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Abstract

Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)- Community 

Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States 

(CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to 

assess how well the changes in observed ozone air quality are simulated by the model. The 

changes induced by variations in meteorology and/or emissions are also evaluated during the same 

timeframe using spectral decomposition of observed and modeled ozone time series with the aim 

of identifying the underlying forcing mechanisms that control ozone exceedances and making 

informed recommendations for the optimal use of regional-scale air quality models. The 

evaluation is focused on the warm season’s (i.e., May-September) daily maximum 8-hr (DM8HR) 

ozone concentrations, the 4th highest (4th) and average of top 10 DM8HR ozone values (top10), as 

well as the spectrally-decomposed components of the DM8HR ozone time series using the 

Kolmogorov-Zurbenko (KZ) filter. Results of the dynamic evaluation are presented for six regions 

in the U.S., consistent with the National Oceanic and Atmospheric Administration (NOAA) 

climatic regions. During the earlier 11-yr period (1990–2000), the simulated and observed trends 

are not statistically significant. During the more recent 2000–2010 period, all trends are 

statistically significant and WRF-CMAQ captures the observed trend in most regions. Given large 

number of sites for the 2000–2010 period, the model captures the observed trends in the Southwest 

(SW) and MW but has significantly different trend from that seen in observations for the other 

regions. Observational analysis reveals that it is the long-term forcing that dictates how high the 

ozone exceedances will be; there is a strong linear relationship between the long-term forcing and 

the 4th highest or the average of the top10 ozone concentrations in both observations and model 

output. This finding indicates that improving the model’s ability to reproduce the long-term 

component will also enable better simulation of ozone extreme values that are of interest to 

regulatory agencies.
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1. Introduction

Because regional-scale air quality models are being used to support policy decisions, it is 

important to critically assess these models’ capability in reproducing the spatio-temporal 

features seen in observations. Confidence in the application of air quality models for 

forecasting and regulatory assessments is established by conducting four types of model 

performance evaluation: operational, dynamic, diagnostic, and probabilistic (Dennis et al. 

2010). There have been many studies focusing on the operational evaluation of regional air 

quality models, but only few addressed the other three components of the model evaluation 

framework recommended by Dennis et al. (2010). Recent studies have summarized and 

recommended statistical analyses to assess air quality model performance (Simon et al. 

2012; Emery et al. 2016). Hogrefe et al. (2008) stated that operational model evaluation 

provides little insight into the reliability of the estimation of relative changes which pertains 

to the actual model application in the regulatory setting and argued that more emphasis 

should be placed on the development and application of dynamic and retrospective model 

evaluation approaches. Dynamic evaluation entails the assessment of the model’s ability to 

reproduce the changes in observed air quality conditions stemming from the changes in 

emissions and meteorology and is one of the key components for building confidence in a 

model’s use for policy analysis.

Dynamic model evaluation has been conducted in the past with a focus on specific pairs of 

years and regional areas in the contiguous U.S. (Gilliland et al., 2008; Godowitch et al., 

2010; Pierce et al., 2010; Napelenok et al., 2011; Kang et al., 2013; Foley et al., 2015a, b; 

Stoeckenius et al., 2015; Henneman et al., 2015) or on trend analysis using decadal model 

simulations for South Korea and Europe (Seo et al., 2014; Banzhaf et al., 2015, Xing et al., 

2015). Dynamic model evaluation for a 21-yr timeframe over the contiguous U.S. (CONUS) 

has never been performed. The information embedded in observations and model results, 

namely, changes in emissions and meteorological conditions, over the 21-year time period 

provides a unique opportunity to evaluate the model’s ability to reproduce the observed 

changes in ambient ozone concentrations.

Simulated and observed air pollution concentration time series have differences that are 

driven by the representativeness of spatial and temporal scales as well as the stochastic 

nature of the atmosphere vs. a deterministic air quality modeling approach. Measurements 

are used to assess the severity of air pollution problems across different states and nationally, 

and to evaluate the performance of air pollution modeling systems (Civerolo et al., 2003). 

Hogrefe et al. (2001) have demonstrated that regional-scale photochemical models are 

capable of better reproducing the long-term variations than the short-term variations 

embedded in time series of observed pollutant concentrations. Ozone can be thought of as 

the baseline of pollution (defined as the sum of seasonal and longer-term components) that 
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formed from precursor emissions and modulated by meteorological conditions (Rao et al., 

1996; 2011). Previous work on this subject has indicated that most of the information in the 

observed data is included in the long-term component which, in turn, controls the 

exceedances (Rao et al. 1996 and 2011; Hogrefe et al. 2000 and 2001).

In this study, we analyze ozone concentrations from 21-yr simulations performed with the 

fully coupled Weather Research and Forecasting (WRF)–Community Multi-scale Air 

Quality (CMAQ) model over CONUS for the period 1990–2010 that were described in Gan 

et al. (2015). Emission reductions during this period (1990–2010) associated with the EPA’s 

Nitrogen Oxides State Implementation Plan Call and significant reductions in mobile source 

emissions have improved ozone air quality over CONUS. The multi-decadal simulations and 

spectral separation of different components that are influenced by different forcings in time 

series of ozone concentrations provide a valuable framework to assess the model’s ability to 

reproduce the observed changes as well as to identify which components might require 

further improvement in the model. Furthermore, the dynamic evaluation of ozone 

exceedances and temporal components (i.e., decomposed DM8HR ozone time series) is 

aimed at attributing changes to emissions or meteorology for both modeled and observed 

ozone values.

