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Development/Plasticity/Repair

Perinatal Exposure to an Environmentally Relevant Mixture
of Phthalates Results in a Lower Number of Neurons and
Synapses in the Medial Prefrontal Cortex and Decreased
Cognitive Flexibility in Adult Male and Female Rats

Daniel G. Kougias,”> “VElli P. Sellinger,> “Jari Willing,' and Janice M. Juraska'>

Department of Psychology and 2Neuroscience Program, University of Illinois, Champaign, Illinois 61820

The growth and organization of the developing brain are known to be influenced by hormones, but little is known about whether
disruption of hormones affects cortical regions, such as mPFC. This region is particularly important given its involvement in executive
functions and implication in the pathology of many neuropsychiatric disorders. Here, we examine the long-term effects of perinatal
exposure to endocrine-disrupting compounds, the phthalates, on the mPFC and associated behavior. This investigation is pertinent as
humans are ubiquitously exposed to phthalates through a variety of consumer products and phthalates can readily cross the placenta and
be delivered to offspring via lactation. Pregnant dams orally consumed an environmentally relevant mixture of phthalates at 0, 200, or
1000 ug/kg/d through pregnancy and for 10 d while lactating. As adults, offspring were tested in an attentional set-shifting task, which
assesses cognitive flexibility. Brains were also examined in adulthood for stereological quantification of the number of neurons, glia, and
synapses within the mPFC. We found that, independent of sex, perinatal phthalate exposure at either dose resulted in a reduction in
neuron number, synapse number, and size of the mPFC and a deficit in cognitive flexibility. Interestingly, the number of synapses was
correlated with cognitive flexibility, such that rats with fewer synapses were less cognitively flexible than those with more synapses. These
results demonstrate that perinatal phthalate exposure can have long-term effects on the cortex and behavior of both male and female rats.
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Humans globally are exposed on a daily basis to a variety of phthalates, which are endocrine-disrupting chemicals. The effects of
phthalate exposure on the developing brain, especially on cognitively relevant regions, such as the mPFC, are not known. Here, we
use a rat model of human prenatal exposure to an environmentally relevant mixture of phthalates and find that there is an
appreciable reduction in neuron number, synapse number, and size of the mPFC and a deficit in cognitive flexibility. These results
may have serious implications for humans given that the mPFC is involved in executive functions and is implicated in the
pathology of many neuropsychiatric disorders. /

ignificance Statement

role during perinatal development in regulating apoptosis (Nu-
fiez et al., 2000; Forger, 2009) and synaptic number (Nishizuka
and Arai, 1981; Pérez et al., 1990; Simerly, 2002). Although much
of this work has focused on subcortical regions where sex hor-
mone receptors are particularly abundant, it is known that these
receptors are also present during development in other brains

Introduction
The growth and organization of the developing brain are influ-
enced by hormones. Indeed, gonadal hormones play a critical
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areas, including the cerebral cortex (Pérez et al., 2003; Westberry
and Wilson, 2012; Tsai et al., 2015).

Because hormones can impact the developing brain, there is a
growing scientific concern regarding the influence of environ-
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mental endocrine-disrupting chemicals on neurodevelopment.
One such class of chemicals, known as phthalates, is problematic
because of their ubiquitous environmental presence. Phthalates,
which are often found to be antiandrogenic (Howdeshell et al.,
2017), are used as plasticizers in a variety of consumer goods,
including plastics, personal care products, fragranced products,
pharmaceuticals, clothing, and building materials. Because phtha-
lates are not covalently bound within the matrices of products, they
can freely migrate or evaporate out into the environment. Conse-
quently, contact with these products can lead to exposure through
transdermal uptake, incidental ingestion, and inhalation. Indeed,
diet is presumed to be the main source of exposure to many phtha-
lates due to contamination during production, processing, and
packaging of foods (Heudorf et al., 2007).

Considering that phthalates can readily cross the placenta
(Mose et al., 2007) and be delivered to offspring via lactation
(Lyche et al., 2009), the perinatal period appears to be a particu-
larly vulnerable window to their endocrine-disrupting effects.
Indeed, there is indirect evidence that prenatal phthalate expo-
sure, as measured by maternal urinary metabolites, has effects on
the developing human brain as exposure has been associated with
adverse neurodevelopmental outcomes (Ejaredar et al., 2015). In
particular, there are several studies indicating that prenatal
phthalate exposure may negatively influence children’s behavior,
executive function, and incidence of neuropsychiatric disorders
(Engel et al., 2010; Swan et al., 2010; Kobrosly et al., 2014; Lien et
al., 2015; Jeddi et al., 2016). Although one study found that con-
current phthalate exposure was negatively correlated with corti-
cal thickness in the right middle and superior temporal gyri of
children (Park et al., 2015), there is little understanding of poten-
tial cellular effects on the developing cortex.

