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Abstract

Interest in connectivity has increased in the aquatic sciences, partly because of its relevance to the 

Clean Water Act. This paper has two objectives: (1) provide a framework to understand 

hydrological, chemical, and biological connectivity, focusing on how headwater streams and 

wetlands connect to and contribute to rivers; and (2) review methods to quantify hydrological and 

chemical connectivity. Streams and wetlands affect river structure and function by altering 

material and biological fluxes to the river; this depends on two factors: (1) functions within 

streams and wetlands that affect material fluxes; and (2) connectivity (or isolation) from streams 

and wetlands to rivers that allows (or prevents) material transport between systems. Connectivity 

can be described in terms of frequency, magnitude, duration, timing, and rate of change. It results 

from physical characteristics of a system, e.g., climate, soils, geology, topography, and the spatial 

distribution of aquatic components. Biological connectivity is also affected by traits and behavior 

of the biota. Connectivity can be altered by human impacts, often in complex ways. Because of 

variability in these factors, connectivity is not constant but varies over time and space. 

Connectivity can be quantified with field-based methods, modeling, and remote sensing. Further 

studies using these methods are needed to classify and quantify connectivity of aquatic ecosystems 

and to understand how impacts affect connectivity.
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INTRODUCTION

In recent decades, the aquatic sciences have expanded from studying the function and 

dynamics of individual ecosystems (e.g., Valiela and Teal, 1979) to developing an 

understanding of interactions between multiple ecosystems and the ways in which these 

interactions result in larger-scale landscape function (e.g., Cohen et al., 2016). For 

freshwater aquatic ecosystems, a typical scale and focus for such research is the watershed 

and resulting watershed functions. Aquatic ecosystems (e.g., streams, rivers, lakes, and 

wetlands) can interact because of their ability to import and export material and energy, and 

through their ability to alter the fluxes of these materials. A key determinant of these 

interactions is connectivity, which describes the degree to which components of a river 

system are joined, or connected, by various transport mechanisms (U.S. EPA, 2015). Here, 

we adopt the U.S. EPA (2015) and Naiman and Bilby (1998) terminology and define a 

stream and river as, respectively, either a relatively small or relatively large volume of 

flowing water within a visible channel, including subsurface water moving in the same 

direction as the surface water, and lateral flows exchanged with associated floodplain and 

riparian areas. We define a river system as a river and its entire drainage basin, including its 

river network, associated riparian areas, floodplains, alluvial aquifers, regional aquifers, 

connected water bodies, geographically isolated waters, and terrestrial ecosystems. A river 

network is defined as a hierarchical, interconnected population of channels or swales that 

drain water to a river. Connectivity of river systems—hydrological, chemical, and biological

—is determined by characteristics of the physical landscape, climate, and the biota, as well 

as human impacts.

In just the last few years, numerous studies have focused on aquatic connectivity, including: 

(1) connectivity between wetlands (McIntyre et al., 2014; Uden et al., 2014; Hayashi et al., 
2016; Leibowitz et al., 2016; Vanderhoof et al., 2016); (2) connectivity between hillslopes 

and streams (Jencso et al., 2010; Jencso and McGlynn, 2011; Bracken et al., 2013; Reaney et 
al., 2013; Janzen and McDonnell, 2015); (3) connectivity between rivers, floodplains, and 

floodplain wetlands (Rooney et al., 2013; Vilizzi et al., 2013; Wolf et al., 2013; Zilli and 

Paggi, 2013; Scott et al., 2014; Jones et al., 2015; Reid et al., 2015); (4) connectivity 

between wetlands occurring in non-floodplain areas and rivers (McLaughlin et al., 2014; 

McDonough et al., 2015; Cohen et al., 2016; Evenson et al., 2016; Fossey et al., 2016; 

Golden et al., 2016; Rains et al., 2016); and (5) connectivity between other river system 

components (Giblin et al., 2014; Harvey and Gooseff, 2015; Moore, 2015; Hauer et al., 
2016). Recent research also has investigated how connectivity contributes to ecosystem 

services (Mitchell et al., 2013; Jordan and Benson, 2015) and its importance to watershed 

and aquatic ecosystem management and protection of vulnerable waters (Uden et al., 2014; 

Crook et al., 2015; Moore, 2015; Creed et al., 2017).

Much of the scientific interest in connectivity has been generated because of its relevance to 

protection of aquatic ecosystems under the U.S. Clean Water Act (CWA; Alexander et al., 
submitted), the goal of which is to restore and maintain the chemical, physical, and 

biological integrity of the nation’s waters. Thus, there has been particular interest in 

connectivity with respect to the effects of wetlands and non-perennial streams on the 

integrity of downstream waters (Leibowitz and Nadeau, 2003; Caruso, 2011; McLaughlin et 
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al., 2014; Alexander, 2015; Marton et al., 2015; Cohen et al., 2016; Rains et al., 2016). The 

absence of a connection—i.e., isolation—has also been recognized as contributing to these 

systems (U.S. EPA, 2015). As a result, recent work has begun to focus on the full 

connectivity-isolation gradient of aquatic ecosystems (Cohen et al., 2016; Rains et al., 
2016), including ephemeral and intermittent streams and many so-called geographically 

isolated wetlands (wetlands completely surrounded by upland; Leibowitz, 2015; Mushet et 
al., 2015; Calhoun et al., 2017).

