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ABSTRACT The repertoire of secreted proteins decoded by a microorganism repre-
sents proteins released from or associated with the cell surface. In gut commensals,
such as bifidobacteria, these proteins are perceived to be functionally relevant, as
they regulate the interaction with the gut environment. In the current study, we
screened the predicted proteome of over 300 bifidobacterial strains among the cur-
rently recognized bifidobacterial species to generate a comprehensive database en-
compassing bifidobacterial extracellular proteins. A glycobiome analysis of this pre-
dicted bifidobacterial secretome revealed that a correlation exists between particular
bifidobacterial species and their capability to hydrolyze human milk oligosaccharides
(HMOs) and intestinal glycoconjugates, such as mucin. Furthermore, an exploration
of metatranscriptomic data sets of the infant gut microbiota allowed the evaluation
of the expression of bifidobacterial genes encoding extracellular proteins, repre-
sented by ABC transporter substrate-binding proteins and glycoside hydrolases en-
zymes involved in the degradation of human milk oligosaccharides and mucin. Over-
all, this study provides insights into how bifidobacteria interact with their natural yet
highly complex environment, the infant gut.

IMPORTANCE The ecological success of bifidobacteria relies on the activity of extra-
cellular proteins that are involved in the metabolism of nutrients and the interaction
with the environment. To date, information on secreted proteins encoded by bifido-
bacteria is incomplete and just related to few species. In this study, we recon-
structed the bifidobacterial pan-secretome, revealing extracellular proteins that mod-
ulate the interaction of bifidobacteria with their natural environment. Furthermore, a
survey of the secretion systems between bifidobacterial genomes allowed the identi-
fication of a conserved Sec-dependent secretion machinery in all the analyzed ge-
nomes and the Tat protein translocation system in the chromosomes of 23 strains
belonging to Bifidobacterium longum subsp. longum and Bifidobacterium aesculapii.
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he translocation of proteins across the cytoplasmic membrane is one of the most
conserved and essential mechanisms occurring in nature, involving both unicellular
and multicellular forms of life (1, 2). While higher organisms developed complex
transmembrane systems to translocate proteins across their multiple membranes,
microorganisms possess more basic pathways (3). For this reason, bacteria are com-
monly used in commercial processes to extracellularly and heterologously produce
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proteins, for example, antimicrobial peptides (4). Escherichia coli is arguably the most
commonly exploited protein expression system (5).

Members of the bacterial communities residing in the human gut produce extra-
cellular proteins exerting crucial roles in establishment and maintenance, i.e., coloni-
zation, of these bacteria in the gut environment (6-8). Members of the genus Bifido-
bacterium are among the key bacterial components of the human gut microbiota,
especially during early life. In fact, this genus constitutes one of the main representa-
tives of the mammalian gut microbiota, and its members are also known to colonize the
avian and insect intestinal tract (7, 9, 10). The Bifidobacterium genus currently consists
of 56 species and 9 subspecies, members of which have been isolated from human,
other mammalian, and certain insect intestinal contents (11, 12). Recently, it has been
demonstrated that members of the genus Bifidobacterium interact with other bacterial
species and the host using extracellular structures, such as sortase-dependent pili and
type IVb tight adherence (Tad) pili (13-15). Furthermore, extracellular anti-inflammatory
proteins, such as the serine protease inhibitor (serpin) protein, were identified in several
bifidobacterial species (16, 17), as well as extracellular macromolecules, like exopoly-
saccharides (EPSs), which form a glycan slime layer that is loosely attached to the cell
(18, 19). The ecological success of bifidobacteria is believed to partly rely on the
activities of extracellular proteins that are involved in the metabolism of nutrients
(breakdown and uptake of metabolic substrates). Numerous bifidobacterial species
have been shown to metabolize different high-molecular-weight glycans derived from
both the host, such as human milk oligosaccharides (HMO) and mucins, and the diet,
e.g., starch and various plant-derived polysaccharides (20-22). Notably, the metabolism
of these complex glycans is facilitated by extracellular enzymes (23). The ability to
utilize complex carbohydrates provides a selective advantage for bifidobacteria and
allows them to effectively compete for nutrients in their specific niche (21, 24).
Altogether, these findings indicate that secreted proteins are fundamental for the
establishment and maintenance of bifidobacteria in the human gut.

