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Visual Abstract

Significance Statement

Human epidemiological studies suggest that taking antidepressants during pregnancy may increase risk
autism spectrum disorder (ASD) in offspring. Since only women with a diagnosis take antidepressants, there
is substantial debate on whether all increased ASD risk is contributed by the diagnosis, or if medication has
an additional influence. We reasoned empirical studies in a reduced system might provide some indication
if there was biological basis for such an influence. Our mouse studies show that, in the absence of other
maternal manipulations or stressors, maternal selective serotonin reuptake inhibitor (SSRI) exposure alone
can alter the behavioral circuits for sensory, social, and repetitive behaviors, relevant to ASD, in a
mammalian brain, and that some of these changes are reversible by SSRI re-exposure.
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Serotonergic dysregulation is implicated in numerous psychiatric disorders. Serotonin plays widespread trophic
roles during neurodevelopment; thus perturbations to this system during development may increase risk for
neurodevelopmental disorders. Epidemiological studies have examined association between selective serotonin
reuptake inhibitor (SSRI) treatment during pregnancy and increased autism spectrum disorder (ASD) risk in
offspring. It is unclear from these studies whether ASD susceptibility is purely related to maternal psychiatric
diagnosis, or if treatment poses additional risk. We sought to determine whether maternal SSRI treatment alone
or in combination with genetically vulnerable background was sufficient to induce offspring behavior disruptions
relevant to ASD. We exposed C57BL/6J or Celf6�/- mouse dams to fluoxetine (FLX) during different periods of
gestation and lactation and characterized offspring on tasks assessing social communicative interaction and
repetitive behavior patterns including sensory sensitivities. We demonstrate robust reductions in pup ultrasonic
vocalizations (USVs) and alterations in social hierarchy behaviors, as well as perseverative behaviors and tactile
hypersensitivity. Celf6 mutant mice demonstrate social communicative deficits and perseverative behaviors,
without further interaction with FLX. FLX re-exposure in adulthood ameliorates the tactile hypersensitivity yet
exacerbates the dominance phenotype. This suggests acute deficiencies in serotonin levels likely underlie the
abnormal responses to sensory stimuli, while the social alterations are instead due to altered development of
social circuits. These findings indicate maternal FLX treatment, independent of maternal stress, can induce
behavioral disruptions in mammalian offspring, thus contributing to our understanding of the developmental role
of the serotonin system and the possible risks to offspring of SSRI treatment during pregnancy.
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Introduction
Dysregulation of the serotonin (5-hydroxytryptamine;

5-HT) system is implicated in numerous psychiatric dis-
orders (Nordquist and Oreland, 2010). This system inner-
vates the entire CNS, allowing 5-HT to influence a variety
of behavioral functions including: sleep-wake cycle, per-
ception, appetite, aggression, sexual behavior, sensori-
motor activity, pain sensitivity, mood, and learning and
memory (Lucki, 1998; Smythies, 2005). During prenatal
development, 5-HT is one of the earliest neuromodulators
to become active, and 5-HT levels, the expression of the
5-HT transporter, and 5-HT receptors are at their peak,
allowing 5-HT to modulate critical neurodevelopmental
processes such as neurogenesis, neuroapoptosis, den-
dritic refinement, cell migration, and synaptic plasticity
(Sodhi and Sanders-Bush, 2004; Whitaker-Azmitia, 2010).
During this time, the placenta is a transient source of 5-HT

for the fetal forebrain until the forebrain is innervated by
5-HT-producing raphe fibers (Muller et al., 2016). In-
creased 5-HT transfer from the placenta has been shown
to blunt 5-HT axonal outgrowth within the fetal forebrain
(Goeden et al., 2016). Thus, alterations to 5-HT activity
from either exogenous maternal or endogenous fetal
sources can impact circuit development, possibly in-
creasing risk for psychiatric disorders.

5-HT is a dominant target for treatment in many psy-
chiatric conditions through frequently prescribed medica-
tions such as selective serotonin reuptake inhibitors
(SSRIs). SSRIs have become the first-line pharmacother-
apy for mood disorders in pregnant women (Andrade
et al., 2008) and are among the most commonly pre-
scribed medications in this population, with frequency
estimates in the United States at 5–13% (Cooper et al.,
2007; Andrade et al., 2008; Ramos et al., 2008). As the
number of pregnant women taking antidepressants has
increased, so has the number of studies investigating their
safety and effects during pregnancy. Initial studies on
neonatal outcomes reported no gross abnormalities (Misri
et al., 2000); however, adverse outcomes like low birth
weight and respiratory distress were reported (Oberlander
et al., 2006). Sufficient time has accrued since SSRIs were
introduced that human epidemiological studies are now
able to assess the impact of SSRI use during pregnancy
on risk of offspring psychiatric disorder diagnoses. The
initial focus has been on autism spectrum disorder (ASD),
likely because of the young age at onset and because
5-HT dysregulation has been implicated in ASD: 30% of
ASD patients exhibit elevated 5-HT levels in whole-blood
platelets (Benza and Chugani, 2015), changes to 5-HT can
either worsen or alleviate certain symptoms (McDougle
et al., 1993, 1996; Hollander et al., 2005), increased 5-HT
axons are observed postmortem (Azmitia et al., 2011), and
PET studies demonstrate altered 5-HT synthesis in vivo
(Chugani et al., 1999, 1997). A meta-analysis of the recent
epidemiological studies examining this possible SSRI-ASD
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link reported a significant case-control association be-
tween maternal antidepressant use and ASD risk in off-
spring. This remained when adjusted for maternal
psychiatric history (Odds Ratio [OR], 1.52; 95% Confi-
dence Intervals [CI], 1.09–2.12; Mezzacappa et al., 2017),
although parallel analysis of existing cohort studies did
not quite show independence from psychiatric history
(HR, 1.26; 95%CI, 0.91–1.74). Likewise, two additional
studies provide evidence supporting (OR 1.45; 95%CI,
1.13–1.85; Rai et al., 2017), and not clearly supporting (OR
1.23; 95%CI 0.96–1.57; Viktorin et al., 2017), an effect of
antidepressant usage independent from maternal diagno-
sis. Thus, although inconsistent in rejecting the null hy-
pothesis, the CIs reported also clearly do not reject a
modest independent effect of magnitude on par or above
that typically seen for common genetic variants in psychi-
atric disease (ORs �1.1; Schizophrenia Working Group of
the Psychiatric Genomics Consortium, 2014). Regardless,
direct causality and biological mechanisms cannot be
inferred from epidemiological studies. However, animal
studies can provide clear indication as to whether tran-
sient SSRI exposure, independent of maternal psychiatric
stress, can alter long-term behaviors in mammals and
provide ready access to related neurobiology.

We developed a rodent model of maternal SSRI exposure,
in the absence of maternal stress, to determine whether
drug alone induces behavioral disruptions related to the core
symptoms of ASD in offspring. As genetic factors are clearly
an important causation of ASD (Geschwind, 2008), it is likely
that environmental contributions to ASD risk interact with
existing genetic susceptibility (Hertz-Picciotto et al., 2006;
Klei et al., 2012). It has been suggested that environmental
factors that might modulate social behavior or language
could tip the balance toward ASD in children with genetic
vulnerability (Geschwind, 2008). As we initially thought
SSRI exposure alone might be a relatively modest factor,
we also exposed Celf6 mutant mice, which exhibit a
subtle ASD-like phenotype (Dougherty et al., 2013), to
maternal SSRI and analyzed offspring behavior for possi-
ble potentiation of the ASD-like phenotype. The Celf6
mutant was ideal for this gene � environment experiment
because this model already shows subtle ASD-related
deficits, specifically decreased early social communica-
tive behavior and a resistance to change behavior pat-
terns (Dougherty et al., 2013), which allows for possible

further disruption to other social and repetitive behaviors
with the addition of FLX. Further, Celf6 is enriched in
5-HT-producing cells and, when deleted, results in a de-
crease in brain 5-HT levels (Dougherty et al., 2013). Thus,
we hypothesized that early exposure to FLX may interact
synergistically on the 5-HT system to further disrupt be-
havior in mice with this genetically vulnerable back-
ground. We also examined the impact of adult SSRI re-
exposure on ameliorating these disruptions to better
understand their mechanism: if persistent alterations in
5-HT activity levels are playing a key role in these behav-
ioral abnormalities, pharmacotherapy should reverse
them. If not, it would indicate underlying behavioral cir-
cuits were permanently altered by maternal SSRI expo-
sure. Overall, across multiple exposure durations, we
found strong evidence supporting the hypothesis that
transient exposure to SSRIs has long-term consequences
on behaviors relevant to ASD symptoms. Furthermore,
while a subset of these consequences are reversible with
acute or chronic adult SSRI re-exposure, other pheno-
types are exacerbated. Thus, maternal SSRI exposure has
complex, long-lasting effects on the serotonergic system
in the mammalian brain.

Materials and Methods
Animals

All animal procedures were performed in accordance
with the Washington University in St. Louis animal care
committee regulations. Mice were house in translucent
plastic cages measuring 28.5 � 17.5 � 12 cm with corn-
cob bedding and standard lab diet and water freely avail-
able. The colony room lighting was a 12/12 h light/dark
cycle; room temperature (�20–22°C) and relative humid-
ity (50%) were controlled automatically. All mice used in
this study were maintained and bred in the vivarium at
Washington University in St. Louis and were all group-
housed. The C57BL/6J wild-type (WT) inbred strain (https://
www.jax.org/strain/000664; RRID: IMSR_JAX:000664) and the
Celf6 mutant line (https://www.jax.org/strain/028389; RRID
:IMSR_JAX:028389) were used in this study. Five separate
cohorts of mice were used based on maternal drug exposure
duration and mouse line: Celf6-Extended, C57-Extended,
Long Prenatal, Short Prenatal, and Rescue (Table 1). Celf6
mutant mice were generated on the C57BL/6 background

Table 1. Cohort sample sizes distributed between sexes, and behavioral tests

FLX exposed Vehicle exposed
Cohort Genotype Males Females Total Litters Males Females Total Litters Behavioral tests
Celf6-Extended Celf6�/� 11 12 23 10 9 19 Developmental milestones and reflexes,

sensorimotor battery, social approach,
marble burying, T-maze, 1-h locomotor
activity

Celf6�/- 33 23 56 19 32 19 51 17
Celf6-/- 13 12 25 15 14 29

C57-Extended C57BL/6J 14 16 30 4 16 19 35 5 Juvenile play, marble burying, T-maze,
tube test, von Frey assessment

Long Prenatal C57BL/6J 7 13 20 3 16 9 25 4 Developmental milestones and
reflexes, social approach, T-maze,
marble burying, tube test

Short Prenatal C57BL/6J 10 13 23 4 9 13 22 3
Rescue C57BL/6J 9 � VEH 10 � VEH 19 9 19 � VEH 20 � VEH 39 7 von Frey assessment, T-maze, tube

test, 1-h locomotor activity10 � FLX 10 � FLX 20
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by deletion of exon 4 of the Celf6 gene as previously
described (Dougherty et al., 2013). For the Celf6-Ex-
tended cohort, heterozygous breedings pairs were used to
generate Celf6�/�, Celf6�/-, and Celf6-/- littermates (Table 1).
Offspring were genotyped using standard reagents and
primers for amplification of the region spanning exons 3 and
4: forward, ATCGTCCGATCCAAGTGAAGC and reverse,
CTCCTCGATATGGCCGAAGG. C57BL/6J breeding pairs
were used to generate the C57-Extended, Long Prenatal,
Short Prenatal, and Rescue cohorts (Table 1). The C57-
Extended cohort served to replicate and extend the findings
from the Celf6-Extended cohort. Mice were examined for
ultrasonic vocalization (USV) production, developmental
milestones, and reflexes, and subsets were used for further
behavioral assessment.

Maternal SSRI exposure
In most countries, fluoxetine (FLX, Prozac) was the first

SSRI to become available for clinical use (Hiemke and
Härtter, 2000). Therefore, FLX is likely to be the most-
represented antidepressant in the epidemiological studies
of SSRI use during pregnancy. To mimic the 5-HT system
in human mothers already taking an antidepressant be-
fore pregnancy, dams were exposed to FLX at least one
week before mating. FLX crosses the placental barrier at
a rate in mice comparable to that in humans (Noorlander
et al., 2008). To avoid inducing unwanted maternal stress
that can occur with daily injections, which has been
shown to have adverse effects on the developing brain
(Matrisciano et al., 2013), FLX was administered orally
through drinking water sweetened with 1% saccharin to
mask unpleasant drug taste. Control dams received 1%
saccharin-only water (VEH). FLX capsules (20 mg each;
Camber Pharmaceuticals, Inc) were dissolved into water
containing 1% saccharin sodium salt hydrate (Millipore
Sigma). The FLX dose used in this study was equivalent to
the maximum recommended human dose (MRHD) of 80
mg/d on a mg/m2 basis (Marken and Munro, 2000). The
dose calculations are based on equivalent surface area
dosage conversion factors (Freireich et al., 1966) and
approximate drinking water consumed daily (Bachmanov
et al., 2002). Average drug water intake per day was
recorded throughout the study to monitor drug exposure
levels. The FLX water was prepared so that each mouse
would consume 48 mg/d (16 mg/kg/d based on a 30-g
mouse) or 6.5 ml/d of 0.074 mg/ml FLX in 1% saccharin
water. Females of the same drug group were co-housed
to reduce stress induced by isolation housing, and placed
into the cage of a single-housed male for breeding. On
detection of a vaginal plug following breeding, the females
were removed from the male to isolate maternal drug
exposure effects and avoid paternal drug exposure. Three
drug exposure durations were used. Extended exposure
continued until postnatal day (P)14, the age just before
pups begin to consume food and water, to avoid direct
drug exposure in the pups. Long Prenatal exposure lasted
until birth of the pups, and Short Prenatal exposure was
stopped at embryonic day (E)16 (Fig. 1A).

Adult SSRI re-exposure
At P60, FLX or VEH was administered orally through

drinking water sweetened with 1% saccharin. All param-
eters and dosing were as described above. Average drug
water intake per day was recorded throughout the study
to monitor drug exposure levels.

HPLC
Reverse-phase HPLC with fluorescence detection was

used to separate and quantify FLX and its major active
metabolite norfluoxetine (NFLX) in mouse brain tissue
according to previously published methods (Unceta et al.,
2010; Corbett et al., 2012). P9 mouse pups and adult
dams exposed to extended FLX or VEH were deeply
anesthetized via isoflurane, killed via rapid decapitation,
and the brain extracted and flash frozen in –70° isopen-
tane and stored at –80˚C until HPLC preparation.