Given the growing scientific interest in aquatic system connectivity and its relevance to the 

goals of the CWA, a conceptual overview of the subject and approaches towards its study is 

timely. This paper has two objectives. First, we provide a framework for understanding 

physical, chemical, and biological connectivity, specifically focusing on how aquatic 

ecosystems such as headwater streams and wetlands contribute to rivers and other 

downstream waters and the connections between those ecosystems and downstream waters. 

This framework integrates studies from multiple disciplines to synthesize how researchers 

across diverse fields approach connectivity studies. Because the study of connectivity 

between different types of aquatic systems is a relatively new research endeavor, the 

framework also draws conclusions based on logical inferences and first principles. Second, 

we review some of the approaches that have been used to quantify hydrological, chemical, 

and biological connectivity.

This paper is adapted from a chapter on this topic from an EPA report on connectivity of 

aquatic systems (U.S. EPA, 2015) that reviewed and synthesized more than 1,300 peer-

reviewed publications on this subject. The current work is updated with recent additions to 

the literature. In the sections below, we address three topics: (1) the influence that streams 

and wetlands have on downstream waters; (2) factors that influence connectivity, including 

human activities; and (3) approaches for quantifying connectivity.

INFLUENCE OF STREAMS AND WETLANDS ON DOWNSTREAM WATERS

The structure and function of rivers are highly dependent on the constituent materials stored 

in and transported through them. Much of these materials, broadly defined here as any 

physical, chemical, or biological entities (including water, heat energy, sediment, wood, 

organic matter, nutrients, chemical contaminants, and organisms), originate outside of the 

river. The materials come from either the upstream river network or other components of the 

river system, and then are transported to the river by water movement or other mechanisms 

(e.g., wind, movement of biota). For example, most of the water in higher order rivers 

(Strahler, 1957) comes from tributaries, and not from precipitation or groundwater directly 

entering the river (Winter, 2007; Bukaveckas, 2009). Also, riparian areas are a critical source 

for allochthonous inputs of organic matter to streams, especially in headwater catchments 

(Tank et al., 2010). This includes large woody debris, which comes from riparian areas or 

hillslopes and acts to dissipate energy, trap material, and provide habitat in the stream 

(Sobota et al., 2006; Fritz et al., submitted). Thus, our framework for understanding how 

streams and wetlands contribute to downstream waters identifies alterations of material 

fluxes to the river as the fundamental way in which streams and wetlands affect river 

structure and function. This framework considers two key factors that cause this alteration of 
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material fluxes: (1) stream and wetland functions that increase or decrease material fluxes, 

and (2) connectivity (or isolation) from streams and wetlands to rivers that allows (or 

prevents) transport of materials between the systems. Below, we discuss these two factors, as 

well as the spatial and temporal variability of connectivity.

Effects of Streams and Wetlands on Material Fluxes

Streams and wetlands affect the amounts and types of materials that are or are not delivered 

to downstream waters, ultimately contributing to the structure and function of those waters. 

Leibowitz et al. (2008) identified three functions, or general mechanisms of action, by which 

streams and wetlands influence material fluxes to downstream waters: source, sink, and 

refuge. U.S. EPA (2015) expanded this framework to include two additional functions: lag 

and transformation. These five functions (Table 1) describe the general mechanisms by 

which physical, chemical, and biological connections between streams and wetlands and 

downstream waters influence river systems. Each of these general functions are driven by 

specific mechanisms; e.g., adsorption, chelation, and soil biogeochemical reactions are the 

mechanisms that drive the sink and transformation functions for many water quality 

constituents. While here, we focus on functions that benefit downstream waters; these 

functions also can have negative effects. For example, wetlands can be a source of 

methylmercury, a contaminant that can travel to downstream systems, bioaccumulate in fish, 

and pose a health risk to humans and aquatic life (Galloway and Branfireun, 2004).

The five functions are neither static nor mutually exclusive, and often the distinctions 

between them are not sharp. A stream or wetland can provide different functions at the same 

time. These functions can vary with the material considered (e.g., acting as a source of 

organic matter and a sink for nitrogen; Jones et al., 2015) and can change over time (e.g., 

acting as a water sink during wet periods and a water source during dry periods; McLaughlin 

et al., 2014). The magnitude of a given function also is likely to vary temporally: for 

example, streams can be greater sources of organic matter and contaminants during high 

flows (Rabiet et al., 2010; Tank et al., 2010; but see Kolpin et al., 2004). The magnitude and 

timing of these functions is dependent on conditions within the stream or wetland. For 

example, uptake and transformation of stream nutrients through spiraling is affected by 

water velocity, residence time, and characteristics of the benthos (Ensign and Doyle, 2006). 

If a function depends in part on material or energy imports (e.g., denitrification requires a 

nitrogen source), the function will not be realized in the absence of those imports. However, 

this function could be provided under appropriate conditions (e.g., changing land use leading 

to non-point source nitrogen imports). The capacity for such potential functions can be 

instrumental in protecting waters from future impacts (Leibowitz et al., 2008).