Rodent research on perinatal exposure to a single phthalate has
found impairments in water maze performance (e.g., Dai et al.,
2015), contextual fear conditioning (DeBartolo et al., 2016), and
structural and functional plasticity of the hippocampus (Holahan
and Smith, 2015), but no study to date has examined the effect of
perinatal phthalate exposure on executive function or the cortex in
adulthood. Furthermore, much of the rodent research focuses on
exposure to a single phthalate, whereas humans are exposed to
many. Thus, further investigation using an environmentally relevant
mixture of phthalates is necessary to explore the outcomes of peri-
natal exposure on executive function and the cortex.

In this study, we use a rat model of human prenatal exposure
to investigate the long-lasting effects of an environmentally rele-
vant mixture of phthalates on cognitive flexibility and mPFC
neuroanatomy. In particular, cognitive flexibility, which relies on
the mPFC (Gruber et al., 2010), was assessed in adulthood using
an attentional set-shifting task. Our neuroanatomical investiga-
tion focused on the total number of neurons, glia, and synapses
within the adult mPFC. The mPFC is also of special interest given
its implication in the pathology of many neuropsychiatric disor-
ders, some of which have been positively associated with prenatal
phthalate exposure (Ejaredar et al., 2015).

Materials and Methods

Subjects

The animals used in this study and the rearing of litters have been previ-
ously described (Kougias et al., 2018). Male (n = 32) and female (n = 32)
Long—Evans hooded rats at ~3 months of age were obtained from Harlan
Laboratories (now Envigo) and housed for a minimum of 2 weeks before
being paired for breeding in five cohorts, each of which contained all of
the experimental groups. Rats were housed in same-sex pairs on a 12 h
light/dark cycle with food and water available ad libitum. To reduce
exposure to endocrine-disrupting chemicals, all rats were housed in bis-
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phenol A-free polysulfone cages, fed a low phytoestrogen food (Harlan
2020X; Teklad Diets), and hydrated with reverse osmosis-filtered water
in glass bottles. All procedures were approved by the University of Illinois
Institutional Care and Use Committee and adhere to the National Insti-
tute of Health guidelines on the ethical use of animals.

For breeding, opposite sex pairs were placed in suspended wire-
bottom cages and inspected daily for sperm plugs, which marked gesta-
tional day (GD) 0. The dams were then housed individually, fed a control
diet (D10012G) obtained from Research Diets, and assigned to one of
three exposure groups (n = 11, 9, 11, respectively): 0, 200, or 1000 ug
phthalates/kg body weight. On the day of birth, designated as postnatal
day (P) 0, litters were not disturbed; however, litters were culled to 10
pups each on P1 to control for litter size and sex ratio. The control diet
was replaced with the 2020X feed on P10. Only one pup from each sex
within a litter was used for each endpoint (i.e., one male and female
within a litter was used for cognitive behavior testing and another male
and female from the same litter for neuroanatomical measurements).

On GDO0and GD1, the dams were given halfa cookie (Newman’s Own,
organic alphabet cookie, vanilla flavor) with tocopherol-stripped corn oil
pipetted onto it for acclimatization. Starting on GD2 through P10, dams
immediately and completely consumed half a cookie overlaid with the
daily dose of phthalate mixture at their corresponding concentration, as
phthalate exposure can occur through both placental transfer and lacta-
tion in rats (Dostal et al., 1987). To avoid direct exposure to pups, the
cookie was given to the dams while away from the nest. This method of
oral administration is presumably not stressful and is similar to the major
route of human exposure to phthalates. Pups were weaned on P25 and
pair-housed with similarly aged animals of the same sex and exposure.

Phthalate mixture

The phthalate mixture was identical to that used by Kougias et al. (2018)
The phthalate mixture was derived by back-calculating exposures based
on the urinary metabolites of pregnant women in the Champaign-
Urbana community (unpublished data), which approximates the U.S.
population levels (Corbasson et al., 2016). The phthalate mixture was
comprised of 35% diethyl (DEP), 21% bis(2-ethylhexyl) (DEHP), 15%
dibutyl (DBP), 15% di-isononyl (DiNP), 8% di-isobutyl (DiBP), and 5%
benzyl butyl (BBP) phthalate. The mixture was prepared by suspending
0, 0.6, or 3 mg phthalates/ml tocopherol-stripped corn oil to ensure
equivalent volume (1 ul/3 g body weight) in administering the respective
0 (control), 200, or 1000 ug phthalates/kg doses. These doses are rela-
tively low within the rodent literature; and based on the body surface area
normalization method (Reagan-Shaw etal., 2008), which is prescribed by
the U.S. Food and Drug Administration, a 200 and 1000 pg/kg dose in
rats is equivalent to a human dose of 32.43 and 162.16 ug/kg, respec-
tively. These doses align within the range of the estimated daily intakes of
humans (Heudorf et al., 2007) and, interestingly, are even below some of
the tolerable daily intakes of some governing organizations (Koch et al.,
2003). However, there are limitations to translating these doses of phtha-
lates from rats to the human population due to the lack of information on
interspecies differences in the toxicokinetics and their associated dose—
response relationships.

