information was extracted for all the peaks. Peaks that are bolded in Table S12 relate to the liver sample.

Availability of supporting data.  The BAM files supporting the RNA-seq results are available in the Sequence 
Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under the accession number SRP070184. The FASTQ files 
supporting the 5-meDIP-seq results are available in the SRA under the accession number SRP070617. The FASTQ 
files supporting the BS-seq results are available in the SRA under the accession number SRP071182. Please note for 
all supporting data: HFD A-C are referred to as Obese A-C and STD A-C are referred to as Lean A-C.
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