Three factors can influence the effect that material and energy fluxes from streams and 

wetlands have on downstream waters: (1) proportion of the material originating from (or 

reduced by) streams and wetlands relative to the importance of other system components, 

such as the river itself; (2) residence time of the material in the downstream water; and (3) 

relative importance of the material to river function or ecosystem services. In many cases, 

the effects on downstream waters need to be considered in aggregate. For example, although 

macroinvertebrate production per unit length of stream is relatively low in first-order streams 
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of the Little Tennessee River basin, smaller, lower order streams contribute at least 10% of 

all macroinvertebrate production because they represent a large percentage of the basin’s 

total stream length (Freeman et al., 2007). Integrating contributions over time also might be 

necessary, depending on the purpose of the analysis.

In addition to the three factors just described, the more frequently a material is delivered to a 

downstream water, the greater the opportunity it will have to affect function. The effect of an 

infrequently supplied material, however, can be large if the material has a long residence 

time in the river (Leibowitz et al., 2008). For example, woody debris might be exported to 

downstream waters infrequently but it can persist in stream channels for hundreds of years 

(Hyatt and Naiman, 2001). In addition, some materials are more important in determining 

the structure and function of a river. For example, salmon can serve as a keystone species 

that regulates other populations and serves as a source of marine-derived nutrients (Schindler 

et al., 2005).

Connectivity and Transport of Materials to and from Streams and Wetlands

For the functions discussed above to affect a river, transport mechanisms that deliver (or 

could deliver) these materials to the river are necessary. In this section, we define 

connectivity, discuss different types of connectivity as well as the directionality of 

connectivity.

We define connectivity as the degree to which components of a system are connected and 

interact through various transport mechanisms. This structural definition is related to, but 

distinct from, functional definitions of connectivity based on the actual flow of materials 

between system components (e.g., Pringle, 2001). Connectivity among river system 

components is not a new concept. In fact, much of the theory developed to explain how these 

systems work focuses on connectivity and the importance of linkages between system 

components (Vannote et al., 1980; Newbold et al., 1982a; Newbold et al., 1982b; Junk et al., 
1989; Ward, 1989; Benda et al., 2004; Thorp et al., 2006). The River Continuum Concept 

(Vannote et al., 1980) viewed the entire length of rivers, from source to mouth, as a complex 

hydrologic gradient with predictable longitudinal patterns of ecological structure and 

function. The key pattern is that downstream communities are organized, in large part, by 

upstream communities and processes (Vannote et al., 1980; Battin et al., 2008). The Serial 

Discontinuity Concept (Ward and Stanford, 1983) built on the River Continuum Concept to 

improve our understanding of how dams and impoundments disrupt the longitudinal patterns 

of flowing waters with predictable downstream effects. The Spiraling Concept (Webster and 

Patten, 1979; Newbold et al., 1981; Elwood et al., 1983) described how river network 

connectivity can be evaluated and quantified as materials cycle from dissolved forms to 

transiently stored forms taken up by living organisms, then back to dissolved forms, as they 

are transported downstream. These three conceptual frameworks focused on the longitudinal 

connections of river ecosystems, whereas the subsequent flood pulse concept (Junk et al., 
1989) examined the importance of lateral connectivity of river channels to floodplains, 

including wetlands and open waters, through seasonal expansion and contraction of river 

networks. Ward (1989) summarized the importance of connectivity to lotic ecosystems along 

four dimensions: longitudinal, lateral, vertical (surface-subsurface), and temporal 
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connections; he concluded that running water ecosystems are open systems that are highly 

interactive with both contiguous habitats and other ecosystems in the surrounding landscape. 

Euliss et al. (2004) added to these ideas by proposing the wetland continuum concept, which 

considered wetland change over time in response to dynamic changes in climate. As these 

conceptual frameworks illustrate, scientists have long recognized the hydrologic 

connectivity that the physical structure of river networks represents.

Water movement through the river system (Figure 1) is the primary mechanism providing 

physical connectivity both within river networks and between those networks and the 

surrounding landscape (Fullerton et al., 2010). Hydrologic connectivity results from the flow 

of water, which provides a “hydraulic highway” (Fausch et al., 2002) along which physical, 

chemical, and biological materials associated with the water (e.g., sediment, woody debris, 

nutrients, contaminants, organisms) are transported. However, the effect of this water 

movement can depend on the specific type of connectivity. Leibowitz et al. (2016) found that 

the type of connectivity—fill and spill vs. fill and merge—affected the hydrological, 

chemical, and biological response between connected wetlands. Fill and spill occurs when 

net input of water exceeds wetland storage capacity (fill), causing the wetland to overflow 

(spill) onto the land surface and into other surface-water bodies (Leibowitz and Vining, 

2003; Tromp-van Meerveld and McDonnell, 2006; Shaw et al., 2013; McCauley and 

Anteau, 2014). Fill and merge occurs when the water depth of one basin exceeds the internal 

spill point of another basin, but the surface storage of the combined basin is greater than the 

total net input of water. In this latter case, the basins merge without spilling externally. Fill 

and spill promotes external hydrologic exports while fill and merge favors internal storage. 

However, wetlands can also be subsumed by or merge with other aquatic systems through 

expansion, resulting in continuous surface-water connections to streams over long (>35 km) 

spatial distances (Vanderhoof and Alexander, 2016). Hydrologic connectivity can also occur 

through groundwater, e.g., between the river, hyporheic zone, and alluvial aquifer (Boulton 

et al., 1998; Gooseff, 2010; Bencala et al., 2011; Goodrich et al., submitted).