The analysis includes evaluation of ozone trends as well as absolute and relative changes in 

the 4th highest (referred to as 4th) and average of the top10 (referred to as top10) ozone 

concentrations over six regions in CONUS. In addition, the Kolmogorov-Zurbenko (KZ) 

filter is applied to spectrally decompose ozone time series (Rao and Zurbenko, 1994; Rao et 

al., 1997; Eskridge et al., 1997; Hogrefe et al., 2000; Hogrefe et al., 2003; Porter et al., 2015; 

Solazzo and Galmarini, 2016). The KZ filter enables the assessment of variations in the 

strengths of the short-term forcing (i.e., fast changing emissions, boundary layer evolution, 

night and day differences, synoptic scale weather-induced variations) and baseline forcing 

(i.e., longer-term variations attributable to emissions, policy, large-scale background and 

trends) in the DM8HR time series.

Section 2 provides the description of WRF-CMAQ simulations and selection of observations 

from the EPA’s Air Quality System (AQS). Section 3 presents the methods of analysis for 

the ozone spectral decomposition and the statistical metrics that accompany the dynamic 

model evaluation. The results from this analysis are discussed in section 4. In the results 

section, the model evaluation starts with the traditional operational evaluation approach and 

is followed by an extensive overview of the dynamic evaluation results for trends, absolute 

and relative changes in the 4th highest and top10 ozone concentrations as well as changes in 

the spectrally decomposed ozone time-series (i.e. temporal components). A summary of the 

findings and concluding remarks are presented in Section 5.

2. Description of the coupled WRF-CMAQ Simulations and Observations

Time series of simulated 1990 – 2010 summertime (May-September) DM8HR ozone 

concentrations are obtained from the work of Gan et al. (2015) using the coupled WRF-

CMAQ model (Wong et al., 2012). The model is configured with a 36-km horizontal grid 

cell spacing (Fig. 1) over CONUS and 35 vertical layers of varying thickness extending from 
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the surface to 50 mb (Gan et al., 2015). Time varying chemical lateral boundary conditions 

(BC) are obtained from a 108km x 108km WRF-CMAQ hemispheric simulation (Xing et al., 

2015). The simulations are driven with internally consistent historic emission inventories 

(Xing et al., 2013) that include gas-phase precursors for ozone and aerosols and primary 

particulate matter. Positive emission trends during 1990–2010 over Asia for NMVOC, SO2, 

NOx and NH3 are included in the hemispheric simulations and, result in increased ozone 

concentrations being simulated over Asia. The boundary conditions applied to the 21-year 

CMAQ simulations used in this study include the mentioned emission influences from the 

Asian continent on the western boundary condition but a quantitative analysis of that 

influence is beyond the scope of this study. The simulations analyzed in the current study 

include direct aerosol feedback effects. The reader is referred to Gan et al. (2015) for 

additional information on the WRF-CMAQ two-decadal simulations.

Observations are selected based on quality-assured surface ozone measurements from EPA’s 

AQS for monitors that have at least 80% data coverage in each year. This threshold assures 

that inferences on trends and ozone changes drawn over the specific timeframe are robust 

and representative for each station and region. The station availability for the 21-yrs, after 

the application of the 80% threshold, is illustrated in Fig. 1a with a total of 259 sites. We 

performed dynamic evaluation also for the more recent 11-yrs (2000–2010) dataset to 

include additional stations in our analysis. The stations for the 2000–2010 time period are 

illustrated in Fig. 1b, with a total of 677 sites. Increasing the number of stations in the 11-yr 

analysis affects the statistical rigor of the results as the data sample becomes larger. Also, 

more regions are better represented by adding more sites in the analysis, compared to the 21-

yr period. The regionalization of the results is common for both time periods and is based on 

NOAA’s climatic regions with some minor alterations (sites from Northern Rockies and 

Plains are limited (only 1 for 1990–2010 and 4 for 2000–2010), thus are not considered). 

The six (6) regions are: Midwest (MW), Northeast (NE), Southcentral (SC), Southeast (SE), 

Southwest (SW) and West (W). For the analysis presented in this study, all available stations 

from the AQS database based on the 80% threshold were used, without discarding specific 

locations that might not be represented by the model’s 36 km grid configuration (e.g. coastal 

or urban stations cannot be resolved with model’s 36 km grid). Analysis of the same 21-yr 

simulations considering urban, rural and suburban stations has already been performed by 

Foley et al. (2015c).

3. Methods of analysis

3.1 Data analysis using the Kolmogorov-Zurbenko (KZ) filter

The distinguishable scales of variations in the hourly ozone concentration time series are: 

intra-day (associated with fast-changing emissions, rapid rise and fall of the planetary 

boundary layer height, and ventilation), diurnal (day and night differences in emissions 

loading, photolysis, and meteorological conditions), weekly (anthropogenic activity 

including weekday-weekend effects), synoptic scale (weather-induced variations, days to 

weeks), seasonal (annual solar cycle) and inter-annual (El-Nino, climate variability and the 

evolution of air pollution management policies and emissions both domestically and on a 

hemispheric scale). The KZ filter (Rao and Zurbenko, 1994; Rao et al., 1997) is applied to 

Astitha et al. Page 4

Atmos Environ (1994). Author manuscript; available in PMC 2018 August 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



separate different scales in May-September time series of observed and modeled ozone 

concentrations. Since the spectral decomposition is applied to the May-September DM8HR 

ozone time series rather than time series of year-round hourly values, the components that 

can be extracted are the short-term (synoptic-scale forcing, reflecting weather-induced 

variations) and long-term (baseline forcing, reflecting seasonality, emissions loading, policy, 

and slow-changing processes) components. The KZ is a low-pass filter that uses an iterated 

moving average (Zurbenko, 1986; Rao et al. 1997; Hogrefe et al. 2003). The [KZ(m,k)] filter 

application is characterized by two parameters, the length of the moving average window, m, 

and the number of iterations, k. The filtered time series contain low-frequency fluctuations 

(denoted as the Baseline (BL) forcing from now on) while the difference between the 

original time series (O3(t)) and the filtered time series includes the high frequency variation 

of the signal (denoted as short-term (SY) forcing from now on).