So far, information on the secreted proteins produced by bifidobacteria is rather
fragmentary. Exported proteins have been identified in Bifidobacterium breve UCC2003,
and several extracellular proteins have been characterized in strains belonging to
Bifidobacterium longum subsp. longum, Bifidobacterium adolescentis, and Bifidobacte-
rium animalis subsp. lactis (25-27). Furthermore, a phytase-based assay has relatively
recently been employed to provide an insight into protein secretion and the associated
signal peptides of bifidobacteria (28).

In the current study, we generated a complete database of the predicted pan-
secretome of the genus Bifidobacterium based on in silico analyses of the genomes of
over 300 different bifidobacterial strains distributed among the currently recognized
bifidobacterial species. This secretome database was exploited for the purpose of
screening metagenomic data sets, thus allowing us to assess the bifidobacterial con-
tribution to the overall arsenal of extracellular proteins encoded by the human gut
microbiome.

RESULTS AND DISCUSSION

Bifidobacterial pan-secretome. Bifidobacteria, like other bacteria, differentiate
cytosolic and extracellular proteins based on the presence of a signal peptide in their
primary amino acid sequence. In detail, secreted proteins are synthesized as precursors
with a cleavable amino-terminal signal sequence that guides the precursor to a
molecular machinery responsible for translocation of the protein and concomitant
removal of the signal peptide (1). In order to predict extracellular proteins encoded by
bifidobacterial genomes, we employed multiple in silico programs that rely on the
identification of signal peptide-specific sequence motifs. For this purpose, 311 bifido-
bacterial genome sequences were retrieved from the National Center for Biotechnology
Information (NCBI) and analyzed. Notably, partial genome sequences with >200 con-
tigs were excluded (see Table S1 in the supplemental material). The retrieved bifido-
bacterial genomes included at least one genome for each of the 62 sequenced
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(sub)species of the genus, thus allowing the investigation of the so-far-established
genetic diversity of the genus Bifidobacterium. Over 600,000 genes were predicted and
functionally annotated, starting from the genomic sequences of the 311 collected
strains, and their amino acidic sequences were used to explore the predicted pan-
proteome of the Bifidobacterium genus.

Using the subcellular localization prediction tool PSORTb version 3.0.2, we were able
to identify 6,763 putative extracellular proteins and 4,925 proteins that were predicted
to be associated with the cell wall (Table S1). Additionally, proteins whose putative
cellular localization was not clearly predicted were manually evaluated, and 1,644
additional genes were added to the pool of (potentially) secreted proteins of the
bifidobacterial genus, for a total of 13,332 proteins constituting the bifidobacterial
secretome database (BSD). Notably, the selected cutoff value chosen for subcellular
localization prediction favored specificity above sensitivity, thereby minimizing the
number of false positives.

As expected from previous studies based on the prediction of extracellular proteins
(29), the most common gene classes of BSD include solute-binding proteins of ABC
transporter systems, amidases related to the peptidoglycan hydrolysis, a variety of
glycosyl hydrolases, cell surface proteins that make up pilus subunits, and cell wall-
degrading peptidases, such as p-alanyl-p-alanine carboxypeptidases. Interestingly, nor-
malization of the number of predicted extracellular proteins for the number of encod-
ing genes for each strain revealed that Bifidobacterium biavatii and Bifidobacterium
aesculapii genomes encode the largest proportion of secreted proteins in the genus
Bifidobacterium (Fig. 1 and Table 1). In contrast, chromosomes of Bifidobacterium
animalis, Bifidobacterium choerinum, and Bifidobacterium subtile strains encompass the
smallest percentage of secreted proteins (Fig. 1 and Table 1).

Proteins constituting the BSD were further compared with a Clusters of Orthologous
Groups (COG) database, i.e., the eggNOG database (30). Notably, 74% of the predicted
bifidobacterial secreted proteins were distributed among groups M, G, and E, whose
predicted functions are related to cell wall/membrane/envelope biogenesis, carbohy-
drate metabolism and transport, and amino acid metabolism and transport, respec-
tively (Fig. 1). Notably, members of COG groups M, G, and E are predicted to exert a key
role in modulating the interaction with the environment and are indispensable for the
acquisition of nutrients (31, 32).