Reagents and materials
Fluoxetine hydrochloride (FLX; lot #SLBL4347V) and its

primary active metabolite, norfluoxetine hydrochloride
(NFLX), were purchased from Sigma-Aldrich. Sodium ac-
etate buffer (0.050 M) was prepared from sodium acetate
(Fisher Scientific, Inc.) and glacial acetic acid (VWR
brand). Borate buffer (0.1 M) was prepared from boric
acid, H3BO4 (Sigma) and sodium hydroxide (Fisher Scien-
tific). Solvents were HPLC-grade acetonitrile (Pierce) and
water purified using a Milli-Q system (Millipore Corpora-
tion). Stir bar sorptive extraction (SBSE) was performed
using GERSTEL-Twister sorptive stir bars (GERSTEL
Gmbh & Co. KG) obtained from Agilent Technologies. The
stir bars are 10-mm long and are coated with a 0.5-mm
film thickness of polydimethylsiloxane (PDMS). Extrac-
tions were conducted in Fisherbrand 21 � 70-mm amber
glass vials. Desorptions were performed in Varian 4.0-ml
clear glass vials with PTFE/sil septa containing Agilent
400-�l glass inserts.

Sample preparation
Approximately 100-mg samples of brain tissue (�0.1

mg) were weighed. One milliliter of purified water was
added to each sample before homogenization. Four con-
trol samples were spoked with FLX and NFLX to yield a
final concentration of 120 and 150 ng of FLX and NFLX,
respectively.

Instrumentation
Chromatographic separations were conducted on a

Varian ProStar HPLC system with Galaxie software, a
Varian ProStar Model 410 autosampler, and a Hitachi
Model L-2485 Elite LaChrom fluorescence detector. The
fluorescence detector was set at 228 nm (excitation) and
284 nm (emission). Separations of 100-�l injections were
achieved on a GRACE Platinum C18 reverse-phase column
(250 � 4.6 mm, 5-�m particle size). The mobile phase
consisted on a 30:70 (v:v) of 0.050 M sodium acetate buffer
(pH 4.5) and acetonitrile delivered isocratically at a flow rate
of 1.0 ml/min. The retention times for NFL and FLX were
10.0–10.9 and 11.7–12.0 min, respectively.

Method validation
Individual stock solutions were prepared of 160 mg/l of

FLX and 200 mg/l of NFLX in acetonitrile by weighing 1–2
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Figure 1. Maternal FLX throughout pregnancy alters early communicative behavior. A, Schematic of the paradigm for maternal FLX
exposure, with approximate equivalents in brain development to human pregnancy, and the mouse age for each behavioral test. B,
Boxplot of number of USVs at P5, P7, and P9 from Celf6-Extended FLX and VEH Celf6 mutant and WT littermates (drug, p �
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mg of each solid standard to a 10.00 ml and diluting with
acetonitrile. The solutions were stored in the freezer at
–20°C. A mixed stock solution of FLX and NFLX was
prepared in acetonitrile by combining 5 mL of each indi-
vidual stock solution in to a vial for a final concentration of
80 and 100 �g/ml, respectively, and stored in the dark at
–20°C. Calibration standard solutions were prepared in
acetonitrile and ranged from 0.016 to 10 �g/ml. Calibra-
tion curves were linear over the entire range of calibration
with R2 for FLX and NFLX ranging from 0.9998 to 0.9999.
The limit of detection for FLX was 16 parts-per-billion
(ppb) and for NFLX was 20-ppb concentration in solution.
When calculated as tissue concentration and corrected
for recovery, the limits of detection were 164 ng/g for FLX
and 320 ng/g for NFLX.

SBSE of FLX and NFLX
Before use, each Gerstel stir bar was washed with

acetonitrile for 20 min in a 15-ml vial with the magnetic
stirrer set at 300 rpm at 75°C, rinsed with purified water,
and patted dry with a lint-free tissue. One mL of 0.1 M
borate buffer was added to each brain tissue sample and
a stir bar was added. Each sample was stirred at 300 rpm
at 75°C for 45 min and allowed to cool to room temper-
ature. The stir bar was removed with a magnet on the
outside of the extraction vial. The stir bar was rinsed with
purified water and patted dry with a lint-free tissue. For
desorption, the stir bar was placed into a 2-ml sample vial
with a glass vial-insert into which 0.350-ml acetonitrile
had been added. Vials were capped and the analytes
desorbed by magnetic agitation at 300 rpm and at 75°C
for 30 min. Each vial was cooled slightly before opening to
remove the stir bar with a magnet on the outside of the
vial. The vial caps were replaced and the samples ana-
lyzed.

Behavioral tasks
Multiple behavioral assays across the same domain

were employed to adequately determine presence of be-
havioral disruptions. Experimenters were blinded to ex-
perimental group designations during behavioral testing.
Experimenters were all female, except during Celf6-
Extended developmental assessments in which one fe-
male and one male experimenter each collected data. No
effect of experimenter sex was observed for those data.
Order of and age at testing were chosen to minimize
effects of stress and previous testing. Developmental re-
flexes and milestones assessment of the Celf6-Extended,
Long Prenatal, and Short Prenatal cohorts occurred on
P5–P14. Adult behavioral testing for all cohorts began at
P60. Adult behavioral testing of the Celf6-Extended co-
hort included a battery of sensorimotor measures, fol-

lowed by the social approach test, marble burying,
spontaneous alternation T-maze, and the 1-h locomotor
activity task. Mice in the C57-Extended cohort were as-
sessed in the juvenile interaction task P22–P30, and adult
behavioral testing included marble burying, spontaneous
alternation T-maze, the tube test of social dominance, and
the von Frey assessment of tactile sensitivity. Both the
Long Prenatal and Short Prenatal cohorts were tested as
adults in the social approach test, followed by spontane-
ous alternation T-maze, marble burying, and the tube test
of social dominance. Following initiation of FLX or VEH
re-exposure at P60, mice in the Rescue cohort were
immediately tested for tactile sensitivity in the von Frey
assessment, spontaneous alternation T-maze, tube test
of social dominance, and the 1-h locomotor activity test to
assess acute effects of re-exposure. After three weeks of
re-exposure, all mice were retested in the same tasks to
assess chronic effects of re-exposure on behavior. The
Rescue cohort was not tested before re-exposure, such
that no testing occurred during the pre-weaning period or
juvenile development.

Maternal isolation-induced USV recording
USVs are considered a strongly conserved affective

and communicative display that elicits maternal search
and retrieval responses, nursing, and caretaking, and is
used in the rodent literature to model early communicative
deficits (Haack et al., 1983). Playback experiments dem-
onstrated lactating dams respond rapidly with searching
behavior to pup isolation calls. In addition, these dam
behaviors are dependent on acoustic call features, such
as duration and frequency, suggesting these features
have communicative value (Wöhr et al., 2008). This be-
havior has a distinct developmental trajectory, allowing its
use for the study of both early communication and neu-
robehavioral development in infant rodents (Branchi et al.,
2001). USV production due to maternal isolation in the
C57BL/6J mouse pup normally peaks just after P7, dis-
appearing completely by P14 (Rieger and Dougherty,
2016).

For this study, USV recording occurred on P5, P7, and
P9. Dams were removed from the home cage and placed
into a clean standard mouse cage for the duration of
testing. Pups in the home cage were placed into a warm-
ing box (Harvard Apparatus) for at least 10 min before the
start of testing to control temperature. Skin surface tem-
perature was recorded immediately before placement in
the USV recording chamber via a noncontact HDE Infra-
red Thermometer to ensure consistent temperatures as
lower body temperature of the pup is known to increase
USV production (Branchi et al., 1998). Differences in tem-
perature between FLX and VEH pups were not detected,

continued
0.000005; age � drug � genotype interaction, p � 0.049); � denotes significant difference at p � 0.002 between P9 VEH-exposed
Celf6 mutant and WT littermates. C, D, Boxplots of number average USV duration (C; drug, p � 0.000005) and pitch range of simple
USV calls (D; drug, p � 0.000005) at P5, P7, and P9 from Celf6-Extended FLX and VEH Celf6 mutant and WT littermates. E, Boxplot
of number of USVs at P5, P7, and P9 from Long Prenatal FLX and VEH mice (drug, p � 0.0001). F, Boxplot of pitch range of simple
USV calls from Long Prenatal FLX and VEH pups (drug, p � 0.027). G, Boxplot of number of USVs at P5, P7, and P9 from Short
Prenatal FLX and VEH mice (drug, p � 0.840). For boxplots, thick horizontal lines signify respective group medians, boxes are
25th–75th percentiles, whiskers are 1.5 � IQR, closed and open circles depict outliers.
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indicating the differences in USV production were not
secondary to thermoregulation differences. For recording,
pups were individually removed from the home cage and
placed into an empty standard mouse cage (28.5 � 17.5
� 12 cm) inside a sound-attenuating chamber (Med As-
sociates). USVs were obtained using an Avisoft Ultra-
SoundGate CM16 microphone, Avisoft UltraSoundGate
416H amplifier, and Avisoft Recorder software (gain � 2
dB, 16 bits, sampling rate � 250 kHz). Pups were re-
corded for 3 min, after which they were weighed and
returned to their home cages inside the warming box.
Tissue from a toe was also collected at this time on P5 for
genotyping. Frequency sonograms were prepared from
recordings in MATLAB [frequency range � 25–120 kHz,
FFT (Fast Fourier Transform) size � 512, overlap � 50%,
time resolution � 1.024 ms, frequency resolution � 488.2
Hz], and individual syllables and other spectral features
were identified and counted from the sonograms accord-
ing to a previously published method (Dougherty et al.,
2013; Rieger and Dougherty, 2016; Maloney et al., 2018),
adapted from validated procedures (Holy and Guo, 2005).

Developmental reflexes and milestones assessment
Mice were evaluated at several time points for achieve-

ment of physical and behavioral milestones of develop-
ment. A visual check for the presence of detached pinnae
was done at P5, and eye opening at P14. Weight was
measured at P5, P7, P9, and P14, concurrent with USV
recordings and righting reflex testing. To assess surface
righting reflex at P14, each mouse was placed in a 50-ml
conical tube containing a lid with a hole. When the belly of
the mouse was facing down, the conical tube was quickly
turned 180° in a smooth motion placing the mouse on its
back. The time for the mouse to right itself with all four
paws underneath its belly was recorded up to 60 s. Each
mouse received three trials, which were averaged for
analysis.

Juvenile social interaction
Full-contact social behaviors were assessed through

juvenile interactions using a procedure adapted from pre-
viously published methods (Peñagarikano et al., 2011).
Mice were tested between P22–P30 and were paired with
an age- and sex-matched C57BL/6J stimulus mouse de-
rived from standard mouse breeding. All mice were
weighed before testing. The procedure consisted of three
consecutive 10-min trials. During trial 1, the stimulus
mouse was habituated to the testing chamber. For trial 2,
the test animal was habituated to the chamber while the
stimulus mouse was placed in a holding chamber lined
with clean corn cob bedding. For the third trial, the stim-
ulus mouse was placed back into the testing chamber
with the test mouse and their interactions were recorded
for 10 min. The testing chamber was cleaned with 70%
ethanol between test animals and the corn cob bedding
was replaced. The test apparatus was a transparent en-
closure (25 � 15 � 12 cm) containing a layer of clean corn
cob bedding on the floor and surrounded by a clear
acrylic enclosure measuring 28 � 17.5 � 37.5 cm. A 4-cm
diameter hole on the top of the enclosure allowed for
placement of a digital video camera (Sony HDR-Cx560V

High Definition Handycam camcorder) to record scenes
inside the apparatus. The apparatus was housed inside a
custom built sound-attenuating chamber (70.5 � 50.5 �
60 cm), which was equipped with two LED infrared lights
(Crazy Cart 48-LED CCTV infrared Night Vision Illumina-
tor) to allow for capture of social behaviors in darkness.

Video files in MPG format were acquired in 360 � 240
or 544 � 362 pixel resolution with a frame rate of 25 or 30
frames per second. Videos were minimally post-pro-
cessed to key only grayscale images, remove associated
audio track, and convert to AVI containers before tracking.
Simultaneous supervised tracking of both the stimulus and
experimental animals was performed in MiceProfiler (de
Chaumont et al., 2012) on the Icy platform, with scale value
of 0.35 and pixel intensity threshold used to identify mice
optimized for each video as necessary to ensure most ac-
curate tracking. This software allows for experimenter su-
pervision of tracking through manual intervention and
frame-by-frame correction, and was validated previously by
comparing results obtained with MiceProfiler to those ob-
tained by human visual inspection. Social contact data were
similar between supervised tracking with MiceProfiler and
the experimenter-obtained values (de Chaumont et al.,
2012). In the current application, manual corrections of
tracking was performed as necessary through the course of
each video. Two videos were excluded due to unexpected
differences in zoom and resolution, and 11 other videos
were excluded, because one mouse left the field of view for
a portion of the ten minute testing time.

Tracked videos were then processed using a custom
pipeline in MATLAB as follows. MiceProfiler data points
for each frame and �x,y� positions of head, center of
mass (“body”), and tail were parsed from the XML track-
ing data, pixel coordinates were converted to centimeters
using the real world size of the testing apparatus, and
frame number converted to time in seconds using the
frame rate. Occasionally isolated frames contained miss-
ing data points occur where MiceProfiler does not record
a value, and these were recorded as NaN (not-a-number)
in MATLAB. Because of these occasional missing values,
and jitter which occurs during tracking, data were smoothed
using a 11-point moving average smooth, which resulted
in more accurate tracking within MiceProfiler. After
smoothing, positional values for head, body, and tail were
used to estimate two-dimensional kinematics, using the
first difference approximation for derivatives: velocity, ac-
celeration, and jerk. Vectors defined by the head and tail
positions were used to determine relative orientation of
the two mice in the field of view, and final processed data
contained the following variables by frame: distance trav-
eled, length of body axis (head-to-tail) and direction (ra-
dians) with respect to the field of view (coordinate system
�0,0� in lower left), the direction (radians) and magnitude
of each 2D component of motion (velocity, acceleration,
jerk) for each animal, and inter-animal parameters (angle
between both animals and between their velocity vectors,
all pairwise distances in cm between head, body, tail),
from which total distance traveled and average speed
(cm/s) were determined. Thresholds of 3.502 cm for head-
to-head distance and 3.125- or 3.145-cm head-to-tail
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distance were used to define head sniffing and anogenital
sniffing behaviors, respectively. These thresholds were
determined through examination of the histogram of all
head-to-head and head-to-tail distances across all videos
and verified by manual inspection of video after applying
threshold. After thresholding, bouts of behavior were
scored as frames with distances below threshold, and
bouts separated by 35 frames or less (�5.10 or �0.17 s)
were merged. From these, fraction of total frames for each
behavior, as well as number and average duration of
bouts of behavior were determined. Measures of overall
activity per mouse, such as distance traveled and average
speed, were also extracted.