Behavioral testing: attentional set-shift
Apparatus. The attentional set-shift apparatus was a plus maze in a rela-
tively small room with dim, indirect lighting. The center of the maze was
10 X 10 cm, with four equiangular arms of 10 cm width and 45 cm length.
The entire maze was enclosed with 15-cm-high walls and placed upon a
spinning table to allow easy adjustment during testing. The inside walls
and floor of two adjacent arms were white, whereas the other two were
black; and the floor of one black arm and adjacent white arm were
smooth, whereas the other two were textured (i.e., “rough”). At the end
of each arm, there were food troughs. For training and testing, a wall-
piece could be slid into one of four positions to convert the plus-shaped
maze into a T-shaped maze, blocking off entry into a specific arm.
Protocol. The attentional set shift protocol began in adulthood at
~P92, at which time rats were food restricted in preparation for testing
(similar to Willing and Wagner, 2016). Throughout the 13 day protocol,
rats were weighed daily and food restricted to 85%-90% of free-feeding
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Figure1. Attentional set-shift task. In this example, () aratis trained to go to black armsin
Set 1. Once 8 consecutive trials of correct responses is reached, the rat is removed and is tested
in Set 2 the following day. B, In Set 2, the rat is tested with an extradimensional shift in the
rewarding cue, such that rough arms are now baited with a reward pellet. Green arrows indicate
correct responses. Red arrows indicate incorrect responses.

body weight by testing days (i.e., days 12 and 13). On days 1-5, rats were
handled for 1 min, then given 3 or 4 reward pellets (TestDiet) in their
home cages. On days 6—38, rats underwent a daily habituation trial con-
sisting of being placed in the center of the plus-shaped maze with all four
arms baited with a reward pellet. A habituation trial ended upon obtain-
ing all four reward pellets or if 5 min had elapsed. On days 9-11, rats
underwent 8 daily trials of pretraining. For each trial, the rat was placed at
the end of one arm (start arm) with the opposing arm blocked off and
learned to leave the start arm to enter only one of two open arms of the
T-shaped maze to potentially obtain a food reward. Trials were rewarded
50% of the time, and the starting arm was quasi-randomly changed on
each trial to ensure no learned arm preference. On days 13 and 14, testing
on Sets 1 and 2 began, respectively. The trials in both sets were similarly
arranged as in pretraining trials, such that the rats were placed in alter-
nating start arms with the option to enter only one of two target arms.
Upon food restriction, estrous cycles from a subset of females were de-
termined daily via vaginal lavage and cytology. Most females were in
diestrus at the time of testing in Set 1 and Set 2, such that the stage of the
estrous cycle did not have any influence on performance within the at-
tentional set-shifting task.

Set I: training. Rats were trained to enter a target arm using a specific
cue based on color (i.e., white or black; Rule 1) to obtain a food reward
(Fig. 1A), and Set 1 concluded when a performance criterion of 8 con-
secutively correct trials was met. Rats unable to reach this criterion within
120 trials or due to lack of motivation for a food reward were excluded
from the study. Consequently, there were 9, 8, and 10 females in the
respective 0, 200, and 1000 pg/kg groups, and there were 9, 8, and 11
males in the respective exposure groups. The total number of trials per-
formed to reach criterion were analyzed.

Set 2: test on an extradimensional shift. On the next day after Set 1, the
contingency for the reward was changed to a different sensory modality,
such that rats were now trained to enter a target arm using a cue based on
texture (i.e., smooth or rough; Rule 2) to obtain a food reward. This
extradimensional, or cross-modal, shift is one form of behavioral flexi-
bility that is mediated by cognitive functions of the PFC (Ragozzino et al.,
1999). Rats completed 80 trials in Set 2 regardless of performance. On any
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given trial in Set 2, there is only one correct choice and one incorrect
choice, with incorrect choices being perseverative errors or omission
errors. A perseverative error is entering an incorrect arm according to the
rule from Set 1, whereas an omission error is an incorrect choice that does
not follow the rewarded stimuli from either set (Fig. 1B). For example, a
rat is trained to receive a reward pellet on trials of Set 1 if a white arm is
chosen and on trials of Set 2 if a rough arm is chosen, then a perseveration
error is going to a white smooth arm during Set 2. Whether a rat per-
formed a correct choice or an error across the 80 trials was analyzed, as
well as separate analyses of perseverative and omission errors across their
respective 40 trials.