Bifidobacterial secretion systems. Bifidobacteria are Gram-positive bacteria pos-
sessing one lipid bilayer membrane surrounded by a thick cell wall (1). Thus, they
employ the general secretion (Sec) pathway and, for some strains, the twin-arginine
translocation (Tat) pathway to transport proteins across the cytoplasmic membrane
(28). While the Sec pathway primarily translocates proteins in their unfolded state,
experimental evidence showed that the Tat pathway secretes mainly (partially) folded
proteins (33). In order to identify the secretion systems encoded by the 311 analyzed
bifidobacterial genomes, we exploited the gene sequences of the characterized sys-
tems of B. longum E18 (28) as a query for the identification of homologs in the BSD
database. Additionally, the collected genes were further used as query sequences to
identify putative distant homologs with the same function. This analysis allowed the
verification that all 311 bifidobacterial genomes encompass genes encoding the Sec
translocase system, including the integral membrane complex encoded by secY, secE,
and secG, as well as the ATPase-encoding gene secA. In addition, 28 bifidobacterial
genomes, of which 22 are classified as B. longum, were shown to possess an additional
copy of the secE and secG genes (Fig. 2). Furthermore, among sequenced members of
the B. longum species, three strains were identified to possess an additional copy of
secY encoding the membrane-associated secretion complex (Fig. 2).

A complete Tat system composed of TatA, TatB, and TatC was identified in 22 B.
longum genomes and in the chromosome of B. aesculapii DSM 26737 (Fig. 2).
Recently, it has been demonstrated by means of a genomic identity approach that
of the 84 analyzed B. longum genomes, 57 of them cluster together as members of
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FIG 1 Bifidobacterial extracellular protein overview. (a) Percentage of extracellular proteins normalized between strains of the same species and the total
amount of proteome (right) and the percentage of extracellular GHs normalized between strains of the same species and the total amount of secreted proteins
(left). (b) COG classifications of the whole secretome of the genus Bifidobacterium. (c) GH organization of the secreted enzymes of the genus.

B. longum subsp. longum (11). Interestingly, the 22 B. longum genomes possessing
the Tat system were all members of the B. longum subsp. longum cluster (Fig. 2).
Notably, a recent phylogenomic analysis attributed B. aesculapii DSM 26737 to the
B. longum phylogenetic group (11). Furthermore, the genes flanking the Tat locus
encode the same proteins in both species, i.e., a Lacl family transcriptional regulator and
a B-L-arabinofuranosidase that has been validated as a Tat-secreted protein of B. longum
E18 (28). Altogether, these findings suggest that the Tat secretion system may have been
inherited from a common ancestor of B. aesculapii and B. longum (Fig. 2).

Extracellular bifidobacterial glycobiome. One of the key genetic features of
bifidobacteria is their ability to utilize complex carbon sources (21, 34). Thus, classifi-
cation according to the Carbohydrate-Active enZyme (CAZy) database (35) was per-
formed to assess which secreted proteins possess the ability to enhance the
carbohydrate-harvesting abilities and improve the associated fitness of the Bifidobac-
terium genus for the human gut environment. This analysis resulted in the identification
of 4,397 secreted proteins possessing catalytic and carbohydrate-binding modules
involved in the degradation and modification of carbohydrates, representing one-third
of the collected secretome of the genus. Interestingly, the predicted secreted glycoside
hydrolases (GHs) constitute 27% (representing 3,639 genes) of the total number of
proteins in the BSD. Moreover, the most abundant families of secreted GHs were GH43
(20%), involved in the degradation of complex plant polysaccharides, such as (arabi-
no)xylan, GH73 (12%), related to peptidoglycan hydrolysis, and GH13 (11%), a family
with degradative abilities toward a wide range of carbohydrates, including plant-
derived polysaccharides, such as starch and trehalose (Fig. 1).
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TABLE 1 Bifidobacterial secretome