In this study, we applied KZ(5,5) to daily time series, with a window size of 5 days and 5 

iterations as used in Porter et al. (2015) which is equivalent to the characteristics of the 

KZ(103,5) filter applied to hourly time series in Hogrefe et al. (2000). This filtering 

separates the weather-induced variations (short-term component SY) in DM8HR time series 

from the longer-term baseline component (BL). In this study, since DM8HR ozone time 

series are used, the Nyquist interval is 2-days, indicating that features having time scales 

(e.g., intra-day forcing due to fast changing emissions, boundary layer evolution, and 

weather conditions, diurnal forcing due to night vs. day) less than 2 days cannot be resolved 

(see Fig. 2 in Dennis et al., 2010). The window length and the number of iterations 

determine the scale separation. The 50% cut-off frequency for the KZ(5,5) is about 11 days, 

and, hence, scales less than 22 days are embedded in the short-term or SY forcing.

BL(t) = KZ(5, 5) (1)

SY(t) = O3(t) − KZ(5, 5) (2)

O3(t) = SY(t) + BL(t) (3)

Where O3(t) is the original time series of observed or modeled DM8HR ozone 

concentrations, BL is the baseline or long-term component and SY is the short-term 

component. It should be noted that scale separation is not perfect as there is no rigid 

boundary between short-term and longer-term forcings (i.e., there is some leakage of 

information between the two separated components). Nonetheless, the KZ filtering reveals 

important information on the two components in observed and modeled time series of air 

pollutant concentrations, helping us in better understanding the driving forces that control 

ozone exceedances.
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The SY forcingis a zero-mean process (filter residual) in contrast to the BL component. It is 

worth noting that the BL Root Mean Squared Error (RMSE) that is analyzed in Section 4 

includes both the mean and variance error components while RMSE for SY reflects the 

variance error only. In addition, the mean of the BL component (BLmean) and the standard 

deviation of the SY component (SYstdev) over the summertime period are included in the 

analysis. The BLmean indicates the magnitude of the long-term forcing in each year, 

whereas the SYstdev estimates the influence of the variations of the short-term forcing 

(synoptic scale weather) on the total ozone concentration in that year. More details on the 

relationship between the two spectral components and the ozone exceedances are discussed 

in Section 4.

3.2 Statistical metrics

The traditional statistical metrics used in this study are described in the Appendix. In 

addition to the Pearson correlation coefficient (R, Eq. A1), mean bias (BIAS, Eq. A2) and 

RMSE (Eq. A3), we follow Wilmott (1981) in separating the RMSE into the systematic and 

unsystematic components by regressing the modeled (P) and observed concentrations (O) to 

the best-fit line (Delle Monache et al. 2005; Kang et al. 2008; 2010).

The systematic (RMSEs) and unsystematic (RMSEu) components of RMSE are estimated 

by Eq. 4 and 5. The RMSEs estimates the model’s systematic error and hence, the better the 

regression between simulations and observations, the smaller the systematic error. The 

RMSEu is a measure of how much of the discrepancy between estimates and observations is 

due to random processes.

RMSES =
∑i = 1

N (Pi − Oi)
2

N (4)

RMSEu =
∑i = 1

N (Pi − Pi)
2

N (5)

A “good” model performance dictates that the RMSE will be small in magnitude, with the 

systematic error approaching zero and the unsystematic approaching the RMSE (McNally, 

2010):

RMSE2 = RMSEs
2 + RMSEu

2 (6)

The percentage of systematic (PRMSEs) or unsystematic (PRMSEu) error is calculated as 

the ratio of the squared RMSEs or RMSEu divided by the squared total RMSE in 

accordance with Eq. 6. Finally, the assessment of changes in ozone concentration (modeled 
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and observed) for the time period of consideration is performed by the calculation of trends 

(ppb/yr) over a number of years as well as absolute changes (AC; ppb) and relative changes 

(RC; %) (Eq. 7, 8) between specific pairs of years.

AC = FutureYear − BaseYear (7)

RC = 100 ∗ (FutureYear − BazeYear)/BaseYear (8)

4. Results and Discussion

4.1 Operational evaluation

Operational evaluation has been the commonly-used approach to examine how well the 

model-simulated concentrations compare to the observations in an overall sense (Dennis et 

al. 2010). The standard statistical metrics used in operational evaluation (R, BIAS, RMSE) 

provide a broad overview of the model performance. In the following, we present 

operational evaluation of modeled DM8HR, 4th highest, average of the top10 ozone 

concentrations as well as the BL and SY components of the ozone time series.

The density scatter plots for DM8HR ozone concentrations during the 21-yrs reveal a 

different behavior for each region in the CONUS (Fig. 2). The correlation ranges between 

0.5–0.75 and the RMSE between 11–17 ppb. Most of the values are between 20 and 90 ppb 

for both observations and modeled concentrations, except for the Southwest region (where 

only 10 sites are available). In the Midwest (MW) and Northeast (NE), the model 

overestimates the observed DM8HR ozone values. Many of these high simulated values are 

found at stations near water bodies in the NE, SE, and MW regions, possibly due to low 

PBL heights (stable conditions) in the model near large water bodies (Athanassiadis et al. 