Neuroanatomy

Histological preparation. Brains were collected from littermates of the
animals tested in the attentional set shift task. These rats were between
P103 and P134, which was at least 2 weeks after they completed behav-
ioral tasks that did not involve food restriction: prepulse inhibition, open
field, and object recognition (not reported). Rats were deeply anesthe-
tized with sodium pentobarbital before a transcardial perfusion with 0.1
M PBS followed by 4% PFA fixative solution. The brains were removed
and stored in the PFA fixative solution for 24 h followed by being stored
in a 30% sucrose (cryoprotectant) solution for 3 d. At this time, brains
were coded to keep the experimenter blind to the rat’s group. After 3 d in
the sucrose solution, the brain was sliced with a freezing microtome into
40 wm coronal slices. One brain from a vehicle-exposed (0 ug/kg) female
did not fix properly. Thus, there were 10, 9, and 11 females in the respec-
tive 0, 200, and 1000 ug/kg groups and 11, 9, and 11 males in the respec-
tive exposure groups.

Methylene Blue/Azure II. To precisely visualize the rostral and caudal
borders of the mPFC, every section at the rostral start of the frontal white
matter and the caudal end in which the genu corpus callosum appears
were mounted on gelatin-coated slides. For the rest of the mPFC, every
fifth section was mounted with the remaining sections placed in a storage
solution (30% glycerol, 30% ethylene glycol, 30% distilled water, 10%
0.1 M PBS) and stored in a —20°C freezer for later use. Mounted sections
were allowed to dry before being stained with Methylene Blue/Azure II, a
cell body stain used for cellular quantification, laminar parcellation, and
volume determination. Sections on a slide were covered with Permount
and a coverslip.

Immunohistochemistry for synaptophysin. Three mPFC sections repre-
sentative of each brain were selected from the storage solution and
stained for synaptophysin, a presynaptic vesicle protein used as a marker
of synapses as in Drzewiecki et al. (2016). Sections were rinsed 3 times for
5 min in TBS, pH 7.6, placed for 30 min in a blocking solution (20%
normal goat serum, 1% BSA, 1% hydrogen peroxide), and then incu-
bated for 48 h at 4°C in the primary antibody (antisynaptophysin, 1:5000,
Sigma-Aldrich; mouse monoclonal), which was diluted in Tris-Triton
goat (TTG) solution (2% normal goat serum, 0.3% Triton X-100 in
TBS). Following primary incubation, sections were rinsed 3 times for 5
min each in TTG followed by incubation with the biotinylated secondary
antibody diluted in TTG (anti-mouse IgG antibody, 5 ug/ml, Vector
Laboratories) for 90 min at room temperature (~23°C). Sections were
then rinsed for 5 min twice in TTG and twice in TBS. Following rinsing,
sections were placed in avidin-biotin complex (Vectastain ABC Kit, Vec-
tor Laboratories) for 1 h at room temperature (~23°C) and then stained
with DAB (Sigma-Aldrich Fast 3-3'Diaminobenzidine Tablets) for 2
min. Last, sections were rinsed thoroughly with TBS, mounted on
gelatin-coated slides, and dried for at least 24 h before being coverslipped
using Permount.

Volume of the mPFC. Sections stained with Methylene Blue/Azure II
were used in determining the volume of the mPFC, as previously detailed
by Markham et al. (2007). The area and thickness of layers I, II/III, and
V/VI were separately used to calculate the volume of the mPFC. The
subcortical white matter within the mPFC sections was also parcellated
for volume estimations.

The mPFC, which contains the prelimbic (PL) and infralimbic (IL)
regions, were parcellated in reference to the underlying white matter and
in accordance to cytoarchitectonic criteria (Van Eden and Uylings,
1985). Parcellation of the rostral mPFC began with the appearance of
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Figure 2.
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A, Parcellation of layers |, II/Ill, and V//VI of the mPFC, as well as the underlying white matter, in a Methylene Blue/Azure Il section. B, Higher magnification of a Methylene Blue/Azure

I section in which neurons can easily be distinguished from glia. ¢, High magnification of animmunohistochemically stained section of synaptophysin, a marker of synapses. The counting frame has

green inclusion and red exclusion lines for stereological counting.

frontal white matter, and the caudal end of the mPFC coincided with the
appearance of the genu of the corpus callosum. The dorsal border of the
mPFC was identified by a decrease in layer I size, a less distinct layer I/
border, an increase in the cellular density of layer III, and a broadening of
layer V/VI. The ventral border of the mPFC was identified by a loss in
laminar distinction, a decrease in layer I size, and a tapering of layer V/VI.
Neuron and glia counts. The number of neurons and glia were stereo-
logically counted with the optical disector in the sections stained with
Methylene Blue/Azure II using Stereolnvestigator software (Micro-
brightfield). After parcellating the mPFC into layers I, II/III, and V/VI
(Fig. 2A), the software randomly sampled sites to count within each
region. A 35 X 35 X 10 um (width X height X depth) counting frame
was used with 1 um guard zones at the top and bottom of each section.
The experimenter counted cells only if the bottom of the cell was within
the volume of the counting frame. By using Methylene Blue/Azure II,
neurons and glia are distinguished based upon differences in size, color,
and shape. In particular, neurons are larger and are stained dark blue
with a distinct nucleus and nucleolus, whereas glia are smaller, turquoise-
stained, amorphous cells (Fig. 2B). Given the sparse distribution of cells
in layer I, cells were not quantified in this region. However, in each layers
II/II and V/VI, a minimum of 150 glia and 200 neurons were counted
across sampled sites of at least two sections of the mPFC from a given
brain. Separate neuronal and glial densities were calculated for each lam-
ina. These densities were multiplied by their respective laminar volumes
to estimate the total number of neurons and glia.