Predicted
Predicted extracellular
extracellular glycoside
proteins® hydrolases¢
Phylogenetic group? Bifidobacterial species No. % No. %
B. asteroides B. actinocoloniiforme 38 2.6 3 7.9
B. asteroides 48 2.8 4.8 10.1
B. coryneforme 26 1.8 4 15.8
B. indicum 27 2.0 4 14.8
B. psychraerophilum B. aquikefiri 38 1.9 7 18.4
B. crudilactis 42 2.2 4 9.5
B. psychraerophilum 4 1.9 1 26.8
B. tissieri 53 24 10 18.9
B. vansinderenii 59 2.3 1 18.6
B. margollesii 53 23 14 26.4
B. pseudolongum B. italicum 46 2.5 18 39.1
B. anseris 37 2.2 14 378
B. choerinum 25 14 10 39.6
B. criceti 29 1.7 9 31.0
B. pseudolongum 29 1.8 9.6 335
B. cuniculi 61 2.7 13 21.3
B. animalis 22 14 54 243
B. gallicum 29 1.9 10 345
B. magnum 30 20 8 26.7
B. adolescentis B. adolescentis 46 25 13.3 29.0
B. ruminantium 46 25 12 26.1
B. catenulatum 42 24 8 19.0
B. kashiwanohense 42 2.1 8 18.9
B. pseudocatenulatum 44 2.3 11.3 26.0
B. dentium 47 2.2 9.5 20.3
B. moukalabense 49 24 10 204
B. bifidum B. biavatii 101 3.9 30 29.7
B. hapali 56 25 10 17.9
B. scardovii 72 2.8 13 18.2
B. bifidum 51 2.8 18.3 359
B. longum B. aesculapii 70 34 25 357
B. stellenboschense 53 24 4 7.5
B. parmae 60 2.7 17 283
B. callitrichos 39 1.6 1 28.2
B. angulatum 31 1.9 10 32.0
B. merycicum 39 2.1 6 15.4
B. breve 37 1.8 7.5 204
B. longum 50 24 15.9 316
B. myosotis 49 23 15 30.6
B. reuteri 53 24 13 24.5
B. saguini 67 2.8 14 20.9
B. imperatoris 50 23 1 22.0
B. eulemuris 49 2.1 12 24.5
B. lemurum 54 24 13 24.1
B. pullorum B. gallinarum 33 1.9 7 21.2
B. saeculare 1 2.2 8 19.5
B. pullorum 31 1.8 8 26.2
B. boum B. boum 40 2.3 10 25.0
B. thermacidophilum 35 2.1 7.5 21.6
B. thermophilum 49 2.8 11.8 24.1
B. tsurumiense 35 2.0 14 40.0
B. mongoliense 44 2.4 9 20.5
B. subtile 34 1.5 4 11.8
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TABLE 1 (Continued)

Predicted
Predicted extracellular
extracellular glycoside
proteins® hydrolases¢
Phylogenetic group? Bifidobacterial species No. % No. %
B. bombi B. bohemicum 37 2.2 6 16.4
B. commune 30 23 2 6.7
B. bombi 29 1.9 5 17.2
B. minimum 30 1.9 7 233

9Phylogenetic groups based on Lugli et al. (11).

bAverage number of extracellular proteins within the species, and the percentage of extracellular proteins
related to the proteome of the species, i.e., based on the number of predicted proteins of that species.

cAverage number of extracellular GHs within the species, and the percentage related to the secreted
proteins of the species.

When focusing on species-specific secretomes, bifidobacterial species that encode
the highest percentages of extracellular GHs (from 30 to 40% of their secreted pro-
teome) belong to the phylogenetic groups of Bifidobacterium pseudolongum and B.
longum (11), while the members of the Bifidobacterium asteroides and Bifidobacterium
bombi groups possess the lowest percentages of secreted GHs (Fig. 1 and Table 1).
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These findings may be correlated with the ecological niches in which the members of
the Bifidobacterium asteroides and Bifidobacterium bombi groups are commonly found.
In fact, members of the B. asteroides and B. bombi group are typical inhabitants of the
hindgut of social insects; thus, their evolution has been driven by the availability of a
limited range of carbon sources (36, 37). Nonetheless, their peculiar repertoire of GHs
was recently found to be substantially different from other bifidobacterial species that
evolved within the gut of mammals (21).