Social approach
The social approach task was used to quantify socia-

bility and preference for social novelty, and as previously
described (Moy et al., 2004; Dougherty et al., 2013). So-
ciability was defined here as a tendency to pursue social
contact. Preference for social novelty was defined as
pursuing social contact with a novel conspecific as com-
pared to a conspecific from a previous interaction. The
social approach testing apparatus was a rectangular clear
acrylic box divided into three separate chambers each
measuring 19.5 � 39 � 22 cm including clear acrylic
dividing walls with rectangular openings measuring 5 � 8
cm to allow for movement between chambers, which
could be shut off by sliding down clear acrylic doors. This
clear acrylic apparatus was housed inside a custom built
sound-attenuating chamber (70.5 � 50.5 � 60 cm), lit with
LED Flex Ribbon Lights (Commercial Electric, Home De-
pot) to provide �20 lux illumination in the chamber. A
small stainless steel conspecific cage (Galaxy Pencil/Util-
ity Cup, Spectrum Diversified Designs, Inc), measuring 10
cm in height and 10 cm in diameter at its base, was
placed in each outer chamber, and had vertical bars that
allowed minimal contact while preventing fighting. A
CCTV camera (SuperCircuits) connected to a PC com-
puter running the software program ANY-maze (Stoelting
Co.; RRID: SCR_014289) tracked the movement of the
mouse within the apparatus (Dougherty et al., 2013; Mi-
randa et al., 2015) and time spent in each investigation
zone surrounding the conspecific cages. The investiga-
tion zones encompassed an area of 2 cm around the
conspecific cages. Only the head was tracked in the
investigation zone to quantify intention to investigate
the conspecific. Total distance traveled was also ascer-
tained as an index of general activity levels. The entire
apparatus was cleaned between animals with a 2% chlo-
rohexidine diacetate solution (Nolvasan, Zoetis). The con-
specific cages were cleaned with 70% ethanol solution
between each mouse.

The social approach task consisted of four, consecutive
10-min trials. For the first trial, the mouse was placed in
the middle chamber with the doors to the outer chambers
shut and allowed 10 min to habituate to the apparatus.
During the second trial (habituation trial), the mouse was
allowed to freely investigate and habituate to all three
chambers for 10 min. Performance of the mouse during
the third trial (sociability trial) allowed for the evaluation
of sociability to an unfamiliar, sex-matched conspecific

(C57BL/6J) placed in one conspecific cage versus an
empty conspecific cage. Again, the mouse was allowed to
move freely within the apparatus for 10 min. During the
fourth trial (preference for social novelty trial), the now
familiar conspecific remained in the apparatus, and a new,
unfamiliar sex-matched conspecific (C57BL/6J) was placed
in the other conspecific cage. The mouse was allowed to
move freely within the apparatus for 10 min, and the
mouse’s preference for social novelty was quantified. Place-
ment of conspecifics was counterbalanced.

Tube test of social dominance
Under laboratory conditions, mice begin to develop

social hierarchy behaviors at six weeks of age, which
result in dominance ranks within their social groups
(Hayashi, 1993). The tube test of social dominance allows
for examination of social dominance rank between two
pairs of mice after eight weeks of age and was adapted
from previously described methods (Wang et al., 2011).
The apparatus consisted of a clear acrylic tube measuring
3.6 cm in diameter and 30 cm in length. This task spanned
5 consecutive days. On days 1 and 2, each mouse was
exposed to the test apparatus to habituate the animals to
the testing tube and to walking through the testing tube to
the other side. This was conducted from each side of the
tube. On days 3–5, dominance bouts were conducted
with sex-matched pairs of FLX and VEH mice, avoiding
cage mate pairings. A new pair was used for each bout
such that each mouse was paired with three distinct
partners, and side of entry was alternated. On each day,
male bouts were conducted first, followed by female
bouts. For each bout, a small acrylic divider was placed in
the center of the tube, prohibiting the animals from cross-
ing the center, and each mouse was allowed to enter the
tube from one end. Once the animals met in the center,
the divider was lifted and the bout lasted 2 min or until one
animal was backed out of the tube by the other (all four
paws exiting the tube). The animal remaining in the tube
was the winner of the bout (dominant) and the animal that
was backed out was the loser of the bout (subordinate).
The bouts were recorded with a USB camera connected
to a PC laptop (Lenovo) and subsequently scored by an
observer. The percentage of bouts won was calculated for
each mouse, and compared between groups. The acrylic
tube was cleaned with a 2% chlorohexidine diacetate
solution (Nolvasan, Zoetis) between each bout.

Marble burying task
Marble burying behavior in mice serves as a proxy for

repetitive and perseverative digging behavior (Angoa-
Pérez et al., 2013), and our procedure was adapted from
these previously described methods. The apparatus was
a transparent enclosure (47.6 � 25.4 � 20.6 cm) housed
within a sound-attenuating chamber (70.5 � 50.5 � 60
cm), lit with LED Flex Ribbon Lights (Commercial Electric,
Home Depot) to provide �20 lux illumination. Each enclo-
sure was filled with 3 cm of clean, autoclaved corncob
bedding. Using a template, 20 clear marbles were placed
in five rows of four. For testing, the mouse was placed in
the center of the enclosure, and allowed to freely explore
for 30 min. The animal was then removed and two inde-
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pendent observers scored buried marbles. A marble was
considered buried when at last 2/3 of it was covered by
bedding. The average score between the two observers
was used for analysis. The correlation between observers’
scores for all marble burying experiments in this study
was r � .92, p � 0.000. In between animals, new fresh,
autoclaved bedding was used and all marbles were
cleaned thoroughly with 70% ethanol.

Spontaneous alternation T-maze
The spontaneous alternation T-maze was used to as-

sess perseverative exploratory behavior and was adapted
from previously published methods (Peñagarikano et al.,
2011). Testing was conducted under dim overhead light-
ing. The apparatus was made of opaque acrylic and
comprises a 20 � 8.7 cm start chamber with two radiating
arms, each measuring 25 � 8.7 cm. Removable doors
were used to sequester the animal in the start box, or
either maze arm. Testing consisted of 10 consecutive
trials, each lasted 2 min or until the animal made an arm
choice. For each the first trial, the animal was placed in
the start box with the door closed for 2 min to habituate to
the apparatus. The door was then removed and the ani-
mal allowed to explore either the right or left arm of the
maze. An arm choice was determined when the animal
entered the arm with all four paws. Then the door to that
arm was closed, and the animal allowed to explore it for 5
s. The door was again lifted and the animal was allowed to
return to the start box and the door shut. If the animal did
not quickly move back to the start area, it was gently
guided by placement of a hand or object behind the
animal, yet avoiding picking the animal up by the tail and
moving back to the start chamber as this can result in a
negative association with that arm and impact the spon-
taneous alternation. After 5 s, the start box door was
again lifted to start the next trial. If no arm choice was
made after 2 min, the animal was gently guided back to
the start box. After 10 consecutive trials, the animal was
returned to its home cage and the apparatus cleaned
thoroughly with a 2% chlorohexidine diacetate solution
(Nolvasan, Zoetis). Each of the two trials was scored as an
alternation, a non-alternation or no choice trial. The num-
ber of non-alternations and percentage of trials alternat-
ing were compared between groups.

Tactile sensitivity assessment with von Frey filaments
The tactile sensitivity task assessed reflexive, mechan-

ical sensitivity to a punctate stimulus (von Frey filaments),
and was conducted as previously described (Mickle et al.,
2015). The testing apparatus consisted of a metal grid
surface elevated 63.5 cm, which allowed access to the
plantar surface of the animals’ paws. On top set individual
acrylic boxes (10 � 10 � 10 cm) open on the bottom and
opaque on three sides to prevent visual cues between
animals. All mice were acclimated to the testing room 30
min before habituation and testing. On days 1 and 2, all
mice were habituated to the testing apparatus for 1 h. On
day 3, mice were allowed to acclimate to the testing
apparatus for 30 min before start of testing. Eight different
von Frey hair filaments (applying 0.04–2 g of force; North
Coast Medical and Rehabilitation Products) were applied

to the plantar surface of each animal’s hind paw and
withdrawal responses were recorded. Presentations
started with the lowest filament strength (0.04 g) and
increased to the maximum filament strength (2 g). Each
filament was applied to the plantar surface of each hind
paw five times, and the number of paw withdrawal re-
sponses was recorded as percentage of responses. To
evaluate the changes in paw withdrawal responses to the
whole range of filaments over the testing duration, the
area under the curve (AUC) was calculated for each ani-
mal.

One-hour locomotor activity
A 1-h locomotor activity/exploration test was con-

ducted to assess the general activity, exploratory behav-
ior, and emotionality of the mice. This test also served as
a control test to identify any differences in general activity
that may interfere with the interpretation of cognitive,
social, and/or emotionality tests. The mice were evaluated
over a 1-h period in transparent enclosures (47.6 � 25.4
� 20.6 cm). A digital video camera connected to a
PC computer running ANY-maze (Stoelting Co.; RRID:
SCR_014289) tracked the movement of the animal (Pala-
nisamy et al., 2011; Dougherty et al., 2013) within a 33 �
11-cm central zone and a bordering 5.5-cm peripheral
zone. General activity variables (distance traveled and
time at rest) along with measures of emotionality, includ-
ing “time spent,” “distance traveled,” and “entries made
into the central zone,” as well as “distance traveled in the
peripheral zone” were analyzed. Each enclosure was
cleaned with 70% ethanol solution between each mouse.

Sensorimotor battery
Balance, strength, and coordination were evaluated by

a battery of sensorimotor measures. The battery included
walking initiation, ledge, platform, pole, and inclined and
inverted screen tests. An observer manually recorded
time in hundredths of a second using a stopwatch for
each test. Two trials were conducted for each test and the
average of the two yielded a single time, which was used
in the analyses. To avoid exhaustion effects, the order of
the tests during the first set of trials was reversed for the
second set of trials. The order of the tests was not coun-
terbalanced between animals so that every animal expe-
rienced each test under the same conditions. All tests
lasted a maximum of 60 s, except for the pole test, which
lasted a maximum of 120 s. The tests are described
below.

The walking initiation test assessed the time taken by a
mouse to move out of a small area. The mouse was
placed on a flat surface inside a square measuring 21 �
21 cm, marked on the surface of a supply cart with white
tape. The time for the mouse to leave the square was
recorded, i.e., all four limbs concurrently outside of the
square. Basic balance ability was assessed by the perfor-
mance on the ledge and platform tests. The ledge test
required the mouse to balance on a clear acrylic ledge,
measuring 0.50 cm wide and standing 37.5 cm high. Time
the mouse remained on the ledge was recorded. During
the platform test, the mouse used basic balance ability to
remain on a wooden platform measuring 1.0 cm thick and
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3.3 cm in diameter and elevated 27 cm above the floor.
The time the mouse was able to balance on the platform
was recorded. The pole test was used to evaluate fine
motor coordination. The mouse was placed head upward
on a vertical pole with a finely textured surface and the
time taken by the mouse to turn downward 180° and
climb to the bottom of the pole was recorded. The 60°,
90°, and inverted screen tests assessed a combination of
coordination and strength. The mouse was placed head
oriented downward in the middle of a mesh wire grid
measuring 16 squares per 10 cm, elevated 47 cm and
inclined to 60° or 90°. The time required by the mouse to
turn upward 180° and climb to the top of the screen was
recorded. For the inverted screen test, the mouse was
placed head oriented downward in the middle of a mesh
wire grid measuring 16 squares per 10 cm, elevated 47
cm, and, when it was determined the mouse has a proper
grip on the screen, it was inverted to 180°. The time the
mouse was able to hold on to the screen without falling off
was recorded.

Experimental design and statistical analysis
All statistical analyses were performed using the IBM

SPSS Statistics software (v.24; RRID: SCR_002865) ex-
cept where otherwise stated. Sample sizes, including litter
numbers, for each cohort can be found in Table 1. Before
analyses, all data were screened for missing values, fit
between distributions and the assumptions of univariate
analysis, and homogeneity of variance. ANOVA, including
repeated measures (rmANOVA) and mixed model, was
used to analyze the behavioral data where appropriate,
with main factors of sex and drug exposure. As litter size
can influence behavior, and our samples included litter-
mates, we also conducted accompanying analyses of
covariance (ANCOVAs) with litter size as the covariate,
and report any discrepancies between the results. Linear
mixed modeling was used to analyze datasets containing
missing values, including spectral or temporal USV fea-
tures which cannot be assessed if �10 USVs/session are
produced. For non-normal distributions, equivalent non-
parametric tests were used when available. The Huynh-
Feldt adjustment was used to protect against violations of
sphericity/compound symmetry assumptions where ap-
propriate. Multiple pairwise comparisons were subjected
to Bonferroni correction when appropriate; �2 goodness
of fit test was used to assess categorical variables.
Tukey’s HSD or the Games–Howell method were used as
post hoc tests. Probability value for all analyses was p �
0.05 except where otherwise stated. Test statistics and
other analysis details for each experiment are provided in
Tables 2, 4–6, including observed power and effect sizes
(Cohen, 1988).

Results
Development of SSRI maternal exposure models

To determine the potential of maternal SSRI exposure
to induce behavioral disruptions in offspring reminiscent
of ASD symptomatology, we exposed mouse dams to
FLX during gestation and lactation and examined off-
spring behaviors during development, the juvenile stage,

and adulthood (Fig. 1A; Table 1). We included both
C57BL/6J line and the Celf6 mutant line to examine the
influence of FLX exposure alone or in combination with a
genetically vulnerable background. We also examined dif-
ferent pre- and postnatal durations of FLX to establish
periods of vulnerability. Epidemiological studies are in-
consistent regarding the trimesters of pregnancy most
vulnerable to SSRI-induced ASD risk. To address this, we
used three FLX durations, corresponding to periods of
brain development approximating the trimesters of human
pregnancy. Our designation of “Extended FLX” corre-
sponded to the entire duration of the pregnancy and a
recommended period of nursing (one year) in humans
(E0–P14; Dobbing and Sands, 1979; Levitt, 2003). Both
Celf6 and C57BL/6J mice were exposed for this duration
(Celf6-Extended and C57-Extended). “Long Prenatal”
(E0–P0) exposure approximated the first and second tri-
mesters of human pregnancy. “Short Prenatal” (E0–E16)
approximated the first trimester of human pregnancy (Fig.
1A). Only C57BL/6J mice were used for prenatal-only
exposures. Overall, our experimental design enabled
analysis of both gene � environment interaction and ex-
posure duration effects on behaviors relevant to the
symptoms of ASD.