Synapse quantification. Like the quantification previously described by
Drzewiecki et al. (2016) and similar to how neurons and glia were
counted above, a minimum of 200 synaptophysin-stained boutons were
stereologically counted in each laminar region I, II/III, and V/VI of a
given brain (Fig. 2C). In contrast to the cell counts, a 4 X 4 X 6 um
counting frame was used with 0.1 wm guard zones at the top and bottom
of each section. Synaptophysin-stained bouton densities for each laminar
group (i.e., I, II/IIL, and V/VI) were calculated. These densities were then
multiplied by their respective laminar volumes to estimate the total num-

ber of synaptophysin-stained boutons.

Experimental design and statistical analyses
Using SPSS (IBM), the analysis of all neuroanatomical measures was

performed using a two-way ANOVA (phthalate exposure X sex) with
cohort as a cofactor. For the behavioral analysis of Set 1 of attentional
set-shift, Rule 1 (i.e., the rewarding cue: black or white) was used as
another cofactor in the two-way ANOVA. For Set 2, given that the de-
pendent variable is repeatedly measured with a binary outcome (i.e.,
correct or incorrect), a logistic regression was used (Parzen et al., 2011),
particularly within a generalized linear mixed model with trial as the
repeated measure within each rat subject and phthalate exposure, sex,
cohort, and Rule 1 as (co)factors. Post hoc tests were performed using
Fisher’s least square difference method with each phthalate exposure
dose (200 and 1000 ug/kg) only compared with the vehicle-exposed (0
pg/kg) group. Two-tailed correlations were run between neuroanatomi-
cal measures and indices of attentional set shift performance for rats
within the same litter. Data are mean * SEM.

Results
Attentional set-shift

Set 1: training
There was no effect of phthalate exposure, but stimulus (F, 44, =

18.545, p < 0.001) and sex (F(, 44y = 4.569, p = 0.038) were
significant for trials to criterion, such that rats with black arms
reached criterion sooner than rats with white arms as the reward-
ing cue and male rats reached criterion sooner than female rats

(Fig. 3).

Set 2: extradimensional shift
For correct responses, there was a significant effect of phthalate

exposure (F(, 4359y = 6.195, p = 0.002), such that vehicle-exposed
rats performed significantly better than both the relatively low
(p = 0.001) and high phthalate-exposed rats (p = 0.019). Addi-
tionally, there was a significant effect of sex (F(; 4359y = 10.665,
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Set 1: Training
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Figure 3.  Performance on the black/white discrimination in Set 1 of attentional set-shift.

Males performed significantly better than females (*p = 0.038), but there were no effects
of phthalate exposure. From left to right on the x-axis: 0, 200, and 1000 w.g/kg males
followed by the respective female groups;n = 9,n =8,n=11,n=9,n=8,andn =
10, respectively.

p = 0.001), such that males performed significantly better than
females (Fig. 4A).

For perseverative errors, there was a significant effect of
phthalate exposure (F,,,59) = 3.526, p = 0.030), such that
vehicle-exposed rats had significantly fewer perseverative errors
than the relatively low phthalate-exposed rats (p = 0.009). There
was also a significant effect of sex (F(; ;59 = 10.665, p = 0.002),
such that males performed significantly fewer perseverative er-
rors than females (Fig. 4B).

For omission errors, there was only a significant effect of
phthalate exposure (F(,,39) = 5.159, p = 0.006), such that
vehicle-treated rats had significantly fewer omission errors than
both the relatively low (p = 0.004) and high phthalate-exposed
rats (p = 0.010) (Fig. 4C).

Neuroanatomy

Neurons and glia

The number of neurons in the mPFC was decreased by perinatal
phthalate exposure (F(, s,y = 23.834, p < 0.001) at both doses
(p < 0.001) (Fig. 5A). The phthalate exposure effect on neuron
number was evident in both layers II/III (F(,5,, = 21.891, p <
0.001) and V/VI (F(, 5, = 18.879, p < 0.001). Additionally, the
number of neurons in the mPFC was greater in males than in
females (F(, 5,y = 9.167, p = 0.004), and this occurred in both
layers II/IIL (F(, 5,) = 6.931, p = 0.011) and V/VI (F, 5,, = 8.703,
p = 0.005), similar to previous work in our laboratory (Markham
et al., 2007).

