Skip to main content
. 2018 Jul 19;8(7):546. doi: 10.3390/nano8070546

Table 2.

Mechanical properties of BNNS and BNNTs by computational modelling.

Technique Temperature (K) Young’s Modulus (TPa) Axial Stiffness (TPa nm) Bending Stiffness (eV)
Tersoff potential [16] 300 0.930 NA NA
Tersoff potential [17] NA 0.730–0.890 0.248–0.292 NA
Tersoff potential [18] 0–2000 0.398–0.720 NA NA
DFT calculation [19] NA NA 0.293–0.311 NA
Mechanics model [20] 0 NA 0.332 NA
Tersoff potential [21] 300 0.800–0.850 0.264–0.280 NA
DFT calculation [22] NA 0.760–1.055 NA 0.95
DFT-QHA model [23] 0–1000 NA 0.278–0.283 NA
T-B potential [24] 300 0.881 NA NA
Continuum model [25] NA 0.900–1.000 NA NA
Tight binding [26] NA NA 0.284–0.310 NA
MM-DFT model [27] NA 0.83 0.282 1.74
DFT calculation [28] NA 0.700–0.830 NA NA
Tersoff potential [29] 0 NA 0.267 NA
Tersoff-like model [30] 300 NA NA 1.5–1.7
Atomistic-FEM [31] NA NA 0.240–0.315 NA
DMH technique [32] NA NA 0.267 NA
Tersoff potential [33] NA 0.295–0.695 NA 0.22–0.56
MM model [34] NA NA 0.260–0.269 NA
Ab initio [35] NA NA 0.271 1.29
DFT calculation [36] NA NA 0.279 NA
Modified T-B [37] NA 0.982–1.113 NA NA
Tersoff potential [38] 300 0.716 NA NA
Tersoff potential [39] 0 0.749–0.770 0.248–0.258 NA