River system structure and function also depend on biological connectivity among the 

system’s populations of aquatic and semiaquatic organisms (Bornette et al., 1998; Steiger et 
al., 2005; Meyer et al., 2007). Biological connectivity is established by the active and 

passive movements of living organisms or their reproductive materials (e.g., seeds, eggs, 

genes) through space (e.g., dispersal, migration) or time (e.g., dormancy). These movements 

can occur via multiple pathways (e.g., water, wind, other organisms) and multiple 

mechanisms (e.g., swimming, flying, walking) within aquatic ecosystems and across 

ecosystem or watershed boundaries (see Schofield et al., submitted for further discussion of 

biological connectivity in aquatic systems).

Streams and rivers are not pipes (Bencala, 1993; Bencala et al., 2011); the water and 

associated materials they carry interact with internal components (e.g., alluvium, organisms) 

through the five functions by which streams and wetlands alter material fluxes (Table 1). 

Connectivity between streams and wetlands provides opportunities for material and energy 

fluxes to be altered sequentially by multiple streams and wetlands as the materials are 

transported downstream (Newbold et al., 1981; Ensign and Doyle, 2006). The aggregate 

effect of these sequential fluxes determines the proportion, form, and type of material that 
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ultimately reaches downstream waters (Figure 2). These sequential transformations can also 

create a cumulative time lag for material transported downstream (e.g., through sediment 

retention or biological uptake).

The opposite of connectivity is isolation, or the degree to which transport mechanisms (i.e., 

pathways between system components) are lacking. Isolation reduces material fluxes 

between system components. Although here, we primarily focus on the benefits that 

connectivity can have on downstream systems, isolation also can have important positive 

effects on the condition and function of downstream waters. For example, waterborne 

contaminants that enter a wetland cannot be transported to a river, except by non-hydrologic 

pathways, if the wetland is hydrologically isolated from the river. Increased isolation can 

decrease the spread of pathogens (Hess, 1996) and invasive species (e.g., Bodamer and 

Bossenbroek, 2008), and increase the rate of local adaptation (e.g., Fraser et al., 2011). 

Isolation can also reduce downstream flooding, as in the case of surface-water storage by 

depressional wetlands (Vining, 2002; Yang et al., 2010). Thus, both connectivity and 

isolation should be considered when examining material fluxes from streams and wetlands, 

and these fluxes—including biological interactions—should be viewed in terms of a balance 

between these two factors.

Directionality is an important consideration for the effects of streams and wetlands on 

downstream waters, especially for connectivity driven by hydrologic flows. Wetlands that 

occur in riparian or floodplain settings (referred to as riparian/floodplain wetlands) can have 

bidirectional, lateral hydrologic flows in addition to some of the same hydrologic 

connections that occur in non-floodplain settings (Górski et al., 2014; Yurek et al., 2016). 

For example, wetlands within a riparian area are connected to the river network through 

lateral movement of water between the channel and riparian areas (e.g., through overbank 

flooding [Figure 1A] and hyporheic flow [Figures 1B and 1C]). In contrast, non-floodplain 

landscape settings include upgradient areas such as hillslopes or upland areas outside of the 

floodplain. U.S. EPA (2015) stated that wetlands occurring in such settings, referred to as 

non-floodplain wetlands, can hydrologically connect to the stream network only through 

unidirectional, lateral hydrologic flows of surface water or groundwater. However, other 

studies have shown that this is not always true; rather, directionality of hydrologic flows for 

non-floodplain wetlands is influenced by the type of connection. Fill and spill connectivity is 

unidirectional with respect to hydrology, since spillage must follow gravity (Tromp-van 

Meerveld and McDonnell, 2006; Leibowitz et al., 2016). In contrast, lateral expansion of 

river networks may occur via multiple mechanisms, including surface flow that is generated 

when the soil system adjacent to the river is fully saturated from a rise in the water table 

(Hewlett and Hibbert, 1967; McDonnell, 2013). This can result in bidirectional fill and 

merge connectivity between a non-floodplain wetland and a downstream water (Devitio et 
al., 1996; Chu, 2015; Vanderhoof and Alexander, 2016). Because of the existence of a high 

water table during these events, bidirectional subsurface connectivity might also be 

expected. Which type of directionality dominates in non-floodplain wetlands and under what 

circumstances are questions requiring further research. However, Leibowitz et al. (2016) 

suggest that slope should affect the type of connectivity—with fill and merge occurring in 

flatter areas and fill and spill occurring in steeper areas—while relief and climate should 

influence the frequency of hydrologic connectivity. More detailed discussion concerning 
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riparian/floodplain and non-floodplain wetlands is given in (Fritz et al., submitted; Lane et 
al., submitted).