There were no effects of phthalate exposure on the number of
gliain total or in each lamina (Fig. 5B). There was a significant sex
difference (F, 5,y = 7.012, p = 0.011), indicating that males had
more glia in the mPFC than females, as in Markham et al. (2007).
Although males had numerically more glia than females in both
laminar groups, it was only significant in layers II/III (F, 5, =
11.728, p = 0.001) and not in layers V/VI (F, 5, = 3.351,
p = 0.073).

Synaptophysin: marker of synapses

Analysis of the total number of synaptophysin boutons in the
mPFC revealed a significant effect of phthalate exposure
(F2,51) = 6.041, p = 0.004), such that vehicle-exposed rats had
significantly more synapses in the mPFC than both the relatively
low (p = 0.011) and high phthalate-exposed rats (p = 0.002)
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(Fig. 6A). This phthalate exposure effect was evident in layers
T/IIT (Fpp.s1) = 3.936, p = 0.026) and V/VI (F,.5,, = 11.053, p <
0.001), but not in layer I (F,5,, = 1.771, p = 0.180). Addition-
ally, there was a significant effect of sex (F(, 5,) = 5.873, p =
0.019), indicating that males had significantly more synapses in
the mPFC than females. Although there was a numerical differ-
ence between the sexes in each of the laminar groups, it was
significant only in layers V/VI (F, 5,, = 7.754, p = 0.008) and not
in layer I (F(,5,) = 3.498, p = 0.067) or layers II/III (F, 5, =
3.674, p = 0.061). Last, there were no significant effects for the
number of synaptophysin-labeled synapses per neuron (Fig. 6B).

mPFC and underlying white matter volume

Overall, there was a significant effect of phthalate exposure
(Fa,51) = 5.207, p = 0.009) on the total volume of the mPFC (Fig.
7A), such that the vehicle-exposed rats had larger volumes than
both the relatively low (p = 0.027) and high phthalate-exposed
rats (p = 0.003). This effect was significant in layers I (F(, 5,, =
3.312,p = 0.044) and V/VI (F(,.5,, = 8.219, p = 0.001), but not in
layers II/IIT (F(, 5,y = 2.943, p = 0.062). Additionally, there was a
significant effect of sex (F, 5,, = 11.993, p = 0.001), with males
having larger volumes compared with females, as in previous
work (Markham et al., 2007). This sex difference was significant
in each laminar group: layer I (F, 5,, = 20.477, p < 0.001), layers
I/ (F, 5,) = 8.680, p = 0.005), and layers V/VI (F, 5,, = 8.293,
p = 0.006).

There was no effect of phthalate exposure on the volume of the
white matter under the mPFC (Fig. 7B), but there was, as ex-
pected (Markham et al., 2007), a significant sex difference
(F1.51y = 10.665, p = 0.002), indicating that males had larger
white matter volumes than females.

Neuroanatomy-behavior correlations

The number of synaptophysin boutons was significantly, and
positively, correlated with the number of correct choices in Set 2
of the attentional set shift task (r = 0.291, p = 0.033), such that
rats of littermates with more boutons in the mPFC performed
better than those of littermates with fewer. Although not signifi-
cant, total synaptophysin boutons showed a trend toward a neg-
ative correlation with the total perseverative errors in Set 2 of the
attentional set shift task (r = —0.243, p = 0.076). These findings
were most prominent in the last 40 trials of Set 2 (i.e., the second
half) when performance was generally better, such that rats with
more synaptophysin boutons performed better on the task than
those with fewer, as assessed by total correct choices (r = 0.327,
p = 0.016) and perseverative errors (r = —0.302, p = 0.027; Table
1). There were no correlations between the behavioral measures
and either neurons or glia.

Discussion

The present study found that perinatal exposure to phthalates
resulted in decreased cognitive flexibility and a lower number of
neurons and synapses in the mPFC in adulthood across both
sexes. Interestingly, the number of synapses within the mPFC
also correlated with measures of cognitive flexibility, such that
littermates of rats with fewer synapses demonstrated less cogni-
tive flexibility than those of littermates with more synapses. The
lack of phthalate effects on the number of synapses per neuron
indicates that the primary influence of phthalates may be on neu-
ron number itself. However, it is also possible that the loss of
neurons and loss of synapses are separate, interdependent effects.
In contrast to the decreased number of neurons, there were no effects
of phthalate exposure on the number of glia in the mPFC, so that not
all cells decreased despite the reduced volume of the mPFC. It is
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Figure4.

Performance on the extradimensional shift (Set 2) as assessed by (A) percentage correct, (B) perseverative errors, and (€) omission errors across 80 trials in Set 2 of attentional set-shift.