2002; Rao et al. 2003). The modeled ozone concentrations for the West (W), with most of 

the sites primarily in California, reflect overestimation of the low observed DM8HR 

concentrations and underestimation of the high observed values. One potential reason for 

such discrepancies near complex terrain areas is the coarse resolution of the simulations (36 

km) that hinders the accurate representation of observed ozone concentrations.

When the later 11-yrs of the same dataset (2000–2010) are considered, the RMSE for the 

DM8HR ozone values decreases within a range of 1–2.6ppb across all regions (results 

included in the Supplement). Since the RMSE is weighted towards large errors, when high 

ozone concentrations are reduced, a reduction in RMSE is also expected. For the 2000–2010 

period with 677 stations available nation-wide (Fig. 1b), the correlation also increases and 

RMSE is reduced (Fig. S1 in the supplement) compared to the 21-yrs, with a notable change 

for the West where the underestimation of the high observed values is no longer evident. The 

comparison of model performance between 259 and 677 stations for the recent 11-yr period 

does not show substantial improvement (Fig. S1, S2), even though the stations are more than 
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doubled for some regions. This is an indication that the simulation period is more important 

than the number of available stations for the model evaluation.

Before continuing with the comparison of observed and modeled values, it is important to 

explain the rationale behind selecting the BLmean as one of the variables in this study. To 

illustrate how BL and SY components influence ozone exceedances (i.e., the 4th highest and 

top10), the 21-yr observed DM8HR ozone concentrations are spectrally decomposed at each 

station. The 21 SY components are superimposed on a given year’s BL component and the 

resulting 4th highest and top10 are determined. Then, the highest and lowest 4th and top 10 

from those 21 values associated with that BL forcing are determined and this is repeated for 

21 BL components. The maximum 4th highest and top 10 values for each region are 

included in Table 1, indicating the ozone extreme values of concern for regulatory 

applications. As expected, the highest BLmean is recorded during the earlier years (1990–

1998) where higher emissions loading was prevalent and the lowest BLmean during the 

more recent years (2009). The only exception is SW where both high and low BLmean 

values are recorded in the earlier decade. For example, in the Northeast region, with the 

BLmean level at 71 ppb in 1991, the 4th highest value reaches 124 ppb, but when the BL 

level is at 44 ppb in 2009, 4th highest value reaches only 89 ppb (Table 1, NE). These results 

illustrate that when the BL is low, even strong SY forcing did not lead to very high values 

for the 4th highest or top10 ozone concentrations. High ozone values are found for the West 

region (Table 1, W) for both high and low BLmean but the lowest BLmean is still rather 

high (71ppb) compared to other regions that have 44–50ppb (Table 1, Lowest BLmean 

column). The highest BLmean for the West region is 104ppb which gives a 4th highest of 

163ppb. The results seen for the West are consistent with those in the other regions. This 

observational feature reveals that it is the BL that dictates how high the 4th highest or top10 

value could reach under different short-term forcings.

The relationship between BLmean and 4th highest ozone concentration for the CONUS is 

highly linear as indicated by the observations (Fig. 3a) for all years in the 1990–2010 

timeframe. The model captures very well this linear relationship seen in the observations, 

with the main difference seen at some stations (BLmean is lower and 4th highest is higher 

than the observed in the upper range of the concentration distribution) (Fig. 3b). Similar 

results have been shown by Porter et al. (2017) for the domain-wide monthly ozone. 

Linearity also exists between the standard deviation of the short-term component (SYstdev) 

and the 4th highest (Fig. 3c, d), as it is well-known that synoptic-scale meteorological 

conditions greatly influence ozone exceedances. These results lend further support to 

Hogrefe et al. (2000) that BL and SY forcings should be viewed as the necessary and 

sufficient conditions, respectively, for the observed extreme ozone values. In other words, 

even if the SY forcing is very strong, high ozone levels cannot be reached unless also 

accompanied by a reasonably high BL level. The general conclusion is that ozone 

exceedances are strongly controlled by the long-term component (BLmean) and if the model 

is not capable in accurately simulating the BLmean, it will most likely have difficulties in 

capturing the ozone exceedances.

The spatial distribution of correlation and RMSE (Fig. 4a, b) for seasonal BLmean for 1990 

– 2010 indicates that the model is more skillful in reproducing the strength of the long-term 
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component for the Eastern U.S. compared to the West. Similar patterns apply to the variation 

of the SY component (Fig. 4c,d; SYstdev) as well as the 4th highest and top10 ozone 

concentrations (Fig. 4e-h). Large errors and low correlations are found in the Western U.S. 

as well as near coastal locations in the Eastern U.S. and near the Great Lakes. The BL 

component of the DM8HR ozone time series exhibits larger errors compared to the SY 

component (Fig. 5), keeping in mind that the values of BL are larger in magnitude than the 

SY component. In addition, as stated in Section 3.1, the SY component is a zero-mean 

process and, thus, the RMSE includes only the variance error, whereas the RMSE for BL 

includes both bias and variance. It is important to note here that the results shown in Fig. 4 

are based on one value per station per year (i.e. 21 data points at each station) while the 

results in Fig. 5 are based on daily time-series (~153 × 21 values at each station). This 

means that the results in Fig. 4 (BLmean, SYstdev, 4th and top10) are affected by inter-

seasonal variability while in Fig. 5 (BL and SY) both intra- and inter-seasonal variability is 

included.

The coarse grid resolution of the WRF-CMAQ simulations is the main factor influencing the 

representation of complex terrain areas like coastal stations, urban areas or mountainous 

regions and is likely the main factor leading to poorer model performance in certain 

locations. Another factor is the long timeframe over which the comparison is done (21-

years); more specifically, the model has shown better performance for the recent 11 years 

(2000–2010) of the 21-yr study period that is characterized by large reductions in emissions 

and associated ozone exceedances.