Further investigations were performed in order to associate extracellular GH
families with the bifidobacterial taxa analyzed in the reconstructed bifidobacterial
pan-secretome. Thus, the presence of GH families in each bifidobacterial species
was used to construct a force-driven network (Fig. 3). Interestingly, four major
clusters of bifidobacterial species were identified, each dominated by specific
bifidobacterial species, i.e., B. animalis-B. adolescentis, B. longum, Bifidobacterium
bifidum, and B. breve (Fig. 3). In this context, the B. animalis-B. adolescentis cluster
was mainly characterized by the presence of GH3 family enzymes involved in the
degradation of plant-derived polysaccharides, e.g., xylan, and GH13 shared with
other members of the B. breve and B. longum clusters, which are predicted to
degrade a wide range of carbohydrates, including starch and related substrates (Fig.
3). In contrast, the B. longum cluster was characterized by the presence of GH121 family
enzymes represented by B-L-arabinobiosidase and GH43 involved in the degradation of
complex plant polysaccharides, such as (arabino)xylan. Furthermore, GH101 family mem-
bers were shared with the B. bifidum cluster, highlighting the presence of endo-a-N-
acetylgalactosaminidase for the degradation of the O-glycosidic linkage of mucin-type
glycoproteins. Remarkably, the B. bifidum cluster is constituted only by strains belonging to
B. bifidum species, which differ from other bifidobacterial taxa by the presence of extracel-
lular enzymes of the families GH95, GH84, GH110, GH89, GH29, GH20, and GH2 (Fig. 3). The
presence of this unique repertoire of extracellular GHs, together with GH101 shared with B.
longum cluster, is correlated with the capability of these strains to utilize HMOs and
intestinal glycoconjugates, such as mucin (21, 38). Furthermore, another key GH family
involved in the degradation of host glycans, i.e, the secreted GH33, which involves
sialidases, was observed in the B. bifidum cluster as well as in the B. breve cluster. Finally, the
fourth cluster represented by B. breve strains includes ubiquitous GHs, i.e.,, members of
GH73, GH25, and GH23, involved in the hydrolysis of peptidoglycan.

Secretome of bifidobacterial communities within the infant gut. In order to
explore the occurrence of bifidobacterial secreted proteins in the human gut, these genes
were profiled in metagenomic and metatranscriptomic databases retrieved from the NCBI.
In detail, we used data from a project that was aimed at exploring the microbial compo-
sition of the infant gut (BioProject PRINA63661), and a project meant to evaluate vertical
transmission of the microbiota from mothers to corresponding infants (BioProject
PRJNA339914). Since a higher abundance of bifidobacteria was observed in the infant
microbiota than in adults, we decided to use the infant-related data sets to allow a
more in-depth analysis of the secreted proteins of this genus (39, 40).

The metagenomic samples collected from healthy infants from the study with
BioProject PRINA63661 were screened for reads corresponding to genes included in
the BSD database, unveiling dissimilar profiles between samples (Table S3). The number
of metagenomic reads that belong to bifidobacterial secreted proteins ranged from
165,772 to none. As expected, the majority of the bifidobacterial extracellular proteins
identified belong to B. longum, B. breve, and B. bifidum, i.e., bifidobacterial species that
typically colonize the infant gut during early life (34).

In the same fashion, the analysis was performed on metatranscriptomic samples
collected from four healthy infants from BioProject PRINA63661. Notably, >50% of the
reads that mapped on the BSD database correspond to ABC transporter substrate-
binding proteins, as well as endo-a-N-acetylgalactosaminidases and hyaluronongluco-
saminidases (Fig. 4). Moreover, this analysis revealed that B. longum and then B. bifidum
and B. breve, were the species with the highest expression of genes encoding extra-
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cellular proteins, i.e., 33%, 24%, and 22% of the identified reads, respectively (Fig. 4).
Furthermore, these data highlight a high level of transcription of genes corresponding
to glycosidic enzymes and related transporters for the uptake of simple sugars derived
from the breakdown of complex metabolic substrates. Among extracellular GHs, we
observed a predominance of GH101 family enzymes, corroborating the abundance of
genes encoding endo-a-N-acetylgalactosaminidase in the genome of B. bifidum and B.
longum species (see above) (Fig. 3). Moreover, we also identified GH enzymes belonging
to the B. bifidum-associated GH84 and GH20 clusters (Fig. 4). While GH84 enzymes are
associated with hyalurononglucosaminidase, GH20 reflects both hexosaminidase and lacto-
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FIG 4 Metatranscriptomic profiling of bifidobacterial genes encoding secreted proteins within the infant gut. (a) Percentage of metatranscriptomic reads that
match genes encoding secreted proteins based on bifidobacterial species. (b) Bifidobacterial extracellular GH distribution among the two data sets. (c and d)
Functional distribution of the identified secretome in the PRINA63661 data set (c) and the same distribution for PRINA339914 samples (d).