Maternal FLX disrupts early communicative behavior
in pup offspring

We examined developmental behavior, physical mile-
stones and reflexes in our FLX mice. Quantification of
USV production and features served to assess neurode-
velopmental progress as well as to examine early affective
and communicative behavior known to influence maternal
care behavior (Haack et al., 1983). At P5, P7, and P9, we
observed robust decreases in USVs when FLX lasted
through pregnancy. No influence of sex was observed for
developmental analyses, therefore all data reported below
are collapsed for sex. Output from statistical tests is fully
reported in Table 2. Specifically, Celf6-Extended expo-
sure to FLX reduced USVs independent of Celf6 genotype
(p � 0.000005a; Fig. 1B), yet an interaction with genotype
was also observed (p � 0.049b). Celf6 mutation reduced
USVs in VEH-exposed pups (p � 0.000005cb), replicating
previous work (Dougherty et al., 2013). Further post hoc
tests revealed FLX-induced USV reduction at each age
across all mice (p � 0.024d), except for P5 and P9 Celf6-/-

mice when USVs were already low due to mutation. Ro-
bust reductions in the duration time of calls (p �
0.000005e; Fig. 1C) and the pitch range of simple calls
pups (p � 0.000005f; Fig. 1D) were observed in FLX. Celf6
mutation did not influence spectral or temporal features of
USVs alone or through an interaction with extended FLX .

Since the impact of FLX alone was so strong, and
independent of Celf6 mutation in the Celf6-Extended co-
hort, we examined the impact of prenatal-only exposure
to FLX on USV in C57BL/6J mice. Long Prenatal exposure
to FLX also reduced USVs (p � 0.0001g; Fig. 1E). This
FLX-induced reduction occurred at P5 and P7 (p �
0.0005h), with a trend at P9 (p � 0.056i). Examination of
spectral and temporal features showed Long Prenatal
exposure only altered the pitch range of simple calls (p �
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0.027j; Fig. 1F). Short Prenatal exposure to FLX did not
influence pup USV production (p � 0.840k; Fig. 1G).
Taken together, these findings suggest FLX, when con-
tinued through pregnancy, induced early communicative
deficits in mice in the form of USV reductions, yet FLX
limited to early pregnancy did not influence production
rate. Further, the effect of FLX on USVs was so robust that
we did not have the ability to observe additional interac-
tion with Celf6 mutation.

Developmental assessment of physical milestones
and reflexes

USV suppression may be a consequence of perturba-
tion of specific CNS circuits due to FLX exposure. How-
ever, an alternative explanation is that USV is suppressed
by a FLX-induced gross developmental delay. To explore
this possibility, we examined other developmental traits of

FLX pups. As a measure of general health, we compared
the weight of FLX and VEH mice on P5, P7, P9, and P14.
Mice in all cohorts increased in weight across develop-
mental time points, as expected (p � 0.000005l; Fig.
2A–C), yet the duration of FLX exposure influenced
weight. All Celf6-Extended and Long Prenatal FLX mice
weighed less than VEH pups (p � 0.00005m; Fig. 2A,B)
regardless of genotype at each age examined (p �
0.044n). Interestingly, Short Prenatal FLX resulted in in-
creased weight compared to VEH (p � 0.000008°; Fig. 2C)
at all ages examined (p � 0.023p). However, these weight
differences are less likely a result of the E0–E16 FLX
exposure and more likely an indirect result due to de-
creased litter size in this cohort. Analysis of litter sizes
across treatment groups in each cohort revealed no effect
of litter size for the Celf6-Extended and Long Prenatal
groups (p � 0.3q and p � 0.582q, respectively; Table 2),

Table 2. Statistical summary for Figures 1, 2
Variable Comparison Data structure Statistical test Output p value Post hoc power Effect size
Number of USVs a Celf6-Extended, drug (FLX vs vehicle) Non-normal Two-way rmANOVA F(1,197) � 80.854 p � 0.000005 1 0.641

b Celf6-Extended, age � drug � genotype interaction Non-normal Two-way rmANOVA F(3.66,360.87) � 2.478 p � 0.049 0.667 0.160
c Vehicle at P9 Celf6�/� vs Celf6�/- vs Celf6-/- Non-normal Simple main effect F(2,591) � 15.454 p � 0.000005 0.967 0.422
d Celf6�/� at P5 FLX vs vehicle Non-normal Simple main effect F(1,591) � 5.214 p � 0.023 0.625 0.095
d Celf6�/� at P7 FLX vs vehicle Non-normal Simple main effect F(1,591) � 24.168 p � 0.000005 0.998 0.201
d Celf6�/� at P9 FLX vs vehicle Non-normal Simple main effect F(1,591) � 32.669 p � 0.000005 1 0.234
d Celf6�/- at P5 FLX vs vehicle Non-normal Simple main effect F(1,591) � 8.307 p � 0.004 0.821 0.119
d Celf6�/- at P7 FLX vs vehicle Non-normal Simple main effect F(1,591) � 53.427 p � 0.000005 1 0.301
d Celf6�/- at P9 FLX vs vehicle Non-normal Simple main effect F(1,591) � 35.638 p � 0.000005 1 0.246
d Celf6-/- at P5 FLX vs vehicle Non-normal Simple main effect F(1,591) � 2.724 p � 0.099 0.378 0.071
d Celf6-/- at P7 FLX vs vehicle Non-normal Simple main effect F(1,591) � 24.936 p � 0.000005 0.999 0.204
d Celf6-/- at P9 FLX vs vehicle Non-normal Simple main effect F(1,591) � 1.380 p � 0.241 0.217 0.045
g Long Prenatal, drug (FLX vs vehicle) Non-normal One-way rmANOVA F(1,43) � 18.013 p � 0.0001 0.986 0.647
h P5 FLX vs vehicle Non-normal Simple main effect F(1,43) � 14.689 p � 0.0004 0.963 0.585
h P7 FLX vs vehicle Non-normal Simple main effect F(1,43) � 16.678 p � 0.0002 0.979 0.622
i P9 FLX vs vehicle Non-normal Simple main effect F(1,43) � 3.874 p � 0.056 0.486 0.301
k Short Prenatal, drug (FLX vs vehicle) Non-normal One-way rmANOVA F(1,43) � 0.041 p � 0.840 0.052 �0.000

Average duration e Celf6-Extended, drug (FLX vs vehicle) Normal Linear mixed model F(1,211.820) � 31.223 p � 0.000005 [0.005, 0.010]
Simple call pitch

range
f Celf6-Extended, drug (FLX vs vehicle) Normal Linear mixed model F(1,170.380) � 38.155 p � 0.000005 [1895.15, 3675.32]
j Long Prenatal, drug (FLX vs vehicle) Normal Linear mixed model F(1,44.068) � 5.256 p � 0.027 [251.10, 3901.71]

Weight k Celf6-Extended, age (P5 vs P7 vs P9 vs P14) Normal Two-way rmANOVA F(1.46,286.7) � 2670.61 p � 0.000005 1 3.673
m Celf6-Extended, drug (FLX vs vehicle) Normal Two-way rmANOVA F(1,197) � 56.921 p � 0.000005 1 0.537
n Celf6�/� at P5 FLX vs vehicle Normal Simple main effect F(1,788) � 8.087 p � 0.005 0.811 0.101
n Celf6�/� at P7 FLX vs vehicle Normal Simple main effect F(1,788) � 8.008 p � 0.005 0.807 0.101
n Celf6�/� at P9 FLX vs vehicle Normal Simple main effect F(1,788) � 13.699 p � 0.0003 0.959 0.132
n Celf6�/� at P14 FLX vs vehicle Normal Simple main effect F(1,788) � 34.952 p � 0.000005 1 0.209
n Celf6�/- at P5 FLX vs vehicle Normal Simple main effect F(1,788) � 14.860 p � 0.0001 0.971 0.139
n Celf6�/- at P7 FLX vs vehicle Normal Simple main effect F(1,788) � 18.036 p � 0.00002 0.989 0.150
n Celf6�/- at P9 FLX vs vehicle Normal Simple main effect F(1,788) � 21.454 p � 0.000005 0.996 0.167
n Celf6�/- at P14 FLX vs vehicle Normal Simple main effect F(1,788) � 42.427 p � 0.000005 1 0.232
n Celf6-/- at P5 FLX vs vehicle Normal Simple main effect F(1,788) � 7.462 p � 0.006 0.779 0.095
n Celf6-/- at P7 FLX vs vehicle Normal Simple main effect F(1,788) � 8.869 p � 0.003 0.845 0.105
n Celf6-/- at P9 FLX vs vehicle Normal Simple main effect F(1,788) � 12.822 p � 0.0004 0.947 0.128
n Celf6-/- at P14 FLX vs vehicle Normal Simple main effect F(1,788) � 18.815 p � 0.00002 0.991 0.153
q Celf6-Extended, litter (FLX vs vehicle) Non-normal Mann–Whitney U U(203) � 4723.5 p � 0.301 N/A 0.01
k Long Prenatal, age (P5 vs P7 vs P9 vs P14) Normal Two-way rmANOVA F(2.26,97.31) � 1231.23 p � 0.000005 1 5.330
m Long Prenatal, drug (FLX vs vehicle) Normal Two-way rmANOVA F(1,43) � 20.887 p � 0.00004 0.994 0.697
n P5 FLX vs vehicle Normal Simple main effect F(1,172) � 4.163 p � 0.043 0.528 0.157
n P7 FLX vs vehicle Normal Simple main effect F(1,172) � 12.029 p � 0.0007 0.932 0.264
n P9 FLX vs vehicle Normal Simple main effect F(1,172) � 27.769 p � 0.000005 0.999 0.402
n P14 FLX vs vehicle Normal Simple main effect F(1,172) � 31.829 p � 0.000005 1 0.430
q Long Prenatal, litter (FLX vs vehicle) Non-normal Mann–Whitney U U(45) � 228 p � 0.595 N/A 0.01
k Short Prenatal, age (P5 vs P7 vs P9 vs P14) Normal Two-way rmANOVA F(1.64,70.58) � 892.959 p � 0.000005 0.954 4.554
o Short Prenatal, drug (FLX vs vehicle) Normal Two-way rmANOVA F(1,43) � 25.719 p � 0.000008 0.999 0.773
p P5 FLX vs vehicle Normal Simple main effect F(1,172) � 5.273 p � 0.023 0.627 0.176
p P7 FLX vs vehicle Normal Simple main effect F(1,172) � 13.753 p � 0.0003 0.958 0.283
p P9 FLX vs vehicle Normal Simple main effect F(1,172) � 19.138 p � 0.00002 0.992 0.333
p P14 FLX vs vehicle Normal Simple main effect F(1,172) � 49.019 p � 0.000005 1 0.534
r Short Prenatal, litter (FLX vs vehicle) Non-normal Mann–Whitney U test U(45) � 84.5 p � 0.00003 N/A 0.35

Latency to righting
reflex

s Celf6-Extended, drug (FLX vs vehicle) Non-normal Two-way ANOVA F(1,191) � 13.753 p � 0.004 0.827 0.212
t Long Prenatal, drug (FLX vs vehicle) Non-normal Mann–Whitney U U(45) � 223.0 p � 0.545 N/A 0.01
u Short Prenatal, drug (FLX vs vehicle) Non-normal Mann–Whitney U U(45) � 187.5 p � 0.140 N/A 0.05

Effect size for F tests reported as Cohen’s f (Cohen, 1988; interpretation: 0.01 � small; 0.25 � medium; 0.40 � large) and for nonparametric tests reported
as �2. 95% confidence intervals reported for linear mixed models.
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indicating the weight differences are due to the FLX treat-
ment, and replicating previous findings (Svirsky et al.,
2016). However, a significant difference in litter sizes be-
tween the FLX- and VEH-exposed Short Prenatal groups

was observed (p � 0.000006r; FLX, M � 5.65, SD � 1.15;
VEH, M � 7.55, SD � 1.30), indicating the increase in
weight in the FLX mice is likely a result of their smaller
average litter sizes. The addition of litter size as a covari-

Figure 2. Maternal FLX exposure decreases weight reduction and alters righting reflex pups. A–C, Boxplot of weight at P5, P7, P9,
and P14 of Celf6-Extended (A; drug, p � 0.000005), Long Prenatal (B; drug, p � 0.00004), and Short Prenatal (C; drug, p � 0.000008)
FLX and VEH pups. All mice gained weight with age. D–F, Boxplot of the latency to exhibit a righting reflex at P14 by Celf6-Extended
(E; drug, p � 0.004), Long Prenatal (F; drug, p � 0.545), and Short Prenatal (G; drug, p � 0.140) FLX and VEH pups; � denotes
significant difference across ages at p � 0.000005 within VEH-exposed mice; ^ denotes significant difference across ages at p �
0.000005 within FLX-exposed mice. For boxplots, thick horizontal lines signify respective group medians, boxes are 25th–75th
percentiles, whiskers are 1.5 � IQR, closed and open circles depict outliers.
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ate in the model did not change the overall results of
weight analyses for the three cohorts. However, the influ-
ence of drug on weights only at P5 for the Long and Short
Prenatal animals was found to be marginally significant
(p � 0.059) and non-significant (p � 0.304) in the
ANCOVA model. Further assessment of developmental
milestones revealed that FLX exposure had no effect on
the timing of pinna detachment (by P5) or eye opening (by
P14; data not shown). To assess early gross locomotor
abilities and to evaluate general body strength, we exam-
ined righting reflex at P14. When collapsed across geno-
types, FLX pups in the Celf6-Extended cohort exhibited a
longer latency to right compared to VEH pups (p � 0.004s;
Fig. 2D). No difference in latency to right was observed in
the Long Prenatal cohort (p � 0.537t; Fig. 2E), or in the
Short Prenatal cohort (p � 0.137u; Fig. 2F). The develop-
mental data show age-appropriate physical milestones
were achieved, indicating FLX did not induce robust de-
velopmental delay; however, developmental reflexes were
minimally influenced by FLX and weight was affected
across development suggesting FLX exposure did induce
some developmental perturbation in pups. Thus, the re-
duction in USVs cannot be completely decoupled from
FLX influence on developmental progression.