4.2 Dynamic evaluation

4.2.1 Trends in ozone concentrations—Trends in the high ozone concentrations for 

each U.S. region displayed a decreasing pattern from 1990 to 2010, which is expected given 

the significant emission reductions nationwide and has been noted in studies analyzing 

observed ozone trends (Simon et al., 2015). This section’s discussion begins with the 

analysis of trends in the 10th, 50th and 90th percentiles of DM8HR ozone concentration from 

both observations and CMAQ results (Fig. 6). Looking at the trends over the 21-year period 

(1990–2010), the trends in the 10th percentile are mostly positive (except for SE), the trends 

in the 50th percentile have mixed features and the trends in the 90th percentile are mostly 

negative (Fig. 6a). The model generally follows the observed trend but in some cases it gives 

larger ozone reductions than the observations (SE, MW, NE). These results indicate that the 

ozone distributions have been getting narrower over these two decades. Trends for the earlier 

and more recent decades are analyze separately to further understand this behavior.

During the earlier decade (1990–2000, Fig. 6b), trends behave differently depending on the 

region. Trends for all percentiles are mostly negative for the West with the observations 

showing larger variability than the model trends. Southwest (SW) and Southcentral (SC) 

show positive trends, with SW observed trends also exhibiting larger variability. The model 

generally agrees with the observations for these three regions. One thing to mention here is 

that emission inventories from Asia, Mexico and Canada are included in the hemispheric 

CMAQ simulations that provided the chemical boundary conditions but the uncertainty of 

those inventories might be influential in the depiction of trends and their variability for the 
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western U.S. regions. For SE, MW and NE the modeled vs. observed trends have larger 

differences that sometimes lead to opposite signs. The analysis of the 4th highest trends has 

shown that the 1990–2000 time period has statistically insignificant mean trends for all 

regions (this will be discussed in detail later in this section). During the more recent decade 

(2000–2010; Fig. 6c), trends in the 10th percentile are mixed, are mostly negative in the 50th 

percentile and exclusively negative in the 90th percentile. The model agrees well with the 

observations in most cases for the recent decade. The improved model trends for each 

percentile is likely attributed to the accuracy of emission inventories for the more recent 

decade compared to the earlier period.

Regional averages of simulated and observed station-specific trends (in ppb/yr) calculated at 

each monitor are presented in Table 2. The 21-yr period is divided in two 11-yr periods, 

1990–2000 and 2000–2010, due to different direction in the trend in the 4th highest ozone 

concentration at some locations. In addition, the 11-yr trend in the 4th highest during 2000–

2010 for the 677 sites is included in Table 2. Statistically significant trends with p<0.05 

(bold font in Table 2) are generally seen for the more recent 11-yr periods for both 

observations and simulations. Moreover, the 95% bootstrap confidence intervals (Efron, 

1982; Rao et al. 1985; Porter et al. 1997) provide evidence on whether the observed and 

simulated trends are significantly different (Table 2 values in italics and Fig. 7).

Observed and simulated trends for 1990–2000 are not statistically significant and the model 

captures the observed trend with statistical confidence for SW, SC, NE and CONUS. During 

the more recent 11-yr period all trends are statistically significant (only exception is model 

trend for the West), regardless of the number of stations used in the analysis. The 

significance of ozone trends is most probably related to emission reduction policies over 

CONUS that led to steeper decreases of emissions during the more recent decade (2000–

2010) (also shown in Fig. 12 of Xing et al. 2013). In contrast, the results deviate for the two 

sets of stations when looking at how significant the differences in the trends are (Fig. 7b, c). 

The model captures the trends seen in observations (i.e., overlapping confidence intervals) 

for SW, SE, MW and SC and under-predicts the trends for W, NE and CONUS when the 259 

sites are used (Fig. 7b). The model captures the trend for MW and SW and under-predicts 

the trends for all other regions when 677 sites are considered in the analysis (Fig. 7c). In 

general, the model underestimates the magnitude of ozone reductions in all cases where the 

trends have been statistically significant.

Looking more carefully at each region, different features in the variability of modeled vs. 

observed trends are identified. For the Western U.S., observations exhibited larger variability 

than CMAQ-simulated values until the year 2000; during 2000–2010, this variability 

decreased. Data for SW U.S. was limited (Fig. S3b), but nevertheless the model showed 

larger spatial variability compared to observations for all years. For SC U.S., the simulated 

4th highest is closer to the observed one with observations showing outliers mostly after the 

year 2000. The model has larger 4th highest values than the observations for all years for SE 

U.S. The same applies to MW and NE U.S. with many outliers associated with the model. 

From the previous spatial maps (Fig. 4e-f), it is evident that outliers were mainly 

concentrated in the coastal areas (N. Atlantic and the Great Lakes). Because of the strong 

relationship between the BL component and the 4th highest ozone concentrations (Fig. 2), 
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the observed and simulated BLmean trends are calculated for the 21-yr period (Fig. S3 lower 

panels). Except for the W and SW regions, simulated BLmean is larger than observed 

BLmean for all years in SC, SE, MW and NE. This explains the behavior of the 4th highest 

described previously. A closer look at the trends in 4th highest and BLmean for the more 

recent decade (2000–2010) is also provided in the supplement (Fig. S4), showing that the 

modeled 4th highest ozone trends are very close to the corresponding observed values for all 

regions, with the same outliers noted before for SW, NE and SE. The simulated BLmean is 

higher than the observed in some cases without an evident implication to the 4th highest. 