N-biosidase. The substrates of these GHs are usually residues of mucin-type glycoproteins,
as well as hyaluronic acid and lacto-N-biose, highlighting substantial metabolic activity
directed to harvest host glycans by the identified bifidobacterial species.

A further metatranscriptomic data set (BioProject PRINA339914) was employed in
order to validate the above-described data. With respect to the PRINA63661 data set,
the two infant samples showed higher expression of genes encoding extracellular
proteins belonging to B. bifidum (34%) and B. breve (30%) (Fig. 4). Regarding extracel-
lular GH-specifying enzymes, a prevalence in GH84 and GH95, followed by GH20 and
GH101 members, was noticed (Fig. 4). Accordingly, the same GHs were detected in data
set PRINA63661, with the exception of an increased family member of GH95 encoding
fucosidases. Thus, within these samples, we observed a reduction in B. longum gene
expression balanced by increased B. bifidum and B. breve gene transcription. Altogether,
these data support previous findings about the cross-feeding activities established
between B. bifidum and B. breve species (24, 32, 41).

Conclusions. In this study, we reconstructed the pan-secretome of the genus
Bifidobacterium through in silico analyses of 311 bifidobacterial strains belonging to all
currently recognized bifidobacterial species. The most common extracellular proteins
identified belong to solute-binding proteins of ABC transporter systems, amidases
related to the peptidoglycan hydrolysis, glycosyl hydrolases of several families, and cell
surface proteins, like pili and peptidases, such as p-alanyl-p-alanine carboxypeptidases.
Interestingly, Bifidobacterium biavatii, followed by Bifidobacterium aesculapii, were pre-
dicted to encode the largest arsenal of secreted proteins among currently known
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members of the genus Bifidobacterium. Furthermore, a bifidobacterial secretion system
screening allowed us to identify the Sec-dependent secretion machinery in the 311
genomes, while just 23 strains belonging to B. longum subsp. longum and B. aesculapii
DSM 26737 also harbor the Tat protein translocation system. An extracellular glyco-
biome analysis allowed the identification of four bifidobacterial secretome clusters,
represented by main species, i.e., B. animalis-B. adolescentis, B. longum, B. bifidum, and
B. breve. This analysis revealed the presence of specific GH families in each cluster,
unveiling that the B. bifidum cluster differs from that of other bifidobacterial (sub)spe-
cies due to the presence of extracellular enzymes correlated with the ability of
hydrolyze HMOs and intestinal glycoconjugates, such as mucin, i.e., families GH95,
GH84, GH110, GH89, GH29, GH20, and GH2. Finally, the dissection of metatranscrip-
tomic data sets derived from infant fecal samples allowed the transcriptional evaluation
of bifidobacterial genes encoding extracellular proteins. This analysis showed that the
majority of the bifidobacterial secreted proteins expressed in the infant gut belong to
B. longum, B. bifidum, and B. breve species, representing ABC transporter substrate-
binding proteins and GH enzymes, such as hyalurononglucosaminidase (GH84), endo-
a-N-acetylgalactosaminidase (GH101), hexosaminidase and lacto-N-biosidase (GH20),
and fucosidases (GH95), consistent with metabolic activities that involve the degrada-
tion of human milk oligosaccharides and/or mucin.

MATERIALS AND METHODS

Bifidobacterial genome sequences. We retrieved complete and partial genome sequences of 311
bifidobacterial strains from the National Center for Biotechnology Information (NCBI) public database
(Table S1). A single type strain for each bifidobacterial species was employed in our analyses in order to
avoid genome content redundancy. Furthermore, genomes displaying insufficient quality, i.e., a high
number of contigs or partial genome length, were discarded.