To confirm the presence of FLX and its active metabo-
lite NFLX in the pup brains, we examined levels of these
compounds in whole brain tissue of P9 pup receiving
Extended drug exposure, as well as in the whole brain
tissue from dams to compare pups levels to that of direct
drug exposure.

Given the half-life of FLX (�6 h1) and its active metab-
olite NFLX (�15 h2) in vivo, both should be well cleared by
the time the juvenile and adult offspring were analyzed.
However, we shared the reviewers interest in whether the
early postnatal time points might be influenced by ongo-
ing FLX/NFLX in the brain.

To confirm the drug was reaching the developing brain,
HPLC was used to measure levels of FLX and its active
metabolite NFLX in whole brains of pups exposed to
extended maternal FLX exposure. We found FLX and
NFLX were both present in the P9 pup brain during ma-
ternal FLX exposure, and neither present in the VEH-
exposed control brains (Table 3). The levels of FLX and
NFLX in the pups were �43% and 32%, respectively, of
that measured in an equal amount of dam brain tissue.
These data indicate that FLX and NFLX are active in the
offspring brain during maternal exposure, suggesting the
5-HT system is targeted at this time. Given the half-life of
FLX (�6 h) and its active metabolite NFLX (�15 h) in vivo,
both should be well-cleared by juvenile and adult ages
(Holladay et al., 1998; Marken and Munro, 2000). Thus

while the alterations in USV behavior might be impacted
by the acute levels of FLX and NFLX, the later behavioral
alterations must reflect long-term consequences of tran-
sient exposure.

Maternal FLX disrupts adult social behaviors
Deficits in social communication and social interaction

are varied among autistic individuals, and include failure
to initiate or respond to social interaction, abnormal social
approach, and difficulties adjusting behavior to suit vari-
ous social contexts (American Psychiatric Association,
2013). Therefore, we tested our mice in multiple social
behavior assays, each designed to assess a distinct aspect
of social behavior. The full-contact juvenile interaction assay
was used to assess social interaction behaviors in FLX mice,
and in adulthood, we examined social approach behaviors
and possible disruptions to behaviors in the specific context
of social dominance hierarchies.

Maternal FLX exposure disrupted social approach and
specific social hierarchy behaviors in adulthood, but not
juvenile social interactions. Significant interactions be-
tween sex and drug exposure were not observed, there-
fore results are reported collapsed across sex. Output
from statistical tests is fully reported in Table 4. During the
social approach habituation trial, no side bias was ob-
served for any cohort (Fig. 3A–C). In the Celf6-Extended
exposure group, when collapsed for genotype, VEH mice
spent more time compared to FLX mice investigating both
stimuli overall (p � 0.020v; Fig. 3D), and more time inves-
tigating the social stimulus (p � 0.028w). Yet, the ex-
pected preference for social stimulus was observed for all
FLX and VEH Celf6 mutant and WT mice (p � 0.022x). As
Celf6 mutation did not potentiate the impact of FLX on
sociability behavior, we continued our examination of so-
cial approach behaviors without manipulation of Celf6
genotype for the Long and Short Prenatal cohorts. Long
Prenatal exposure resulted in disruptions to sociability
(p � 0.0004y). FLX mice failed to display a preference for
the social stimulus (p � 0.645z; VEH, p � 0.000005aa; Fig.
3E), and spent significantly less time investigating the
social stimulus compared to VEH mice (p � 0.0001bb).
Short Prenatal exposure did not disrupt sociability (p �
0.962cc): both FLX and VEH spent more time investigating
the social stimulus than the empty cup (FLX, p � 0.001dd;
VEH, p � 0.001ee; Fig. 3F), and a similar time was spent
investigating the social stimulus by both groups (p �
0.726ff). Finally, during the preference for social novelty
trial, again the Celf6-Extended cohort VEH mice showed a
strong trend for investigating the objects more overall
compared to FLX mice (p � 0.065gg), when collapsed for
genotype. For all cohorts, more time was spent investi-
gating the novel mouse compared to the familiar mouse in
all cohorts (p � 0.045hh; Fig. 3G–I). Comparable activity
levels were detected for all groups in this task (Fig. 3J–L),
ruling out hypoactivity as a confound. Taken together,
these data indicate maternal FLX influenced sociability
only when continued throughout pregnancy. We did not
demonstrate a strong impact of FLX exposure limited to
early pregnancy or extended into postnatal development
on adult sociability in our mice.

Table 3. Brain levels of FLX and NFLX (�g/g) from extended
exposure dams and P9 pups

FLX NFLX
M SD M SD

Dam FLX 4534.5 1540.8 6122.5 2003.6
Dam VEH �LOD �LOD �LOD �LOD
Pup FLX 1962.3 3398.9 1957.0 943.8
Pup VEH �LOD �LOD �LOD �LOD

Limit of detection (LOD) was 164 ng/g for FLX and 320 ng/g for NFLX.
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As Celf6 genotype did not influence sociability in the
social approach task, we chose to examine full-contact
social behaviors in C57BL/6J juveniles in a separate C57-
Extended cohort. We did not observe abnormal social
interactions in these mice in the juvenile interaction assay.
Specifically, FLX and VEH mice exhibited a comparable
number and duration of anogenital and head-to-head
sniffing, and sniffing behaviors directed toward FLX and
VEH mice by the stimulus partners were also similar (data
not shown). Unlike the social approach task, we did not
observe altered social behaviors in the juvenile interaction
assay. However, in social approach only the FLX mouse
has control over timing and duration of interactions, while
in juvenile interaction, deficits in social behaviors with FLX
treatment could be masked because interactions were
also initiated by the unexposed stimulus mouse.

Finally, we examined social hierarchy behaviors in our
mice to determine whether maternal FLX exposure influ-
ences behavior in this specific social context. Groups of
mice display social hierarchies with dominant and sub-
missive group members (Hayashi, 1993), and we as-
sessed this using the tube test for social dominance. For
this task, sex-matched mice from different experimental
groups are directly compared. Due to the complexity of
experimental groups in the Celf6-Extended cohort, we

only examined tube test behavior between FLX and VEH
mice in the C57-Extended cohort. We observed an inter-
esting influence of FLX duration on dominance. C57-
Extended FLX resulted in increased dominant behavior
(Fig. 4A, FLX wins greater than by chance, p � 0.016ii;
VEH wins fewer than by chance, p � 0.016jj). In contrast,
both maternal FLX cohorts restricted to prenatal develop-
ment induced submissive behaviors in adulthood: Long
Prenatal FLX resulted in fewer wins relative to chance (p �
0.018kk; Fig. 4B). Short Prenatal exposure influenced
dominance behavior less strongly, resulting in fewer bouts
won than expected by chance by FLX-exposed mice, which
did not reach statistical significance (p � 0.057ll; Fig. 4C).
These alterations in dominance were not due to differences
in animal size between drug exposure groups as adult
weights did not correspond to increased dominance in a
simple way. Specifically, at available power we did not de-
tect differences in adult weight in C57-Extended FLX mice
(p � 0.504mm; Fig. 4D). Long Prenatal FLX resulted in a
decrease in weight compared to VEH, that was independent
of sex (p � 0.007nn; Fig. 4E) and dominance performance.
We also did not detect a weight difference among mice of
the Short Prenatal cohort (p � 0.188oo; Fig. 4F). Taken
together, these data suggest perinatal FLX exposure via the
mother influences social behaviors during adulthood, long

Table 4. Statistical summary for Figures 3, 4

Variable Comparison
Data

structure
Statistical

test Output p value
Post hoc

power
Effect
size

Sociability
investigation
time

v Celf6-Extended, drug (FLX vs vehicle) Normal Two-way rmANOVA F(1,111) � 5.608 p � 0.020 0.651 0.225
x Celf6�� FLX social vs empty stimulus Normal Simple main effect F(1,111) � 6.983 p � 0.009 0.745 0.250
x Celf6�/- FLX social vs empty stimulus Normal Simple main effect F(1,111) � 5.440 p � 0.021 0.638 0.222
x Celf6-/- FLX social vs empty stimulus Normal Simple main effect F(1,111) � 7.821 p � 0.006 0.792 0.266
x Celf6�� vehicle social vs empty stimulus Normal Simple main effect F(1,111) � 5.998 p � 0.016 0.680 0.232
x Celf6�/- vehicle social vs empty stimulus Normal Simple main effect F(1,111) � 8.852 p � 0.004 0.839 0.283
x Celf6-/- vehicle social vs empty stimulus Normal Simple main effect F(1,111) � 15.898 p � 0.0001 0.977 0.378
w Social stimulus FLX vs vehicle Normal Simple main effect F(1,222) � 4.895 p � 0.028 0.596 0.150
y Long Prenatal, stimulus � drug interaction Normal One-way rmANOVA F(1,40) � 14.627 p � 0.0004 0.962 0.605
z FLX social vs empty stimulus Normal Simple main effect F(1,40) � 0.216 p � 0.645 0.074 0.071
aa Vehicle social vs empty stimulus Normal Simple main effect F(1,40) � 28.149 p � 0.000005 0.999 0.839
bb Social stimulus FLX vs vehicle Normal Simple main effect F(1,80) � 16.659 p � 0.0001 0.981 0.456
cc Short Prenatal, stimulus � drug interaction Normal One-way rmANOVA F(1,42) � 0.002 p � 0.962 0.050 0.007
dd FLX social vs empty stimulus Normal Simple main effect F(1,42) � 12.337 p � 0.001 0.929 0.032
ee Vehicle social vs empty stimulus Normal Simple main effect F(1,42) � 11.715 p � 0.001 0.917 0.032
ff Social stimulus FLX vs vehicle Normal Simple main effect F(1,84) � 0.124 p � 0.726 0.064 0.032

Social novelty
investigation
time

gg Celf6-Extended, drug (FLX vs vehicle) Normal Two-way rmANOVA F(1,111) � 3.468 p � 0.065 0.455 0.176
hh Celf6�� FLX Fam vs novel stimulus Normal Simple main effect F(1,111) � 8.845 p � 0.004 0.838 0.283
hh Celf6�/- FLX Fam vs novel stimulus Normal Simple main effect F(1,111) � 7.618 p � 0.007 0.781 0.261
hh Celf6-/- FLX Fam vs novel stimulus Normal Simple main effect F(1,111) � 11.659 p � 0.0009 0.923 0.324
hh Celf6�� vehicle Fam vs novel stimulus Normal Simple main effect F(1,111) � 5.812 p � 0.018 0.666 0.229
hh Celf6�/- vehicle Fam vs novel stimulus Normal Simple main effect F(1,111) � 9.616 p � 0.002 0.867 0.295
hh Celf6-/- vehicle Fam vs novel stimulus Normal Simple main effect F(1,111) � 18.954 p � 0.00003 0.991 0.413
hh Long Prenatal, stimulus (Fam vs novel cup) Non-normal One-way rmANOVA F(1,40) � 46.742 p � 0.000005 1 1.081
hh FLX Fam vs novel stimulus Non-normal Simple main effect F(1,40) � 11.365 p � 0.002 0.908 0.533
hh Vehicle Fam vs novel stimulus Non-normal Simple main effect F(1,40) � 42.911 p � 0.000005 1 1.037
hh Short Prenatal, stimulus (Fam vs novel cup) Non-normal One-way rmANOVA F(1,40) � 13.815 p � 0.001 0.952 0.588
hh FLX Fam vs novel stimulus Non-normal Simple main effect F(1,40) � 10.119 p � 0.003 0.874 0.503
hh Vehicle Fam vs novel stimulus normal Simple main effect F(1,40) � 4.307 p � 0.044 0.526 0.328

Percent tube
test bouts
won

ii C57-Extended FLX, compared to 50% Non-normal One-spl Wilcoxon Z � 2.418 p � 0.016 N/A 0.24
jj C57-Extended vehicle, compared to 50% Non-normal One-spl Wilcoxon Z � -2.398 p � 0.016 N/A 0.24
kk Long Prenatal FLX, compared to 50% Non-normal One-spl Wilcoxon Z � -2.356 p � 0.018 N/A 0.69
kk Long Prenatal vehicle, compared to 50% Non-normal One-spl Wilcoxon Z � 1.873 p � 0.061 N/A 0.44
ll Short Prenatal FLX, compared to 50% Non-normal One-spl Wilcoxon Z � -1.907 p � 0.057 N/A 0.20
ll Short Prenatal vehicle, compared to 50% Non-normal One-spl Wilcoxon Z � 1.691 p � 0.091 N/A 0.16

Adult weight mm C57-Extended, drug (FLX vs vehicle) Normal Two-way ANOVA F(1,12) � 0.475 p � 0.504 0.097 0.199
nn Long Prenatal, drug (FLX vs vehicle) Normal Two-way ANOVA F(1,40) � 8.096 p � 0.007 0.793 0.449
oo Short Prenatal, drug (FLX vs vehicle) Normal Two-way ANOVA F(1,40) � 1.796 p � 0.188 0.258 0.212

Effect sample size for F tests reported as Cohen’s f (Cohen, 1988; interpretation: 0.01 � small; 0.25 � medium; 0.40 � large) and for nonparametric tests re-
ported as �2.

New Research 14 of 27

July/August 2018, 5(4) e0120-18.2018 eNeuro.org



Figure 3. Adult sociability is disrupted by maternal FLX exposure only during pregnancy. A–C, Time spent investigating social and
empty cup zones during the social approach habituation trial by Celf6-Extended (A), Long Prenatal (B), and Short Prenatal (C) FLX
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after drug exposure occurred, with specific disruptions to
sociability and behavior in the specific context of domi-
nance. Further, prenatal versus postnatal exposure may
differentially influence behavioral circuits underlying domi-
nance behaviors.