However, in the case of the MW and SE, the over-estimated BLmean (Fig. S4e-f, lower 

panels) likely contributed to the higher simulated 4th values (Fig. S4e-f, upper panels) given 

the linear relationship shown in Fig. 3.

The spatial distribution of the 2000–2010 trends for 4th, top10, BLmean, and SYstdev as 

well as observed vs. simulated trend differences (difference=model-observations) for every 

site are presented in Fig. 8. The simulated BLmean trend is generally smaller than the 

observed trend at most stations (Fig. 8a-b). The standard deviation of the short-term forcing 

(SYstdev) exhibits trends small in magnitude with the simulated being smaller than the 

observed ones in most regions (Fig. 8j-k). Exceptions are denoted for the BLmean and 

SYstdev trends in coastal areas. Trends in Top10 and 4th highest ozone are almost identical 

(Fig. 8d-i). During the 2000–2010 period, there is a stronger negative trend in the observed 

4th and top10 compared to the simulated for the SC, SE, MW and NE, a feature also evident 

in Table 2. Typically, the sites with relatively larger magnitude of trend in BLmean also 

exhibit higher magnitudes in trends for top 10 and 4th highest, again suggesting that BLmean 

has an important impact on the model’s ability to capture the trends in the upper tail of the 

ozone distribution. CMAQ captures the negative observed trend in all regions, but the 

magnitude is different. In the East, the model captures the observed 4th and top10 decreasing 

trends at most stations (Fig. 9e, h) although the modeled trends are less negative compared 

to those in observations, indicating a slower pace in the 4th and top10 ozone decreases 

estimated by the model. For comparison purposes, the spatial distribution of trends during 

the 21-yr period (1990–2010) is available in the supplement (Fig. S5).

4.2.2 Absolute and Relative Changes in Ozone Concentrations Between 
Specific Time Intervals—The first part of dynamic model evaluation included analysis of 

temporal trends in the 4th highest and top10 values as discussed in the previous section 

(4.2.1). The second part is devoted to the assessment of how well the model simulated the 

changes in ozone concentration over specific time intervals when compared with 

observations. Having a 21-yr WRF-CMAQ simulation provides a unique opportunity to 

explore time intervals ranging from 2 to 15 years and identify strengths and weaknesses of 

simulated changes over those time intervals.

First, the change in top10 paired-in-time concentrations from 2000 to 2010 are analyzed 

(Table 3). The values in parenthesis denote unpaired-in-time values (e.g. when the simulated 

top10 values are calculated independent of the dates indicated by observations as was done 

for the analysis in the previous sections). The sign of the observed change between 2000 and 

2010 is simulated accurately by the model with both paired- and unpaired-in-time 

combinations (except for the paired simulated change for the West). The ratio (CMAQ 
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change/observed change) ranges from 0.6 to 1.6 with CMAQ underestimating the change for 

all regions except for the SW. The unpaired comparison performed better than the paired 

comparison for the West U.S., where the model change has the same sign but the magnitude 

is almost half that of the observed one. In all subsequent analyses, unpaired-in-time is used 

rather than paired-in-time top10 values.

Next, the model’s performance in simulating the changes in the 4th highest and top10 ozone 

concentrations across all possible 5-yr intervals over the 21-yr period is investigated. To this 

end, the BIAS, total RMSE and percentages of systematic and unsystematic components of 

RMSE are presented. These metrics are computed for absolute 5-yr changes (AC; Eq.7) and 

relative 5-yr changes (RC; Eq. 8) in the 4th highest ozone concentrations as well as the 4th 

highest concentrations across all 21 years (Fig. 9). The results clearly demonstrate the 

reduction of error and bias in changes compared to absolute concentrations (Fig. 9a-c, j-l) 

even for the Western U.S. The maximum RMSE is reduced from 85ppb to 30ppb and the 

range of bias from (−40ppb, 83ppb) to (−6ppb, 19ppb) when considering the modeled 

changes in 4th highest concentrations rather than the absolute 4th highest concentrations. 

Similar results are found for the average of the unpaired top10 ozone concentrations (not 

shown here).

An important feature of this analysis is the quantification of systematic vs. unsystematic 

components of the RMSE that delineate whether it is feasible to make model improvements 

or the model is as good as it can be, since model processes improvements target reduction of 

systematic biases (Eq. 3–7, Section 3.2). More specifically, systematic error was larger than 

unsystematic for the 4th highest ozone concentration (Fig. 10d, g) and especially for Western 

U.S. This indicates that improvements in the model are possible to reduce the systematic 

error. As expected, the absolute and relative changes (AC and RC) exhibited larger 

percentages of unsystematic errors compared to systematic (Fig. 9 e,h and f,i), which denote 

that using ozone concentrations in a relative sense than in their absolute concentration levels 

makes better use of the model’s strengths (because random errors cannot be reduced). A few 

stations in S. California showed persistently large systematic errors even for AC and RC, 

which are worthy of further investigation to identify causes for these errors and to improve 

model simulations.

To expand on these findings, a comprehensive analysis of all possible time intervals is 

presented for changes in the BLmean, standard deviation of the SY (SYstdev), 4th highest, 

and unpaired top10 ozone concentrations for the 21-yr timeframe (Fig. 10 and more detailed 

boxplots in S6–S8). The statistical metrics discussed are bias, RMSE, RMSEu and RMSEs 

for every combination (Fig. 10). We focus on the BLmean, 4th highest and unpaired top10.

Starting with BLmean (Fig. 10a), the median bias of changes across all simulation year 

intervals (blue line) is smaller than the bias of the absolute BLmean value (blue dotted line). 