Proteome prediction and annotation. Nucleotide genomic sequences obtained from the NCBI
database were used as input for the MEGAnnotator pipeline in order to predict the protein-encoding
open reading frames (ORFs) using the same methodology for each genome (42). While ORFs were
predicted with Prodigal (43), gene annotation was defined by means of RAPSearch2 (Reduced Alphabet
based Protein similarity Search) (44) in the nonredundant protein database from the NCBI. Furthermore,
a hidden Markov model (HMM) search (http://hmmer.org/) of the manually curated Pfam-A protein family
database was performed to identify domains between predicted ORFs (45). The results were inspected
by Artemis (46), which was used for genome analyses and for manual editing where necessary.
Functional annotation of each secreted protein was performed employing the eggNOG database (30).

Secretome and secretion systems prediction. Several programs which are aimed at predicting
extracellular and transmembrane proteins through signal peptide and transmembrane motif were
employed based on a comparison performed by Caccia et al., i.e., PredSi, SignalP, Phobius, PredLipo,
PredTat, LipoP, TMHMM, and PSORTb (47). These bioinformatic tools were selected due to their ability to
analyze hundreds of proteins at the same iteration. A preliminary screening was performed using the
proteome of B. bifidum PRL2010, followed by manual evaluation of the output to unveil which program
results in @ more accurate prediction (Table S2). Due to its multiple software implementation, PSORTb
version 3.0.2 was shown to be the most accurate tool for the prediction of the bifidobacterial secretome
(48). Nonetheless, PSORTb promotes specificity above sensitivity and allowed the collection of protein
sequences with the lowest number of false positives compared to other tools (Table S2). Thus, the
secreted proteins of the 311 sequenced bifidobacterial genomes were predicted using PSORTb version
3.0.2. Additionally, proteins whose putative cell localization was not clearly predicted by PSORTb were
manually evaluated in order to increase the pool of secreted proteins of the genus.

In order to identify the secretion systems of each bifidobacterial strain, a bifidobacterial database
based on secretion systems was built with the characterized genes of B. longum E18 (28). The RefSeq
accession numbers of these genes are ESV34191.1, ESV34434.1, ESV33665.1, ESV33737.1, ESV32709.1,
ESV32707.1 and ESV32708.1. The predicted secretion systems of the 311 bifidobacterial strains were
obtained using BLAST, followed by manual evaluation of the results.

Glycobiome prediction. The prediction of genes encoding extracellular enzymes possessing struc-
turally related catalytic and carbohydrate-binding modules catalyzing hydrolysis, modification, or syn-
thesis of glycoside bounds was performed using the CAZy database (35). A force-driven network was
built using Gephi version 0.9.2 to highlight the correlation between GHs and bifidobacterial species.

Metagenomic and metatranscriptomic analyses. Fecal metagenomic and metatranscriptomic data
sets of infants were retrieved from two NCBI public databases, i.e., BioProjects PRINA63661 and
PRINA339914. Each data set was filtered to obtain only high-quality reads (minimum mean quality score,
20; window size, 5; quality threshold, 25; minimum length, 80) using the fastg-mcf script (https://
expressionanalysis.github.io/ea-utils/). The resulting reads were aligned against the human genome
using the Burrows-Wheeler Aligner program (49) (BWA-MEM algorithm with trigger reseeding, 1.5;
minimum seed length, 19; matching score, 1; mismatch penalty, 4; gap open penalty, 6; and gap
extension penalty, 1) and further processed with the SAMtools software package (50) in order to remove
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human reads. Furthermore, the metatranscriptomic data sets were processed to remove rRNA-
encompassing reads. Finally, the filtered reads were used to identify bifidobacterial secretome-associated
reads within the data set for each sample by means of Bowtie 2 (51) through multiple-hit mapping and
a "very sensitive” policy. The mapping was performed using a minimum score threshold function
(-score-min C,-13,0) in order to limit reads of arbitrary length to two mismatches and retain those
matches with at least 98% full-length identity. The software employed to calculate read counts corre-
sponding to bifidobacterial genes was HTSeq (52), running in union mode.

SUPPLEMENTAL MATERIAL
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