A major consequence of the directionality of hydrologic connections is that, for a non-

floodplain wetland connected by fill and spill, waterborne materials can be transported only 

from the wetland to the river network, whereas waterborne materials can be transported from 

the wetland to the river network and vice versa for a riparian/floodplain wetland or a non-

floodplain wetland connected by fill and merge. With bidirectional flow, there is a mutual, 

interacting effect on the structure and function of both the wetland and river network. In 

contrast, wetlands with unidirectional connections to a river can affect the river through the 

transport of waterborne materials, but the opposite is not true. Note that hydrological 

directionality does not necessarily control the directionality of geochemical or biological 

flows. For example, mobile organisms such as fish can move against the flow of water to a 

headwater stream or non-floodplain wetland (Leibowitz et al., 2016; Schofield et al., 
submitted), and carcasses of salmon returning to watersheds from the ocean can serve as a 

source of marine-derived nutrients (Schindler et al., 2005).

Both riparian/floodplain and non-floodplain wetlands can include so-called geographically 

isolated wetlands (Leibowitz, 2015; Mushet et al., 2015; Calhoun et al., 2017), or wetlands 

completely surrounded by uplands (Tiner, 2003). These wetlands have no apparent surface-

water outlets, but can hydrologically connect to downstream waters through fill and spill, fill 

and merge, and shallow or deep subsurface flow. Note that the term “geographically 

isolated” should not be misconstrued as implying functional isolation (Leibowitz, 2003; 

Tiner, 2003). Determining the functional connectivity of geographically isolated wetlands is 

essential because of their important hydrological, chemical, and biological contributions to 

downstream watersheds and other watershed components (Marton et al., 2015; Cohen et al., 
2016; Rains et al., 2016; Schofield et al., submitted). However, additional research is 

required since the hydrologic connectivity of these wetlands is generally difficult to 

characterize.

Spatial and Temporal Variability of Connectivity

Connectivity is not a fixed characteristic of a system, but varies over space and time (Ward, 

1989; Leibowitz, 2003; Leibowitz et al., 2016). In fact, Cohen et al. (2016) have argued that 

the hydrologic function of watersheds depends on the connectivity-isolation continuum, 

which results from this variation. Variability in hydrologic connectivity results from the 

longitudinal, lateral, and vertical expansion and contraction of the river network (Figures 1, 

3, and 4) and transient connections with other watershed components (e.g., through 

ephemeral and episodic connections). Poff et al. (1997) described this variability in terms of 

frequency, duration, magnitude, timing, and rate of change of connections among system 

components.

The expansion and contraction of river networks affect the spatial extent, magnitude, timing, 

and type of hydrologic connectivity. For example, intermittent and ephemeral streams, 

which are estimated to account for 59% of the total length of streams in the contiguous 

United States (Nadeau and Rains, 2007), flow continuously only at certain times of year or 

briefly in direct response to precipitation, respectively. Thus, the spatial extent of 
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connectivity between streams and wetlands and downstream waters increases greatly during 

these seasonal or episodic high-flow events (Wigington et al., 2005; Figure 3). Changes in 

the spatial extent of connectivity due to expansion and contraction are particularly 

pronounced in the arid and semiarid Southwest (Goodrich et al., submitted), where more 

than 80% of all streams are intermittent or ephemeral (Levick et al., 2008). Expansion and 

contraction also affect the magnitude of connectivity, because larger flows provide greater 

potential for material transport (Fritz et al., submitted).

Besides affecting the spatial extent and magnitude of hydrologic connectivity, expansion and 

contraction of the stream network also affect the duration and timing of flow in different 

portions of the network. For example, perennial streams have year-round hydrologic 

connectivity with a downstream river via surface-water flows, whereas intermittent streams 

have only seasonal surface-water connectivity with downstream segments. Goodrich et al. 
(submitted) include examples of the importance of intermittent and ephemeral streams. The 

temporal characteristics of connectivity for ephemeral streams depend on the duration, 

intensity, and timing of storm events. Similarly, connectivity between wetlands and 

downstream waters can range from permanent to seasonal to episodic.

The expansion and contraction of river systems also affect the type of hydrologic 

connectivity. For example, during wet periods, when input from precipitation can exceed 

evapotranspiration and available storage, non-floodplain wetlands could have connectivity 

with other wetlands or streams through surface spillage (Rains et al., 2008; Leibowitz et al., 
2016). When spillage ceases due to drier conditions, hydrologic connectivity could only 

occur through groundwater (Rains et al., 2006; Rains et al., 2008).

When the flow of water mediates dispersal, migration, and other forms of biotic movement, 

biological and hydrologic connectivity can be tightly coupled. For example, seasonal 

flooding of riparian/floodplain wetlands creates temporary habitat that fish, aquatic insects, 

and other organisms use (Junk et al., 1989; Smock, 1994; Tockner et al., 2000; Robinson et 
al., 2002; Tronstad et al., 2007). Factors other than hydrologic dynamics also can affect the 

temporal and spatial dynamics of biological connectivity. Such factors include movement 

associated with seasonal habitat use (Moll, 1990; Lamoureux and Madison, 1999) and shifts 

in habitat use due to life-history changes (Huryn and Gibbs, 1999; Gibbons et al., 2006; 

Subalusky et al., 2009), quality or quantity of food resources (Smock, 1994), presence or 

absence of favorable dispersal conditions (Schalk and Luhring, 2010), physical differences 

in aquatic habitat structure (Grant et al., 2007), or the number and sizes of nearby 

populations (Gamble et al., 2007). For a specific river system with a given spatial 

configuration, variability in biological connectivity also occurs due to variation in the 

dispersal distance of organisms and reproductive propagules (Semlitsch and Bodie, 2003).