The same applied to RMSE (black) and RMSEs (green) which increase as the year-intervals 

increase from 1 to 15 years. The RMSEu remained almost constant and equal to the RMSEu 

of the actual BLmean. The median errors of changes in the 4th highest and unpaired top10 

ozone concentrations showed a similar pattern, with a reduced bias compared to absolute 

values for all change intervals (Fig. 10 c, d). RMSEs increases with the time interval and 
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RMSEu is almost constant with a slight decrease after the 10-yr interval. Changes across 

time intervals between 2 and 15 years produce lower bias and systematic RMSE, higher 

RMSEu and similar RMSE compared with the absolute values, coinciding with the time 

span over which models are often used in a relative sense for regulatory applications.

5. Summary

Two decades of WRF-CMAQ simulations provided a unique opportunity to assess changes 

in DM8HR ozone caused by emission reduction policies and evaluate the model’s capability 

to reproduce the observed changes. Dynamic evaluation of WRF-CMAQ simulations for the 

period 1990–2010 has been performed here by analyzing the behavior of temporal trends, 

absolute vs. relative changes in the 4th highest, top10 and spectrally-decomposed ozone 

temporal components (i.e., short-term and long-term forcings). The main objectives of this 

study are to assess the model’s ability to reproduce the changes seen in the ozone 

observations and identify model’s strengths and weaknesses in simulating the absolute vs. 

relative ozone concentrations. The main findings from this dynamic evaluation study are 

summarized below:

➢ Spectral decomposition of 21-yrs observed DM8HR ozone time series revealed 

that it is the magnitude of the long-term forcing (i.e. baseline component), not 

the strength of the short-term forcing (synoptic-scale weather-induced 

variations), that dictates how high the 4th highest or top10 value could reach.

➢ A strong linear relationship between the level of the baseline and the ozone 

exceedances (4th highest/top10) is evident in both observations and model 

simulations. This suggests that improving the model’s ability to reproduce the 

long-term component would also benefit the simulation of extreme values that 

are of interest to regulatory agencies.

➢ The 21-year trends in the 10th percentile are mostly positive, mixed for the 50th 

and negative for the 90th percentile in most regions, indicating that ozone 

distributions are becoming narrower during these two decades. CMAQ 

successfully represented the trends in the more recent decade (2000–2010) and 

exhibited variable performance during the earlier decade.

➢ Trends in simulated and observed ozone are found to be statistically significant 

for the 2000–2010 period, but not during the earlier decade (1990–2000). For 

the more recent 2000–2010 period, WRF-CMAQ captured the observed trend in 

most regions and when utilizing a larger number of sites, the model had captured 

the observed trends in the Southwest and Midwest but underestimated the 

observed trends in the other regions.

➢ Model errors are smaller for temporal changes in the 4th and top10 values 

compared to those in their absolute concentration levels.

➢ Larger systematic model error compared to unsystematic for the 4th highest 

concentration indicates that improvements in the model are possible to help 

reduce systematic errors in simulating the extreme values.
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➢ Changes across different time intervals ranging from 2 to 15 years produce 

similar RMSE, higher unsystematic and lower systematic errors and bias 

compared to the absolute 4th and top10 concentration levels, suggesting air 

quality models are more suitable for use in the relative than in the absolute sense 

for regulatory applications.

This dynamic evaluation study reveals that the CMAQ model is better at reproducing 

temporal changes in ozone exceedances than their absolute concentration levels. There is a 

dependency of the model performance on region and time period, which is mainly driven by 

emission inventory accuracy, uncertainties in boundary conditions and deposition. 

Additional research is necessary to understand these aforementioned influences and provide 

guidance for future improvements in model simulations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Statistical metrics employed in the evaluation of simulated ozone concentrations:

R =
∑i = 1

N Pi · Oi
N −

∑i = 1
N Pi
N ·

∑i = 1
N Oi

N

∑i = 1
N Pi

2

N −
∑i = 1

N Pi
N

2

.
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BIAS =
∑
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RMSE =
∑

i = 1

N

Pi − Oi
2

N (A3)

The linear regression provides an estimated (or regressed) prediction P  with a and b the 

least squares regression coefficients (Eq. A4).

Pi = a + b ∗ Oi (A4)
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Figure 1. 
AQS sites having at least 80% data coverage for each year for (a) 1990–2010 and (b) 2000–

2010, which are grouped into 6 regions: Midwest (MW, orange), Northeast (NE, pink), 

Southcentral (SC, green), Southeast (SE, purple), Southwest (SW, blue) and West (W, 

brown).

Astitha et al. Page 19

Atmos Environ (1994). Author manuscript; available in PMC 2018 August 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 2. 
Density scatter plots (5 ppb bins) of daily maximum 8-hr (DM8HR) ozone concentrations 

across each region for 1990–2010 (21-yrs): a) West (W), b) Southwest (SW), c) Southcentral 

(SC), d) Southeast (SE), e) Midwest (MW) and f) Northeast (NE). The values in parenthesis 

denote the number of sites at each region (sites as seen in Fig. 1a).
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Figure 3. 
Correlation between BLmean and SYstdev with 4th highest ozone concentration, color-

coded by year. (a, c) Observations across the continental US (CONUS) and (b, d) 

corresponding CMAQ values.
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Figure 4. 
R and RMSE between observed and modeled (a-b) Baseline mean (BLmean), (c-d) standard 

deviation of the synoptic component (SYstd), (e-f) unpaired 4th highest ozone concentration 