Extended maternal FLX induces repetitive, restricted
patterns of behavior

Similar to our analysis of social behaviors, we assessed
a range of rodent tasks relevant to repetitive and re-
stricted patterns of behavior to fully characterize the in-

continued
and VEH mice. D–F, Time spent investigating social and empty cups during the sociability trial of the social approach test by Celf6-Extended
(D; drug, p � 0.020), Long Prenatal (E; stimulus � drug, p � 0.0004), and Short Prenatal (F; stimulus � drug, p � 0.962) FLX and VEH mice. G–I,
Boxplots of time spent investigating cups containing novel or familiar conspecifics during the preference for social novelty trial of the social
approach test Celf6-Extended (G; stimulus, p � 0.000005), Long Prenatal (H; stimulus, p � 0.000005), and Short Prenatal (I; stimulus, p � 0.001)
FLX and VEH mice. J–L, Distance traveled during the social approach task by Celf6-Extended (J), Long Prenatal (K), and Short Prenatal (L) FLX
and VEH mice. Data are mean � SEM, with individual data points represented as filled circles/squares (A–I: social/familiar zone, gray; empty/novel
zone, black; J–L: FLX, purple/blue/red; WT, gray).

Figure 4. Maternal FLX disrupts adult social dominance behaviors. A–C, Dot plots of percentage of wins during tube test of social
dominance between FLX and VEH adult mice in the C57-Extended (A; � denotes significant difference from chance at p � 0.016),
Long Prenatal (B; � denotes significant difference from chance at p � 0.018; ^ denotes marginally significant difference from chance
at p � 0.061), and Short Prenatal cohorts (C; ^ denotes marginally significant difference from chance at p � 0.057; # denotes
marginally significant difference from chance at p � 0.091). Crosshairs represent mean � SEM, and dark gray lines represent
medians. D–F, Boxplots of weight of C57-Extended (D; drug, p � 0.05), Long Prenatal (E; drug, p � 0.007), and Short Prenatal (F;
drug, p � 0.05) FLX and VEH adult mice. For boxplots, thick horizontal lines signify respective group medians, boxes are 25th–75th
percentiles, whiskers are 1.5 � IQR, closed and open circles depict outliers.
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fluence of FLX on this symptom domain. In humans, these
symptoms can manifest: as stereotyped or repetitive mo-
tor movements, use of objects, or speech; insistence on
sameness, inflexible adherence to routines or patterns; or
highly restricted interests. This domain also includes
hyper- or hypo-reactivity to sensory input (American Psy-
chiatric Association, 2013). In our mice, we used the
marble burying task to examine compulsive digging,
spontaneous alternation T-maze to test inflexible adher-
ence to behavior patterns (perseveration), and von Frey
filaments to gauge reactivity to tactile stimulation. Output
from statistical tests for this section is fully reported in
Table 5.

Mice compulsively dig in bedding, and this behavior is
perturbed in models of obsessive-compulsive disorder
and ASD (Angoa-Pérez et al., 2013). Therefore, we exam-
ined digging in our mice using buried marbles as a proxy
for compulsive digging. In the Celf6-Extended cohort,
Celf6 genotype alone decreased compulsive digging (p �
0.001pp). In addition, FLX treatment reduced digging in
Celf6�/� mice (drug � genotype interaction, p � 0.032qq;
Celf6�/� mice only, p � 0.0002rr; Fig. 5A). However, this
effect on WT mice did not replicate in the C57-Extended
cohort (p � 0.303ss; Fig. 5B). The reason behind this lack
of replication is unclear. While the Celf6 mice were back-

crossed for many generations on to the C57BL/6J strain,
it is possible there are subtle effects due to genetic drift in
the Celf6 colony. In the Long Prenatal and Short Prenatal
cohorts, no difference in number of buried marbles was
observed (p � 0.234tt and p � 0.684tt, respectively; Fig.
5C,D). These data suggest that postnatal, but not prena-
tal, FLX may influence compulsive digging, but the impact
of background strain on this effect requires further exam-
ination.

In spontaneous alternation in the T-maze, we examined
whether the mice alternated which arm was explored
between consecutive trials at a rate greater than chance
(50%), which would suggest the mice demonstrated a
typical exploration pattern and did not perseverate. We
also examined if this percentage alternation was different
between groups to understand if there was an effect of
maternal FLX exposure on typical exploration patterns.
We observed differences in the effect of FLX depending
on whether exposure was prenatal only or extended post-
natally. Extended FLX exposure induced perseverative
behavior in this task as observed through percentage
alternations that were no different from chance in the
FLX-exposed mice. VEH mice from both Celf6-Extended
and C57-Extended cohorts showed percentage of alter-
nations better than chance (p � 0.002uu and p � 0.003vv,

Table 5. Statistical summary for Figure 5

Variable Comparison
Data

structure Statistical test Output p value
Post hoc

power
Effect
size

Marbles buried pp Celf6-Extended, genotype (Celf6�/� vs
Celf6�/- vs Celf)

Normal Two-way ANOVA F(2,117) � 6.209 p � 0.03 0.886 0.326

qq Celf6-Extended, drug � genotype interaction Normal Two-way ANOVA F(2,117) � 3.559 p � 0.032 0.651 0.246
rr Celf6�/� FLX vs vehicle Normal Simple main effect F(1,117) � 14.687 p � 0.0002 0.967 0.355
ss C57-Extended, drug (FLX vs vehicle) Normal One-way ANOVA F(1,63) � 1.080 p � 0.303 0.176 0.132
tt Long Prenatal, drug (FLX vs vehicle) Normal One-way ANOVA F(1,42) � 1.456 p � 0.234 0.218 0.188
tt Short Prenatal, drug (FLX vs vehicle) Normal One-way ANOVA F(1,42) � 0.168 p � 0.684 0.069 0.063

Percent
alternating
trials

ww Celf6-Extended, drug (FLX vs vehicle) Non-normal Two-way ANOVA F(1,117) � 16.205 p � 0.0001 0.979 0.373
ww Celf6�/� FLX vs vehicle Non-normal Simple main effect F(1,117) � 6.857 p � 0.010 0.738 0.241
ww Celf6�/- FLX vs vehicle Non-normal Simple main effect F(1,117) � 10.292 p � 0.002 0.889 0.297
uu Celf6-Extended vehicle Celf6�/�,

compared to 50%
Non-normal One-spl Wilcoxon Z � 3.231 p � 0.001 N/A 0.55

uu Celf6-Extended vehicle Celf6�/-,
compared to 50%

Non-normal One-spl Wilcoxon Z � 4.228 p � 0.00002 N/A 0.81

uu Celf6-Extended vehicle Celf6-/-,
compared to 50%

Non-normal One-spl Wilcoxon Z � 3.470 p � 0.0005 N/A 0.71

xx C57-Extended, drug (FLX vs vehicle) Non-normal Mann–Whitney U U(31) � 67.5 p � 0.032 N/A 0.15
vv C57-Extended, vehicle compared to 50% Non-normal One-spl Wilcoxon Z � 2.958 p � 0.003 N/A 0.55
vv C57-Extended, FLX compared to 50% Non-normal One-spl Wilcoxon Z � 0.608 p � 0.543 N/A 0.03
aaa Long Prenatal, drug (FLX vs vehicle) Non-normal Mann–Whitney U U(44) � 221.5 p � 0.706 N/A �0.01
eee Long Prenatal, vehicle compared to 50% Non-normal One-spl Wilcoxon Z � 2.303 p � 0.021 N/A 0.22
fff Long Prenatal, FLX compared to 50% Non-normal One-spl Wilcoxon Z � 1.608 p � 0.108 N/A 0.14
bbb Short Prenatal, drug (FLX vs vehicle) Normal One-way ANOVA F(1,40) � 1.555 p � 0.220 0.229 0.196
ggg Short Prenatal, vehicle compared to 50% Normal One-sample t-test t(19) � 3.324 p � 0.004 0.883 0.743
ggg Short Prenatal, FLX compared to 50% Normal One-sample t-test t(21) � 2.541 p � 0.019 0.679 0.542

No. of non-
alternation
trials

yy Celf6-Extended, drug (FLX vs vehicle) Non-normal Two-way ANOVA F(1,117) � 16.290 p � 0.0001 0.979 0.373
yy Celf6�/� FLX vs vehicle Non-normal Simple main effect F(1,117) � 6.893 p � 0.010 0.740 0.244
yy Celf6�/- FLX vs vehicle Non-normal Simple main effect F(1,117) � 9.267 p � 0.003 0.855 0.281
zz C57-Extended, drug (FLX vs vehicle) Non-normal Mann–Whitney U U(31) � 72 p � 0.054 N/A 0.13
ccc Long Prenatal, drug (FLX vs vehicle) Non-normal Mann–Whitney U U(44) � 171.5 p � 0.214 N/A 0.04
ddd Short Prenatal, drug (FLX vs vehicle) Normal One-way ANOVA F(1,40) � 1.555 p � 0.220 0.229 0.196

Percent
response
trials

hhh C57-Extended, drug � filament
interaction

Non-normal One-way rmANOVA F(7,98) � 3.113 p � 0.005 0.932 0.472

iii 0.16 g filament FLX vs vehicle Normal Simple main effect F(1,112) � 4.104 p � 0.045 0.519 0.19
iii 0.4 g filament FLX vs vehicle Normal Simple main effect F(1,112) � 13.053 p � 0.0005 0.948 0.34
iii 0.6 g filament FLX vs vehicle Normal Simple main effect F(1,112) � 13.357 p � 0.0004 0.952 0.35
jjj C57-Extended AUC, drug (FLX vs vehicle) Non-normal Mann–Whitney U U(16) � 15.5 p � 0.096 N/A 0.19

Effect size for F tests reported as Cohen’s f (Cohen, 1988; interpretation: 0.01 � small; 0.25 � medium; 0.40 � large), for t tests as Cohen’s d (interpretation:
0.2 � small; 0.5 � medium; 0.8 � large) and for nonparametric tests reported as �2.
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Figure 5. Extended maternal FLX induces repetitive, restricted patterns of behavior and tactile hypersensitivity. A, Boxplot of number
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respectively; Fig. 5E,G), and greater than that exhibited by
FLX-exposed mice (p � 0.0001ww and p � 0.032xx; Fig.
5E,G). This is also reflected in an increased number of
non-alternations in FLX mice (Celf6-Extended main effect
of drug, p � 0.0001yy; Celf6�/-, p � 0.003; Celf6�/�, p �
0.010; Fig. 5F, and a trend in the C57-Extended cohort,
p � 0.054zz; Fig. 5G). In contrast, Long and Short Prenatal
exposure to FLX did not result in percentage alternations
different from VEH mice or increased non-alternation trials
(p � 0.706aaa, p � 0.220bbb, p � 0.214ccc, and p �
0.220ddd, respectively; Fig. 5H,I). While in the Long Pre-
natal cohort VEH mice exhibited a percentage alternation
trials greater than chance (p � 0.021eee) and FLX-exposed
mice did not (p � 0.108fff), both VEH and FLX mice of the
Short Prenatal cohort alternated at a percentage greater
than chance (p � 0.020ggg) These results suggest that
extended FLX exposure is required to induce persevera-
tive behavior.

Maternal FLX results in tactile hypersensitivity
Because we observed abnormalities in marble burying

and T-maze performance only in the Extended exposure
cohorts, we further examined FLX influence in this cohort
on the sensory reactivity aspect of the restricted and
repetitive behavior symptom domain. Previously, tactile
processing defects were observed in the Mecp2 and
Gabrb3 models of ASD (Orefice et al., 2016). We, there-
fore, tested tactile sensitivity using the von Frey filaments
in a subset of the C57-Extended mice and observed
hypersensitivity to tactile stimulation: FLX resulted in an
increased percentage of trials with a response to stimu-
lation compared to VEH mice (p � 0.005hhh; Fig. 5J) for
filaments providing 0.16–0.6 g of force (p � 0.046iii). AUC
was also greater for FLX compared to VEH mice (p �
0.096jjj), although it did not reach statistical significance,
indicating a trend for a greater overall response to stim-
ulation across filaments that likely requires a better-
powered sample to observe significance. This tactile
hypersensitivity is independent of general activity levels,
altered emotionality (anxiogenic behavior), or sensorimo-
tor abilities, as we did not observe differences between
Extended FLX and VEH exposure in a 1-h locomotor
activity task (distance traveled, center zone time and en-
tries) or on a battery of sensorimotor tasks assessing
balance, strength, and coordination (data not shown).

Adult FLX treatment partially rescues tactile
hypersensitivity yet exacerbates dominance
phenotype induced by maternal FLX exposure

During brain development, 5-HT regulates the develop-
ment of its own system through a negative feedback
mechanism (Whitaker-Azmitia et al., 1996). Studies have
shown persistent alterations to the 5-HT system in adults
following developmental SSRI exposure through the dam,
including increased 5-HT1a receptor sensitivity, and de-
creased 5-HT transporter expression, Tph2 levels in the
dorsal raphe, and midbrain 5-HT content (Cabrera-Vera
et al., 1997; Maciag et al., 2006; Noorlander et al., 2008;
Olivier et al., 2011). These findings suggests a disrupted
5-HT system may be mediating the long-term behavioral
disruptions in our mice. Indeed, adult alterations to 5-HT
activity have been shown to produce similar phenotypes.
Tryptophan-depleted diets increased social dominance in
the adult mouse (Uchida et al., 2005) and spontaneous
alternation rates in adult rats (González-Burgos et al.,
1995). Mice null for Lmx1b, a transcription factor required
for differentiation of postmitotic 5-HT neurons, lack cen-
tral 5-HT and showed reduced responsiveness to von
Frey filaments (Zhao et al., 2007). These studies indicate a
link between disrupted 5-HT levels and social dominance,
alternation rates, and tactile sensitivity. Acute FLX treat-
ment has been shown to increase extracellular 5-HT lev-
els (Malagié et al., 1995), while chronic treatment (lasting
at least three weeks) may actually reduce 5-HT levels
through autoreceptor feedback and reduced transporter-
mediated 5-HT recycling (Siesser et al., 2013; Bazhenova
et al., 2017). However, the literature on this is inconsistent
(Jacobsen et al., 2016). To determine whether altering
levels of 5-HT through SSRI treatment can rescue the
behavioral deficits we observed in maternally-exposed
pups, we treated an independent cohort of C57-Extended
mice (Rescue cohort) with FLX through drinking water
starting at P60 and examined their behavior following
acute (�5 d) and chronic (more than three weeks) treat-
ment (Fig. 6A). Output from statistical tests for this section
is fully reported in Table 6.