Overall, there were phthalate exposure effects ( p = 0.030), such that both the low and high phthalate-exposed rats performed significantly worse on this task compared with vehicle-exposed rats.
Additionally, males performed significantly better than females, as indicated by more correct responses (*p = 0.001) and fewer perseverative errors (*p = 0.002). From left to right on the x-axis
of each measurement: 0, 200, and 1000 1.g/kg males followed by the respective female groups; n = 9,n = 8,n = 11,n = 9,n = 8,and n = 10, respectively. a and b indicate groups that are

significantly different.
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Total number of neurons (A) and glia (B) in the mPFC. Vehicle-exposed rats across both sexes had more neurons in the mPFC (a > b) than the relatively low (p << 0.001) and high

phthalate-exposed rats (p << 0.001). Additionally, males had more neurons (*p = 0.004) and glia (*p = 0.011) in the mPFC than females. From left to right on the x-axis for total number of neurons
and glia in the mPFC: 0, 200, and 1000 r.g/kg males followed by the respective female groups;n = 11,n = 9,n = 11,n = 10,n = 9,and n = 11, respectively.

possible that the lack of a phthalate effect on glia and the underlying
white matter is due to the high capacity of glia, and thus myelin, to
regenerate (Hattori et al., 1989; Askew et al., 2017).

The present study indicates that perinatal exposure to an en-
vironmentally relevant mixture of phthalates resulted in a long-
term deficit in cognitive flexibility rather than general learning
ability, such that phthalate-exposed male and female rats per-
formed worse on the extradimensional shift, but not on the initial
discrimination training. Although cognitive flexibility, to our
knowledge, has never been directly examined following perinatal
phthalate exposure in either rodents or humans, perinatal phthalate
exposure in humans has been associated with symptoms related to
autism spectrum disorder and attention deficit hyperactivity disor-
der, disorders with reduced cognitive flexibility (Etchepareborda
and Mulas, 2004; Lai et al., 2017).

The phthalate-induced deficit in cognitive flexibility was not
mediated by alterations in maternal care, as we have previously
reported no effects of this phthalate mixture on maternal behav-
ior (Kougias et al., 2018). However, based on our litter-specific
correlations, it appears that this phthalate-induced deficit in cog-

nitive flexibility may be mediated by phthalate-induced neuro-
anatomical changes. It is not clear why the total number of
synapses, but not the number of neurons, correlated with behav-
ior. However, considering that lesions outside of the mPFC are
known to alter dendritic complexity and spine density within the
mPFC (for review, see Kolb and Gibb, 2015), perhaps there are
changes in other brain regions that are driving this deficit in
behavior, such that synapses more appropriately reflect the per-
turbed circuitry. In support of this, a stress-induced decrease in
dendritic arborization in the mPFC has been shown to be predic-
tive of impaired performance in an attentional set-shifting task
(Liston et al., 2006).

Interestingly, congruent with the behavioral effects of perina-
tal phthalate exposure, neonatal lesions of the rat mPFC have
been shown to decrease cognitive flexibility in adulthood without
affecting working memory (Schwabe et al., 2004; Schneider and
Koch, 2005a). Moreover, neonatal lesions of the rat mPFC have
been shown to disrupt periadolescent social play (Schneider and
Koch, 2005b), which is consistent with what we previously re-
ported following perinatal exposure to an identical phthalate
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Total number of synaptophysin boutons (4), a marker of synapses, and (B) synapses per neuron in the mPFC. Vehicle-exposed rats across both sexes had more synaptophysin boutons

in the mPFC than the relatively low (p = 0.011) and high phthalate-exposed rats (p = 0.002) (a > b). Males had more synaptophysin boutons in the mPFC than females (*p = 0.019). From left
to right on the x-axis for total number of synapses and synapses per neuron in the mPFC: 0, 200, and 1000 ug/kg males followed by the respective female groups; n = 11,n = 9,n = 11,n = 10,

n=9,andn = 11, respectively.
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Volume of the mPFC (A) and underlying white matter (B). Vehicle-exposed rats across both sexes had larger mPFC volumes than the relatively low (p = 0.027) and high phthalate-

exposed rats (p = 0.003) (a > b). Additionally, males had larger mPFC (*p = 0.001) and white matter volumes (*p = 0.002) than females. From left to right on the x-axis for the volume of the
mPFCand the underlying white matter: 0, 200, 1000 .g/kg males followed by the respective female groups;n = 11,n = 9,n = 11,n = 10,n = 9,and n = 11, respectively.