(4th), and (g-h) unpaired average of top 10 ozone concentrations (top10) of the DM8HR 

ozone, for 1990–2010. All RMSE units are in ppb.
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Figure 5. 
R and RMSE (ppb) between observed and modeled (a-b) Baseline component (BL) and (c-

d) Short-term component (SY) of decomposed DM8HR ozone, for 1990–2010.
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Figure 6. 
Observed and simulated trends in the 10th, 50th and 90th percentile of DM8HR ozone 

concentration per region using 259 stations. a) 21-years (1990–2010), b) earlier 11-years 

(1990–2000), c) recent 11-years (2000–2010). The number of stations in each region is 

reported in the x-axis legend.
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Figure 7. 
95% bootstrap confidence intervals (ppb/yr) for observed (black) and modeled (gray) 

regional trends shown in Table 2. Non-overlapping bootstrapped intervals denoted with 

black squares show trends that are significantly different (also indicated by italics in Table 

2).
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Figure 8. 
Trends (ppb/yr) and differences in the trends (ppb/yr) between modeled and observed 

BLmean, 4th highest, top10 and SYstdev for 2000–2010 (#677 stations shown in Fig. 1b).
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Figure 9. 
Error of the 4th highest (left, ppb), absolute change in 4th highest for all 5-year intervals 

(AC; middle, 16 pairs, ppb) and relative change in 4th highest for all 5-year intervals (RC; 

right, 16 pairs, %): (a-c) RMSE; (d-f) Percentage of the unsystematic RMSE (PRMSEu); (g-

i) Percentage of the systematic RMSE (PRMSEs); and (j-l) BIAS.

Astitha et al. Page 27

Atmos Environ (1994). Author manuscript; available in PMC 2018 August 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 10. 
Median error of changes in (a) BLmean, (b) SYstd, (c) 4th and (d) top10 ozone 

concentrations across CONUS for various change intervals (i=1, 2, 3, … 15). For example, 

number 5 on the x-axis shows the median change calculated from all possible 5 year change 

interval combinations (16 pairs for 1990–2010). For comparison, dashed lines show the 

corresponding metrics of absolute values (instead of the changes) computed across the entire 

1990 – 2010 time period.
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Table 1.

Maximum 4th highest and top10 observed ozone concentrations (ppb) calculated by superimposing 21-yrs 

(1990–2010) of short-term components (SY) to the baseline (BL) that exhibits the highest and lowest BLmean 

at each station (O3=BL+SY). The station that exhibits the highest BLmean per region is included in the table 

to demonstrate the role of BL in controlling ozone exceedances.

Highest BLmean Lowest BLmean

Region Year BLmean 4th max top10 max Year BLmean 4th max top10 max

W 1994 104 163 162 2009 71 126 122

SW 1998 65 91 89 1991 50 71 70

SC 1998 61 95 93 2009 44 88 82

SE 1990 71 121 118 2009 44 84 82

MW 1998 74 114 113 2009 45 81 77

NE 1991 71 124 122 2009 44 89 88
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Table 2.

Regional trends of the 4th highest (ppb/yr) from WRF-CMAQ and observations for 1990–2000 and 2000–

2010. Values in bold denote statistically significant trends with p<0.05. Colored cells show percentage of 

stations within each region with statistically significant trends: white=0–20%, light grey=20–40%, grey=40–

60%, dark grey=60–80%. Values in italics indicate trends that are significantly different (non-overlapping 

confidence intervals shown in Fig. 7).

#259 sites #677 sites

Regions Simulated Trend 
(ppb/yr) 1990–

2000

Observed Trend 
(ppb/yr) 1990–

2000

Simulated Trend 
(ppb/yr) 2000–

2010

Observed Trend 
(ppb/yr) 2000–

2010

Simulated Trend 
(ppb/yr) 2000–

2010

Observed Trend 
(ppb/yr) 2000–

2010

W −0.19 −1.52 −0.01 −0.53 −0.26 −0.67

SW 0.34 0.37 −0.70 −0.62 −0.80 −0.73

SC 0.79 0.65 −1.18 −1.40 −1.14 −1.53

SE 0.40 0.86 −1.36 −1.55 −1.31 −1.66

MW −0.13 0.26 −1.49 −1.47 −1.46 −1.61

NE −0.63 −0.60 −1.35 −1.78 −1.35 −1.79

CONUS −0.09 −0.21 −1.07 −1.31 −1.11 −1.40
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Table 3.

Regional change in average of top 10 paired-in-time concentrations from 2000 to 2010 (ppb). The values in 

parenthesis denote changes calculated using the unpaired top10 concentrations. The ratio is marked with bold 

font for the best correspondence between model and observed changes. Sites correspond to Fig.1a.

Region # of Sites CMAQ 2000 CMAQ 2010 Observed 2000 Observed 2010 CMAQ Change Observed Change Ratio CMAQ/Obs. Change

W 56 67.8 (82.3) 70.8 (79.5) 75.8 71.1 2.9(−2.8) −4.7 −0.6 (0.6)

SW 10 67.3 (77.6) 59.9 (68.7) 75.5 70.0 −7.4 (−8.9) −5.5 1.4 (1.6)

SC 21 82.1 (89.5) 67.5 (73.7) 88.8 71.3 −14.6 (−15.8) −17.5 0.8 (0.9)

SE 33 78.6 (89.7) 68.6 (77.2) 84.3 68.8 −10.0 (−12.4) −15.5 0.6 (0.8)

MW 81 73.4 (82.3) 68.5 (76.8) 76.3 68.6 −4.9 (−5.4) −7.6 0.6 (0.7)

NE 58 76.0 (84.3) 75.6 (81.0) 81.6 75.0 −0.4 (−3.3) −6.5 0.1 (0.5)
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