Finally, just as connectivity from temporary or seasonal wetting of channels can affect 

downstream waters, temporary or seasonal drying (i.e., isolation) also can affect river 

networks. Riverbeds or streambeds that temporarily dry up are used by aquatic organisms 

that are specially adapted to wet and dry conditions, and can serve as egg and seed banks for 

organisms including aquatic invertebrates and plants (Steward et al., 2012). These temporary 

dry areas also can affect nutrient dynamics due to reduced microbial activity, increased 
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oxygen availability, and inputs of terrestrial sources of organic matter and nutrients (Steward 

et al., 2012). These materials can then be washed downstream during rewetting.

FACTORS INFLUENCING CONNECTIVITY

Numerous factors affect physical, chemical, and biological connectivity within river 

systems. These factors operate at multiple spatial and temporal scales, and interact with each 

other in complex ways to determine where components of a system fall on the connectivity-

isolation gradient at a given time. Here, we focus on three key factors: climate and 

watershed characteristics, spatial distribution patterns of waterbodies, and human activities 

and alterations (see Schofield et al., submitted for a discussion of biota, which is another key 

determinant of biological connectivity). These are by no means the only factors influencing 

connectivity, but they illustrate how numerous variables can ultimately shape physical, 

chemical, and biological connectivity. While many of these factors are derived from basic 

hydrological and biological concepts, it is important to describe them here since they are 

fundamental to our framework.

Climate and Watershed Characteristics

The movement and storage of water in watersheds varies with climatic, geologic, 

physiographic, and edaphic characteristics of river systems (Winter, 2001; Wigington et al., 
2013). At broad spatial scales, climate determines the amount, timing, and duration of water 

available to watersheds and river basins. Key characteristics of water availability that 

influence connectivity over various temporal scales include annual precipitation surplus 

(precipitation minus evapotranspiration); timing (seasonality) of water surplus during the 

year (Stieglitz et al., 2003), which is heavily influenced by precipitation timing and form 

(e.g., rain, snow); and precipitation intensity (Gomi et al., 2008).

Annual runoff generally reflects water surplus and varies widely across the United States. 

Seasonality of water surplus during the year determines when and for how long runoff and 

groundwater recharge occur. Precipitation and water surplus in the eastern United States is 

well-distributed throughout the year and, therefore, less seasonal than in the West 

(Finkelstein and Truppi, 1991). The Southwest experiences summer monsoonal rains 

(Goodrich et al., submitted), whereas the West Coast and Pacific Northwest receive most 

precipitation during the winter season (Wigington et al., 2013). Throughout the West, winter 

precipitation in the mountains occurs as snowfall, where it accumulates in seasonal 

snowpack and is released during the spring and summer melt seasons to sustain streamflow 

during late spring and summer months (Brooks et al., 2012). The flowing portions of river 

networks tend to have their maximum extent during seasons with the highest water surplus 

(Goodrich et al., submitted; Figure 3), when conditions for flooding are most likely. 

Typically, the occurrence of ephemeral and intermittent streams is greatest in watersheds 

with low annual runoff and high water surplus seasonality, but this also is influenced by 

watershed geologic and edaphic features (Gleeson et al., 2011).

Rainfall intensity can affect hydrologic connectivity in localities where watershed surfaces 

have low infiltration capacities relative to rainfall intensities (Gomi et al., 2008). Infiltration-

excess overland flow occurs when rainfall intensity exceeds watershed surface infiltration, 
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and it can be an important mechanism providing water to wetlands and river networks 

(Goodrich et al., 1997; Levick et al., 2008). Overland flow is common at low elevations in 

the Southwest, due to the presence of desert soils with low infiltration capacities combined 

with relatively high rainfall intensities (Goodrich et al., submitted). The Pacific Northwest 

has low rainfall intensities, whereas many locations in the Mid-Atlantic, Southeast, and 

Great Plains have higher rainfall intensities. The prevalence of impermeable surfaces in 

urban areas can generate overland flow in virtually any setting (Booth et al., 2002).

River system topography and landscape form can profoundly influence river network 

drainage patterns, distribution of wetlands, and groundwater and surface-water flowpaths. 

Winter (2001) described six generalized hydrologic landscape forms common throughout 

the United States (Figure 5). These landscape forms can affect the spatial pattern and timing 

of water delivery. For example, Mountain Valleys (Figure 5A) have constrained valleys with 

proportionately long, steep sides with narrow to nonexistent floodplains. This results in the 

rapid movement of water downslope. In contrast, Riverine Valleys (Figure 5D) have 

extensive floodplains that promote strong surface water, hyporheic water, and alluvial 

groundwater connections between wetlands and rivers. Small changes in water table 

elevations can influence the water levels and hydrologic connectivity of wetlands over 

extensive areas in this landscape form (Vanderhoof and Alexander, 2016; Figure 5D).

Hydrologic connectivity between floodplains and rivers and streams occurs primarily 

through overbank flooding, shallow groundwater flow, and hyporheic flows and exchanges. 

Water-table depth can influence connectivity across a range of hydrologic landscape forms, 

especially within floodplains. Wet, high water table conditions influence both groundwater 

and surface-water connectivity. For example, when water tables are near the watershed 

surface, they create conditions in which swales and small stream channels fill with water and 

flow to nearby water bodies (Wigington et al., 2003; Wigington et al., 2005).