Re-exposure with FLX influences tactile sensitivity and
social dominance phenotypes induced by maternal FLX
exposure, but likely through different mechanisms. The
tactile hypersensitivity observed in adult mice exposed to
maternal FLX was partially rescued by re-exposure with
FLX. No drug � sex interaction was observed, therefore

continued
of marbles buried by Celf6-Extended FLX and VEH Celf6 mutant and WT littermates during adulthood (genotype � drug interaction,
p � 0.032; � denotes significant difference from WT littermates at p � 0.04 within VEH-exposed mice). B–D, Boxplots of number of
marbles buried by C57-Extended (B; drug, p � 0.303), Long Prenatal (C; drug, p � 0.234), and Short Prenatal (D; drug, p � 0.684)
FLX and VEH C57BL/6J mice. E, F, Boxplots of percentage alternation trials (E; � denotes significant difference from chance at p �
0.002) and number of non-alternation trials (F) in the spontaneous alternation T-maze for Celf6-Extended FLX and VEH Celf6 mutant
and WT littermates (drug, p � 0.0001). G–I, Boxplots of percentage alternation trials and number of non-alternation trials C57-
Extended (G; � denotes significant difference from chance at p � 0.003), Long Prenatal (H; � denotes significant difference from
chance at p � 0.021), and Short Prenatal (I; � denotes significant difference from chance at p � 0.019) C57BL/6J FLX and VEH mice.
J, Percentage of trials during which a response was elicited by von Frey filament presentation for C57-Extended FLX and VEH
C57BL/6J mice (data are mean � SEM; filament � drug, p � 0.005). Inset boxplot represents total AUC for all filaments per drug
group. For boxplots, thick horizontal lines signify respective group medians, boxes are 25th–75th percentiles, whiskers are 1.5 � IQR,
closed and open circles depict outliers.
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Figure 6. Re-exposure with FLX in adulthood ameliorates tactile hypersensitivity but increases dominance following maternal FLX
exposure. A, Schematic of treatment paradigm for maternal FLX exposure and behavioral testing following acute and chronic
re-exposure with FLX in adulthood. B, C, Percentage of trials during which a response was elicited by von Frey filament presentation
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data are reported collapsed by sex. We replicated in both
acute and chronic testing the tactile hypersensitivity
observed in the C57-Extended cohort. During acute re-
exposure, differences in tactile responsiveness were ob-
served between treatment groups (p � 0.002kkk) for all but
the largest two filaments that elicit near 100% response
from all mice (p � 0.012lll; Fig. 6B), For each of these
filaments, the FLX-VEH group exhibited increased per-
centage of trials with a response to stimulation compared

to VEH-VEH mice while the FLX-FLX mice began to show
a reduction in responsiveness to presentation of the von
Frey filaments providing 0.07–0.16 g of force compared to
FLX-VEH mice. The overall response to stimulation as
measured by AUC was not different between FLX-treated
groups, although each was greater than that for the VEH-
VEH mice (p � 0.000005mmm). After three more weeks of
FLX treatment, differences between treatment groups
(p � 0.000005nnn) were now observed for all filaments

continued
for Rescue VEH-VEH, VEH-FLX, and FLX-FLX C57BL/6J mice following acute (B; filament � drug, p � 0.002) and chronic (C; filament
� drug, p � 0.000005) FLX re-exposure (data are mean � SEM; � denotes significant difference between VEH-VEH and FLX-VEH;
§ denotes significant difference between VEH-VEH and FLX-FLX; † denotes significant difference between FLX-FLX and FLX-VEH).
Inset boxplot represents total AUC for all filaments per drug group. D, E, Dot plots of percentage of wins during tube test of social
dominance between VEH-VEH and VEH-FLX, and between VEH-VEH and FLX-FLX adult mice in the Rescue cohort following acute
(D; � denotes significant difference from chance at p � 0.035) and chronic re-exposure (E; � denotes significant difference from
chance at p � 0.00009; ^ denotes marginally significant difference from chance at p � 0.084). Crosshairs represent mean � SEM,
and dark gray lines represent medians. F, Boxplots of weight of Rescue VEH-VEH, VEH-FLX, and FLX-FLX C57BL/6J mice following
acute (drug, p � 0.000005) and chronic (drug, p � 0.000005) FLX re-exposure. G, Boxplots of distance traveled during the 1-h
locomotor activity test by Rescue VEH-VEH, VEH-FLX, and FLX-FLX C57BL/6J mice following acute (drug, p � 0.070) and chronic
(drug, p � 0.020) FLX re-exposure. For boxplots, thick horizontal lines signify respective group medians, boxes are 25th–75th
percentiles, whiskers are 1.5 � IQR, closed and open circles depict outliers; # denotes significantly different Tukey’s post hoc
comparison.

Table 6. Statistical summary for Figure 6

Variable Comparison
Data
structure Statistical test Output p value

Post hoc
power

Effect
size

Percent
response
trials

kkk ACUTE Rescue, drug �
filament interaction

Non-normal One-way rmANOVA F(6.158,351.02) � 2.619 p � 0.002 0.981 0.303

lll 0.04 g filament, drug Non-normal Simple main effect F(2,456) � 4.543 p � 0.011 0.772 0.139
lll 0.07 g filament, drug Non-normal Simple main effect F(2,456) � 16.661 p � 0.000005 1 0.270
lll 0.16 g filament, drug Non-normal Simple main effect F(2,456) � 11.590 p � 0.00001 0.994 0.225
lll 0.4 g filament, drug Non-normal Simple main effect F(2,456) � 8.016 p � 0.0004 0.956 0.185
lll 0.6 g filament, drug Non-normal Simple main effect F(2,456) � 7.286 p � 0.0008 0.936 0.179
lll 1.0 g filament, drug Non-normal Simple main effect F(2,456) � 5.487 p � 0.004 0.849 0.157
mmm ACUTE Rescue AUC, drug Normal One-way ANOVA F(2,57) � 15.887 p � 0.000005 0.999 0.747
nnn CHRONIC Rescue, drug �

filament interaction
Non-normal One-way rmANOVA F(6.665,13.33) � 4.506 p � 0.000005 1 0.398

ooo 0.04 g filament, drug Non-normal Simple main effect F(2,456) � 8.840 p � 0.0001 0.971 0.196
ooo 0.07 g filament, drug Non-normal Simple main effect F(2,456) � 15.357 p � 0.000005 0.999 0.259
ooo 0.16 g filament, drug Non-normal Simple main effect F(2,456) � 21.158 p � 0.000005 1 0.305
ooo 0.4 g filament, drug Non-normal Simple main effect F(2,456) � 16.264 p � 0.000005 1 0.266
ooo 0.6 g filament, drug Non-normal Simple main effect F(2,456) � 15.714 p � 0.000005 0.999 0.261
ooo 1.0 g filament, drug Non-normal Simple main effect F(2,456) � 20.966 p � 0.000005 1 0.303
ooo 1.4 g filament, drug Non-normal Simple main effect F(2,456) � 4.179 p � 0.016 0.735 0.135
ppp CHRONIC Rescue AUC,

drug
Normal One-way ANOVA F(2,57) � 20.307 p � 0.000005 1 0.844

Percent
alternating
trials

qqq ACUTE Rescue, drug Normal Two-way ANOVA F(2,54) � 1.766 p � 0.181 0.354 0.255
rrr CHRONIC Rescue, drug Non-normal Two-way ANOVA F(2,51) � 0.814 p � 0.449 0.182 0.179

Percent
tube test
bouts won

sss ACUTE Rescue VEH-VEH,
compared to 50%

Non-normal One-spl Wilcoxon Z � -5.312 p � 0.000005 N/A 0.74

ttt ACUTE Rescue FLX-VEH,
compared to 50%

Non-normal One-spl Wilcoxon Z � 2.114 p � 0.034 N/A 0.25

vvv ACUTE Rescue FLX-FLX,
compared to 50%

Non-normal One-spl Wilcoxon Z � 4.016 p � 0.00006 N/A 0.85

sss CHRONIC Rescue VEH-VEH,
compared to 50%

Non-normal One-spl Wilcoxon Z � -5.533 p � 0.000005 N/A 0.81

uuu CHRONIC Rescue FLX-VEH,
compared to 50%

Non-normal One-spl Wilcoxon Z � 1.726 p � 0.084 N/A 0.17

vvv CHRONIC Rescue FLX-FLX,
compared to 50%

Non-normal One-spl Wilcoxon Z � 3.934 p � 0.00008 N/A 0.81

Weight www ACUTE Rescue, drug Normal Two-way ANOVA F(2,73) � 15.468 p � 0.000005 0.999 0.652
www CHRONIC Rescue, drug Non-normal Two-way ANOVA F(2,73) � 18.850 p � 0.000005 1 1.814

Distance traveled xxx ACUTE Rescue, drug Normal Two-way ANOVA F(2,54) � 2.787 p � 0.070 0.526 0.322
yyy CHRONIC Rescue, drug Normal Two-way ANOVA F(2,54) � 7.742 p � 0.020 0.713 0.378

Effect size for F tests reported as Cohen’s f (Cohen, 1988; interpretation: 0.01 � small; 0.25 � medium; 0.40 � large) and for nonparametric tests reported
as �2.
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except the largest, for which all mice responded 100% of
the time (p � 0.017ooo; Fig. 6C). The FLX-FLX mice
showed further reduction in responsiveness compared to
the FLX-VEH group for filaments providing 0.04, 016, 0.6,
and 1.0 g of force. Analysis of the AUC revealed the
overall responsiveness for the FLX-FLX group was now
significantly lower than the FLX-VEH group (p �
0.000005ppp). These data suggest the tactile hypersensi-
tivity induced by maternal FLX exposure can be alleviated
by FLX treatment, further supporting a role for the 5-HT
system in the circuitry mediating this phenotype.

Despite observing increased perseverative behavior in
the spontaneous alternation T-maze for FLX-exposed
mice in both the Celf6-Extended and C57-Extended co-
horts, we did not replicate this baseline difference in
phenotype a third time in the Rescue cohort. During acute
and chronic testing, no differences were observed be-
tween drug groups for percentage of alternations (p �
0.181qqq and p � 0.449rrr, respectively; Table 5) or num-
ber of non-alternation trials (data not shown). Thus, it
remains unclear if this phenotype, when present, would
be reverted by adult FLX treatment.

Surprisingly, the enhanced dominance phenotype ob-
served in mice exposed to maternal FLX was exacerbated
by both acute and chronic FLX re-exposure. In the Res-
cue cohort, the increased dominance observed in the
C57-Extended cohort was replicated. The VEH-VEH mice
lost more bouts compared to chance (50%) during both
acute and chronic testing (p � 0.000005sss; Fig. 6D,E),
while FLX-VEH mice won more bouts compared to
chance, although this failed to reach statistical signifi-
cance during chronic treatment testing (p � 0.034ttt and
p � 0.084uuu). The FLX-FLX group also displayed in-
creased dominance by winning more bouts than expected
by chance during both acute and chronic testing (p �
0.00009vvv; Fig. 6D,E). The mean and median differences
suggest that the FLX re-exposure further increased the
dominance behavior in mice exposed to maternal FLX
(acute: FLX-VEH, M � 68.47, Mdn � 67, SD � 34.25;
FLX-FLX, M � 90.05, Mdn � 100, SD � 19.01; chronic:
FLX-VEH, M � 69.89, Mdn � 66, SD � 31.33; FLX-FLX,
M � 91.50, Mdn � 100, SD � 15.10). As in the previous
cohorts, the dominance phenotypes were not due to in-
creased animal size in the FLX groups, as each actually
weighed less than the VEH-VEH group (p � 0.000005www;
Fig. 6F), with no change between acute and chronic treat-
ment. We also examined the Rescue cohort in the 1-h
locomotor activity task to determine whether the behav-
ioral changes observed were due to general differences in
activity levels or anxiogenic behavior induced by FLX
re-exposure. We found a trend toward a decrease in total
distance traveled in the FLX-FLX mice compared to the
FLX-VEH mice during acute exposure (p � 0.070xxx; Fig.
6G) that reached statistical significance following chronic
exposure (p � 0.020yyy), with no differences in center area
variables suggesting no change in anxiety-related behav-
ior (data not shown). ANCOVA with litter size as the
covariate yielded a marginally significant effect of drug on
distance traveled during chronic re-exposure testing (p �
0.072). We do not interpret these data as hypoactivity in

the FLX-FLX group as their activity levels were not differ-
ent from VEH-VEH mice nor were the FLX-VEH mice
hyperactive compared to the control group in any cohort
examined. It is possible there is a very small effect of FLX
re-exposure on activity that we were underpowered to
detect, but which likely does not confound the interpre-
tation of the von Frey assessment or dominance pheno-
types. In sum, the results from the Rescue cohort suggest
disrupting 5-HT levels during development influenced the
role of the 5-HT system in the behavioral circuits respon-
sible for responses to sensory and social stimuli in the von
Frey assessment of tactile sensitivity and the tube test of
social dominance, respectively. Remarkably, the effects
are in the opposite directions, suggesting they are medi-
ated by distinct mechanisms. Specifically, SSRI treatment
ameliorated the hypersensitivity to sensory stimuli but
further exacerbated the response to social stimuli.

Discussion
The widespread roles of 5-HT in neurodevelopmental

processes are well-described (Sodhi and Sanders-Bush,
2004; Whitaker-Azmitia, 2010), and 5-HT dysregulation in
a subset of patients with ASD has been well-documented
and often replicated (McDougle et al., 1996, 1993;
Chugani et al., 1999, 1997; Hollander et al., 2005; Azmitia
et al., 2011; Benza and Chugani, 2015). Here, we exam-
ined the behavioral impact of in utero exposure to drugs
that impact the 5-HT system. Human epidemiological
studies suggest antidepressant use during pregnancy
may increase ASD risk in offspring, although challenges
remain in adjusting for maternal diagnosis appropriately.
With current epidemiological samples, only some analy-
ses confidently demonstrated an effect of SSRI treatment
independent of maternal diagnosis, although most were
not inconsistent with modest additional risk attributable to
treatment. Given these challenges interpreting the epide-
miological studies in aggregate, we tested the hypothesis
that maternal SSRI exposure, independent of maternal
stress, can modulate ASD-relevant behaviors in mam-
mals. We report social communication and interaction
deficits, as well as repetitive patterns of behavior in off-
spring of dams exposed to the SSRI FLX during pre- and
postnatal development. We further showed that re-
exposure with FLX can ameliorate tactile hypersensitivity,
yet further shift social dominance behaviors. These find-
ings indicate that in the absence of other maternal ma-
nipulations or stressors, drug exposure alone is sufficient
to induce in offspring long-term consequences to social
and restrictive behaviors, some of which may be medi-
ated by a disrupted 5-HT system.