Table 1. Neuroanatomy-behavior correlations”

Cognitive flexibility

Correct choices Perseveration
Neuroanatomy All 80 trials Last 40 trials All 80 trials Last 40 trials
Synaptophysin R=0.291 R=0327 R=—0.243 R=—0.302
p =0.033* p=0.016* p=0.076 p = 0.027*
Neurons R=—0.018 R=10.071
p =0.895 p = 0.607
Glia R=—0.035 R =0.007
p=0803 p=0963

“Correlations (Pearson’s coefficient R, p value) between measurements of neuroanatomy and measures of cognitive
flexibility (n = 55).
*Significant.

mixture (Kougias et al., 2018). Together, this suggests that phtha-
lates have neurotoxic effects on the developing mPFC, especially
in light of the decreased number of neurons and synapses found
in the current study in response to phthalate exposure.
Additionally, males learned the initial cue (i.e., training) and
the extradimensional shift (i.e., cognitive flexibility) more
quickly than females. This is broadly consistent with the litera-
ture, as sex differences in several learning and memory tasks have

been reported in rats (Jonasson, 2005). Furthermore, it is well
established that exposure to an acute stressful event can produce,
or magnify, sex differences in learning and memory (for review,
see Shors, 2004), as well as in behavioral flexibility (for review, see
Hurtubise and Howland, 2017), but whether stressful events can
generalize to mild food restriction is not well studied. However,
Rajab et al. (2014) has demonstrated that 2 h of food restriction
has a negative impact on water maze performance in females, but
a positive influence in males. Thus, it is possible that the sex
differences in cognitive performance found in this study were
accentuated with food restriction.

As a class of endocrine-disrupting chemicals, phthalates have
a promiscuous set of mechanistic actions that are specific to each
phthalate and to the various metabolites (e.g., Chauvigné et al.,
2009). Collectively, though, phthalates are known to have anti-
androgenic, estrogenic, and antiestrogenic activity (Takeuchi et
al., 2005); but given that both sexes were similarly affected by
perinatal exposure, phthalates may not be disrupting gonadal
steroid effects on sexual differentiation. Although there are indi-
cations that neonatal androgens can affect apoptosis in the visual
cortex (Nurfez et al., 2000), whether there is a role for sex hor-
mones in the perinatal development of the mPFC is not known.
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Rather, the ovarian hormones secreted at puberty are the major
influence on the sex difference in neuron number in the mPFC
(Koss et al., 2015). Furthermore, there are mixed data regarding
this mixture’s antiandrogenic potential reported by Kougias et al.
(2018) where the mixture at either dose did not significantly
affect anogenital distance, a reliable marker for prenatal andro-
gen exposure, in either males or females. However, periadoles-
cent social play, which is known to be positively influenced by
neonatal androgens, was shown to be decreased at the lower dose,
especially in males. Additionally, a similar mixture of five phtha-
lates showed no antiandrogenic activity in vitro (Christen et al.,
2012). Therefore, it is difficult to ascribe our results to disrupted
gonadal hormones or to speculate on a collective toxicodynamic
effect given the erratic nature of phthalate mixtures.

Moreover, phthalates can have such wide-ranging effects as
repressing the synthesis of steroidogenic enzymes (Kim et al.,
2004; David, 2006), weakly antagonizing cannabinoid receptors
(Bisset et al., 2011), suppressing calcium signaling in nicotinic
receptors (Liu et al., 2009), and interfering with thyroid (Boas et
al., 2012), IGF-1 (Boas et al., 2010), and insulin signaling (Huang
etal., 2014; Smerieri et al., 2015). In vitro phthalate exposure can
also induce apoptosis in murine neurons (Lin et al., 2011), po-
tentially in a hormone-independent manner (Wdjtowicz et al.,
2017), and can perhaps suppress cell proliferation (Chen et al.,
2011). Thus, there are several potential mechanisms for how
phthalates could have affected neuron number, but more detailed
conclusions cannot be specified at this time.

Regardless of the mechanistic action of this phthalate mixture,
the present neuroanatomical results complement the current lit-
erature on exposure to a single phthalate; however, our study, for
the first time, shows a long-lasting neuroanatomical change. Pre-
vious studies on perinatal exposure to a single phthalate have
demonstrated that phthalates can impair functional plasticity of
hippocampal circuits and related behavior (for review, see Hola-
han and Smith, 2015). In particular, perinatal exposure to DBP at
a very high dose (500 mg/kg) in rats has been shown to decrease
synaptophysin within the hippocampus of both males and fe-
males immediately after exposure at P21, but this effect was not
significant at P60 (Liet al., 2013). Additionally, prenatal exposure
to DEHP has also been shown to result in abnormal neuronal
distribution and reduced neuronal number at P7 in the cortex of
mice (Komada et al., 2016); however, it is unclear which part of
the cortex was investigated. Further research is needed to deter-
mine the mechanism underlying these neurotoxic effects of a
mixture of phthalates.

Opverall, this study is unique in showing that perinatal expo-
sure to an environmentally relevant mixture of phthalates had
long-term effects on the mPFC neuroanatomy and behavior of
adult rats. These effects were independent of sex, suggesting a
common neurotoxic effect of phthalates in the developing cortex
of males and females. Furthermore, these effects were seen at both
doses of the phthalate mixture, which were relatively low com-
pared with the existing rodent literature and are presumably
within the range of the estimated daily intakes of humans. Thus,
these results may have serious implications for humans given that
mPFC is involved in executive functions and is implicated in the
pathology of many neuropsychiatric disorders.
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