Within hydrologic landscape forms, the permeability of soil and geologic formations is an 

important determinant of hydrologic flowpaths (Wolock et al., 2004; Figure 6). Permeable 

soils promote infiltration that results in groundwater hydrologic flowpaths (Figures 6A and 

6B), whereas the presence of impermeable soils with low infiltration capacities is conducive 

to overland flow (Figures 6C and 6D). In situations in which groundwater outflows from 

watersheds or landscapes dominate, the fate of water depends in part on the permeability of 

deeper geologic strata. The presence of an aquiclude near the land surface increases the 

potential for shallow subsurface flows through soil or geologic materials (Figure 6A).

These local groundwater flowpaths connect portions of watersheds to nearby wetlands or 

streams. Alternatively, if a deep permeable geologic material (an aquifer) is present, water is 

likely to move deeper into the subsurface, recharge deeper aquifers, and potentially form 

regional groundwater flowpaths (Figure 6B). Also, the higher the hydraulic conductivity of 

an alluvial aquifer, the greater the exchange rate between the alluvial aquifer and river 

waters (Whiting and Pomeranets, 1997). The permeability of soils and geologic formations 

both can influence the range of hydrologic connectivity between non-floodplain wetlands 

and river networks. For example, a wetland that is the origin of a stream can have a 

permanent or temporary surface-water connection with downstream waters through a 
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channelized outlet (Figure 7A); a wetland can be connected to downstream waters by 

transient surface-water flows through swales (Figure 7B) or by shallow groundwater flows 

(Figure 7C); or a wetland can be hydrologically isolated from downstream waters (Figure 

7D) because it recharges a deep groundwater aquifer that does not feed surface waters, or it 

is located in a basin where evapotranspiration is the dominant form of water loss.

Spatial Distribution Patterns

Climate and watershed characteristics directly affect spatial and temporal patterns of 

connectivity between streams and wetlands and downstream waters by influencing the 

timing and extent of river network expansion and contraction (Wigington et al., 2005; Figure 

3). They also influence the spatial distribution of water bodies within a watershed (e.g., 

Tihansky, 1999).

Hydrologic connectivity between streams and rivers can be a function of the distance 

between the two water bodies (Bracken and Croke, 2007; Peterson et al., 2007). Water in 

streams and rivers can be lost from the channel through evapotranspiration and bank storage 

or added through downstream inputs. Thus, material from a headwater stream that flowed 

directly into a river along a shorter channel length would be subject to less transformation or 

dilution. On the other hand, the greater the distance a material travels between a particular 

stream reach and the river, the greater the opportunity for that material to be altered (e.g., 

taken up, transformed, or assimilated; Figure 2) in intervening stream reaches. This 

illustrates how relative isolation—in this case through increased distance—can affect a 

downstream water; this effect will be beneficial if the material being isolated would have a 

negative impact on the downstream water (e.g., as would be the case for a contaminant). 

Higher order streams generally are located closer to rivers and, therefore, tend to be more 

directly connected to downstream waters than upstream reaches of lower order. Although an 

individual low-order stream can have less connectivity than a high-order stream, a river 

network has many more low-order streams; thus, the cumulative effect of these low-order 

streams is significant.

Distance also affects connectivity between riparian/floodplain and non-floodplain wetlands 

and downstream waters. Riverine wetlands that serve as origins for headwater streams that 

connect directly to a mainstem river (e.g., first-order streams that directly connect to fifth-

order streams) have a more direct connection to that river than wetlands that serve as origins 

for headwater streams high in a drainage network (e.g., first-order streams that connect to 

second-order streams). This also applies to riparian/floodplain wetlands that have direct 

surface-water connections to streams or rivers. For example, Reese and Batzer (2007) 

examined invertebrate communities in the Altamaha River catchment in Georgia and found 

evidence of weak biological connectivity between upper reach floodplains and the stream, 

and strong connectivity in mid-reach floodplains. However, biological connectivity of lower 

reach floodplains was lower. Further, wetlands that border first-order streams may process a 

larger percentage of the water entering a stream than wetlands bordering higher order 

streams (Whigham et al., 1988). If geographically isolated non-floodplain wetlands have 

surface-water outputs (e.g., depressions that experience surface-water spillage or 

groundwater seeps; Figure 7B), the probability that surface water will infiltrate or be lost 
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through evapotranspiration increases with distance, and can vary substantially within and 

among regions (Cohen et al., 2016; Vanderhoof et al., 2017a).

For non-floodplain wetlands connected through groundwater flows, less distant areas are 

generally connected through shallower flowpaths, assuming similar soil and geologic 

properties. These shallower groundwater flows have the greatest interchange with surface 

waters and travel between points in the shortest amount of time. Although elevation is the 

primary factor determining areas that are inundated through overbank flooding, connectivity 

with the river generally will be higher for riparian/floodplain wetlands located near the 

river’s edge compared with riparian/floodplain wetlands occurring near the floodplain edge.

Distance from the river network also influences biological connectivity among streams and 

wetlands. For example, mortality of an organism due to predators and other natural hazards 

generally increases with the distance it has to travel to reach the river network. The 

likelihood that organisms or propagules traveling randomly or by diffusive mechanisms such 

as wind will arrive at the river network generally decreases as distance increases.