There is an established body of work in the rodent
literature showing clear links between maternal SSRI ex-
posure during pregnancy and a paradoxical increase in
depressive- and anxiety-like behaviors in the mature off-
spring (Lisboa et al., 2007; Noorlander et al., 2008; Olivier
et al., 2011; Avitsur et al., 2016; Boulle et al., 2016;
Gobinath et al., 2016; Salari et al., 2016), but little analysis
of the impact on social or repetitive behavioral circuits.
The current study adds to the limited studies of dam SSRI
exposure that have recently begun to focus on these

New Research 22 of 27

July/August 2018, 5(4) e0120-18.2018 eNeuro.org



types of behaviors in offspring, and is the first to fully
characterize in this type of model behaviors relevant to
the core symptoms of ASD, including multiple tasks within
each distinct domain. We sought to examine in our mice
various possible social disruptions and repetitive/re-
stricted behaviors, including sensory sensitivities, that are
observed in autistic individuals. We demonstrate the po-
tential for maternal SSRI exposure alone to induce early
social communication deficits, abnormal sociability, and
altered social hierarchy behaviors, as well as persevera-
tion and tactile hypersensitivity.

We did not find any phenotype common among all three
exposure durations, suggesting FLX’s influence on ASD-
related behaviors may depend on the duration of and devel-
opmental timeframe of exposure. Early pregnancy alone
(E0–E16) was the least vulnerable developmental period
examined. We observed increased submissive behaviors in
adults in this exposure model, but typical behaviors in all
other testing. Increased submissive behaviors were also
observed in adult offspring that received FLX exposure
through the entirety of gestation, or the rough equivalent
in brain development to the first two trimesters of human
pregnancy. In addition, this increased exposure duration
induced early communicative deficits in the form of re-
duced USV production when isolated from the dam, as
well as sociability disruptions. The Extended FLX expo-
sure groups exhibited the greatest functional disruptions.
The dampened USV production during development was
coupled with social approach decreases and robust dom-
inance behaviors suggesting this longer duration expo-
sure to altered 5-HT activity most heavily impact social
behavior circuitry. Only these mice demonstrated repeti-
tive/restricted patterns of behavior. Complementing our
findings on distinct effects of maternal FLX on dominance,
recent work showed prenatal maternal FLX treatment de-
creased aggressive behaviors, while treatment extending
postnatally increased aggressive behaviors in adult
C57BL/6 male offspring (Kiryanova et al., 2016). However,
another report showed increased aggression in male off-
spring of ICR dams exposed to only prenatal FLX (Svirsky
et al., 2016). The discrepancies in aggression findings
between these two studies may reflect strain � drug
interactions. The distinct phenotypes of mice that re-
ceived prenatal-only versus continued postnatal FLX ex-
posure may be mediated by circuitry disruptions due to
differences in 5-HT system development that occurs at
these different periods. While 5-HT axons reach their
targets by birth, terminal field development occurs
postnatal (Maddaloni et al., 2017). Excess 5-HT during
embryonic development acts to down-regulate 5-HT
innervation through a negative feedback mechanism
(Whitaker-Azmitia, 2005) and reduced 5-HT terminal pro-
cesses has also been reported in rodents following post-
natal SSRI treatment (Maciag et al., 2006). This suggests
prenatal FLX exposure likely influences axonal innervation
by 5-HT neurons of the raphe, but continued postnatal
exposure may have further reduced 5-HT terminal fields,
possibly meditating the increased dominance and perse-
verative behavior patterns observed in the Extended FLX
cohort.

The social behavior disruptions observed in our study
extend those previously reported following maternal FLX
exposure to include sociability alterations and strong in-
fluences on social dominance. The majority of previous
examinations of early SSRI exposure on social pheno-
types focused only on aggression (Lisboa et al., 2007;
Kiryanova et al., 2016; Svirsky et al., 2016), as a clear link
between 5-HT and aggression has been shown in both
humans and animal models (Brown et al., 1982; Kaplan
et al., 1994; Moeller et al., 1996; Reisner et al., 1996). We
found sociability was dampened following FLX during
pregnancy only, and that extended FLX exposure de-
creased total time investigating the social stimulus, but
did not disrupt a social preference. This suggests we are
observing a differential impact on sociability circuits
based on timing of exposure. A previous report showed
maternal FLX exposure limited to postnatal-only ages
(P3–P21) had no effect on social approach behaviors in
mice (Nakai et al., 2017). Together with our findings, this
suggests in utero exposure may be the vulnerable period
for sociability circuit formation. Tryptophan depletion diet
has been shown to disrupt sociability behavior in adult
C57BL/6 mice (Zhang et al., 2015). It is possible that early
FLX exposure ultimately decreases 5-HT activity in key
areas that mediate social preference. We did not find an
influence of extended exposure on frequency of social
behaviors observed during the juvenile interactions.
Whether this is a result of the age at testing or that the
unexposed partner could also initiate the interactions is
unknown, and we are unaware of another study investi-
gating unimpeded social interactions in a similar model.

Perhaps the most robust phenotype we observed was
the change to social dominance. This is unsurprising
given a link between low 5-HT levels in the mature brain
and dominance has been demonstrated in both human
and animal research (Kaplan et al., 1994; Uchida et al.,
2005). Tryptophan depletion was shown in an adult
autistic patient to exacerbate symptoms including per-
severation (McDougle et al., 1993), and adult mice fed a
tryptophan-depleted diet exhibited increased dominance
in the tube test (Uchida et al., 2005). If a decrease in
activity of the 5-HT system is mediating the dominance
phenotypes observed in our mice, then we hypothesized
increasing this activity would normalize this phenotype.
Interestingly, we observed the opposite. Re-exposure
with FLX during adulthood actually further enhanced the
dominant phenotype induced by maternal FLX exposure.
Within 30 min of exposure FLX increases extracellular
5-HT, dose-dependently, within the frontal cortex, hip-
pocampus, and raphe (Malagié et al., 1995). Cortical and
striatal 5-HT tissue levels are depleted with chronic (three
weeks) exposure (Siesser et al., 2013; Bazhenova et al.,
2017), but extracellular 5-HT levels seem to remain ele-
vated (Jacobsen et al., 2016). Our data suggest the ma-
ternal FLX exposure altered the circuits mediating this
social hierarchy behavior in a complex manner such that
they no longer respond to 5-HT in a typical way. It is
possible that other aspects of the 5-HT system, such as
receptor densities or innervation patterns, were altered by
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maternal FLX exposure such that adult FLX treatment
influences these circuits differently.

In addition to social behavior disruptions, maternal FLX
exposure induced abnormalities related to the repetitive/
restricted patterns of behavior symptoms of ASD. Our
results suggest continued postnatal exposure may be
required to perturb these circuits. Most robust was the
induction of tactile hypersensitivity. Sensory processing
dysfunction is associated with multiple neurodevelop-
mental disorders, including the sensory sensitivity ob-
served in ASD (Slobounov et al., 2006; Ross et al., 2007;
Schneider et al., 2008; Lane et al., 2010; Ghanizadeh,
2011; Dar et al., 2012). 5-HT appears to play a role in
regulating the balance between internal signals and sen-
sory information from the environment (Lottem et al.,
2016). Thus, fluctuations in the 5-HT system could tip that
balance creating increased or decreased sensitivities. The
high levels of 5-HT required during neurodevelopment
likely serve to increase the brain’s responsiveness to the
environment at that time required for plasticity and mat-
uration. Adjusting those levels as we did through maternal
FLX treatment may disrupt the 5-HT-mediated sensitivity
required for proper circuit development. Our results sug-
gest the circuits underlying tactile sensitivity were altered,
perhaps made hyper-responsive. The partial rescue of the
tactile hypersensitivity observed following adult FLX re-
exposure suggests the circuit disruptions are reversible
and may be due to abnormal 5-HT activity levels. These
data further support the therapeutic potential of SSRIs for
sensory processing disorders.

As genetic factors are clearly an important causation of
ASD (Geschwind, 2008), it is likely that environmental
contributions to ASD risk interact with existing genetic
susceptibility (Hertz-Picciotto et al., 2006; Klei et al.,
2012). It has been suggested that environmental factors
that might modulate social behavior or language could tip
the balance toward ASD in children with genetic vulnera-
bility (Geschwind, 2008). As we initially thought SSRI
exposure alone might be a relatively modest factor, we
exposed Celf6 mutant mice, which exhibit a subtle ASD-
like phenotype (Dougherty et al., 2013), to maternal FLX
and analyzed offspring behavior for possible potentiation
of the ASD-like phenotype. We hypothesized a potentia-
tion of deficits in Celf6 mutants with FLX exposure due to
the effect each manipulation has on the 5-HT system. The
Celf6 mutant exhibited subtle ASD-related deficits, spe-
cifically decreased early social communicative behavior
and a resistance to change behavior patterns as well as
reduced brain 5-HT levels patterns (Dougherty et al.,
2013), making it an ideal model to examine the influence
of FLX on a genetically vulnerable background and the
impact of two hits to the 5-HT system on these behaviors.
What we observed was both the Celf6 mutation and the
FLX exposure independently reduced pup USVs, induced
perseveration in the T-maze and reduced digging in the
marble burying assay. These complementary behavioral
disruptions suggest Celf6 loss and FLX exposure act in
parallel on the circuits underlying these behaviors, possi-
bly through similar influences on the 5-HT system. In
contrast to our results is a similar study in the 15q11-13

duplication model (15q-dup), which also shows reduced
brain 5-HT levels (Tamada et al., 2010). Interactions
between maternal FLX and the genetic duplication poten-
tiated deficits in the 15q-dup mice: specifically, hypoac-
tivity and anxiogenic behaviors (Nakai et al., 2017).
Maternal FLX actually improved 15q-dup induced socia-
bility, which was linked to restoration of extracellular 5-HT
levels. The effect of FLX on the development of behavior
circuitry appears to be in the opposite direction to that
induced by 15q-dup, such that it can have an ameliorating
effect. However, the effect is likely in the same direction
as Celf6 loss and similar enough that the effects are
paralleled and not synergistic. Thus, we did not observe a
potentiation of behaviors in the FLX-exposed Celf6 mu-
tants or a restoration of deficits.

It is unclear why the Extended-exposure Celf6�/� mice,
which are on a C57BL/6J background, behaved differ-
ently than the C57BL/6J mice in marble burying. No dif-
ference was observed between the Celf6�/� and C57
VEH-exposed mice, indicating the source of this differ-
ence is the maternal FLX exposure groups. A similar
phenomenon was described in the Neuroligin-3 knock-
out mice showing deficits in sociability in both knock-out
and WT littermates when housed together (Kalbassi et al.,
2017). It is possible the reduced digging behavior ex-
pressed by the Celf6-/- mice influences that of their WT
littermates following maternal exposure to FLX. An alter-
native explanation is that perhaps digging behavior was
influenced by the maternal behavior of Celf6�/- versus
C57BL/6J dams. The focus of this study was on the
long-term consequences of exposure on offspring behav-
ior, but we cannot rule out that some of our results may be
influenced by SSRI mediated alterations of maternal be-
haviors in the nest. We chose not to cross-foster our pups
because we wanted to continue FLX exposure into post-
natal stages of brain development, and we wanted to
avoid the confounding stress to both pups and dams of
direct pup injections. Yet, because of this design, we
cannot comment on the influence of FLX on maternal
behavior in our litters, nor any long-term effects of mater-
nal behavior changes on adult offspring phenotypes.

The potential influence of maternal care is complex, and
worthy of an entire study of its own. Qualitatively, differ-
ences in maternal care have not been observed in Celf6�/-

dams, yet this has not been thoroughly quantified. In
addition, there may be an interaction between direct FLX
exposure and heterozygous loss of Celf6 that affects
maternal behavior and maternal care. The reciprocal in-
fluence of maternal care and pup USV on each other is
complex. Greater maternal responsiveness has been
shown to result in fewer calls emitted by the pups
(D’Amato et al., 2005). However, decreased USV produc-
tion by pups has also been shown to result in maternal
neglect because the dams cannot locate the pups outside
of the nest. This was identified in vocally impaired pups
with genetic loss of motor neurons that transform breaths
into calls (Hernandez-Miranda et al., 2017). It is possible in
our FLX model that pup USV and maternal care are
interacting in several ways. First, FLX could be directly
impacting maternal care, and decreasing pup USVs. If this
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is the case in our mice, we would hypothesize based on
previous research that the FLX increased maternal care
and thus reduced pup USVs. We would further hypothe-
size this level of maternal care would likely not result in the
long-term behavioral deficits observed in the adult off-
spring. However, the large magnitude of the reduction in
USV we observed in FLX-exposed pups seems too robust
for changes in maternal care to account for the underlying
the pup phenotype. A second way in which maternal care
and pup USV may be interacting is through a reduction to
maternal care in response to the robustly reduced USV
emitted by the pups exposed to FLX. This reduced ma-
ternal care has the potential to further disrupt neurode-
velopment of the pup, and thus be a possible indirect
influence on the later adult behaviors. Celf6 mutation
harbored by the dam may also play into this scenario by
altering dam or pup responses additively or synergisti-
cally. To our knowledge, the direct impact of SSRI expo-
sure on maternal behaviors has not been examined;
however increased latency to retrieve pups back to the
nest has been demonstrated in adult female offspring
exposed gestationally to FLX (Svirsky et al., 2016), sug-
gesting transgenerational effects of gestational FLX expo-
sure. Thus, we can conclude that FLX treatment to the
dam during and immediately following pregnancy modu-
lates progeny behaviors relevant to ASD; and that this is
independent of maternal stress but possibly mediated by
alterations to maternal care behaviors.

Despite a potential for increased risk from FLX expo-
sure, untreated or undertreated depression and anxiety in
pregnancy are themselves strongly associated with ad-
verse outcomes (Grote et al., 2010), and we do not view
this study as being sufficient cause to alter treatment
decisions. Thus, while our findings are a contribution to
our understanding of the consequences of developmental
SSRI exposure, additional work needs to be done to
understand the precise mechanisms by which SSRIs can
alter circuit function. Our rescue experiment indicates that
tactile sensitivity may be responsive to restoring 5-HT
levels via SSRI treatment, but that this could exacerbate
other phenotypes. This also indicates these two pheno-
types have distinct mechanisms. We believe the carefully
characterized phenotype demonstrated here provides a
clear paradigm for comparative analysis of different treat-
ment options for their relative impact on offspring behav-
ior, as well as a potential experimental manipulation for
studies defining the circuits that control social and repet-
itive behaviors in the mammalian brain.
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