The distribution of distances between wetlands and river networks depends on both the 

drainage density of the river network (the total length of stream channels per unit area) and 

the density of wetlands. Climate, geological history, and watershed characteristics influence 

these spatial patterns, as do human activities, all of which can vary widely. Figure 8 shows 

wetland landscape settings ranging from a few nearby streams with high wetland density 

(Figures 8A–C), to less spatially uniform wetlands (Figure 8D), to areas with higher 

drainage densities coupled with either riparian (Figure 8E) or larger, more extensive (Figure 

8F) wetlands. These maps illustrate the degree to which landscape setting can affect the 

interspersion―and thus average distance―between wetlands and the river network, and the 

large variability in distances, and therefore connectivity, that can result.

All factors being equal, wetlands closer to the stream network will have greater hydrologic 

and biological connectivity to downstream waters than wetlands located farther from the 

same network. However, all factors often are not equal, and so more distant wetlands can 

have higher connectivity than wetlands that are closer to downstream waters due to 

variability in factors such as topography, slope, and soil permeability. For example, 

Vanderhoof et al. (2017a) found that the average distance over which wetlands showed a 

surface-water connection to streams varied substantially between ecoregions across the 

prairie pothole region. In areas dominated by flat, open basins and lakes, small changes in 

surface-water levels can consolidate wetlands that were previously disconnected by 

distances greater than 1 km (Vanderhoof and Alexander, 2016). In this case, wetlands often 

connect to one another first, forming wetland complexes, prior to connecting to a stream 

channel (Vanderhoof et al., 2017a).

An analysis by Cohen et al. (2016) found that the distribution of wetland distances to the 

nearest stream with respect to different wetland landscapes was complex, although in most 

cases followed exponential scaling. They concluded that wetlands occur in a continuum of 

sizes and separation distances from streams, and hypothesized that geographically isolated 

wetlands could enable functions that larger wetlands nearer to streams did not support. In 
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particular, they suggested that travel times between geographically isolated wetlands and a 

stream would vary depending on whether the geographically isolated wetland had frequent, 

intermittent, or infrequent surface-water connections with the stream, and that the 

hydrographic response of a watershed was the convolution of all these different travel times. 

Cohen et al. (2016) suggested that the hydrologic function of watersheds was dependent on 

the entire continuum of wetland connectivity and isolation.

Human Activities and Alterations

Human activities frequently alter connectivity—and therefore the transfer and movement of 

materials and energy—between headwater streams, riparian/floodplain wetlands, non-

floodplain wetlands, and downgradient river networks (Fullerton et al., 2010; Jackson and 

Pringle, 2010; Jaeger et al., 2014; Fritz et al., submitted; Lane et al., submitted). This 

includes alterations that reduce connectivity, such as dams, levees, water abstraction, piping, 

and burial, and those that increase connectivity, including wetland drainage, irrigation, 

impervious surfaces, and interbasin transfers. Each of these can alter the transfer and 

movement of materials and energy between river system components. Furthermore, the 

individual or cumulative effects of headwater streams and wetlands on river networks are 

often more discernible—through impairments caused by their loss—following human-

mediated changes in degree of connectivity.

Landscape alterations can increase or decrease hydrologic and biological connectivity (or, 

alternatively, decrease or increase hydrologic and biological isolation). For example, dams 

and impoundments might impede biotic movement, whereas nonnative species introductions 

artificially increase biotic movement. Further complicating the issue is that a given activity 

or alteration might simultaneously increase and decrease connectivity, depending on which 

part of the river system is considered. For example, channelization can increase hydrologic 

connectivity by increasing water flow between portions of a river, but decrease connectivity 

by reducing flow to floodplain wetlands. Similarly, agricultural ditches and tile drainage can 

increase hydrologic connectivity by facilitating rapid water transport into channels or 

wetlands, but can also decrease hydrologic connectivity by filling wetlands with soil and 

lowering the water table (De Laney, 1995; Blann et al., 2009; McCauley et al., 2015).

The presence of dams illustrates the complex effects that human-mediated landscape 

modifications can have on connectivity. Numerous studies have shown that dams impede 

biotic movements, reduce biological connectivity between upstream and downstream 

locations (e.g., Greathouse et al., 2006; Hall et al., 2011), and form a discontinuity in the 

normal stream-order-related progression in stream ecosystem structure and function 

(Stanford and Ward, 1984). However, dams can have the opposite effect with respect to 

natural lakes. For example, a dam may increase a lake’s biological connectivity with respect 

to invasive species by adding impoundments that decrease average distances between lakes 

and serving as stepping stone habitat (Johnson et al., 2008). Large dams can also 

permanently inundate upstream riparian areas, increasing lateral hydrologic connectivity in 

these locations. In contrast, dams attenuate downstream flow variability by reducing peak 

stream volumes during normal high-runoff seasons and increasing minimum flows during 

normal low-flow seasons (Poff et al., 2007). Because many riverine organisms are adapted to 
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the seasonality of natural flow regimes, attenuating flow variability can have deleterious 

effects on species persistence where dams have been built (Lytle and Poff, 2004). This 

reduction in high flows also decreases the connectivity of riparian wetlands with the stream 

by reducing the potential for overbank lateral flow, which can affect downstream water 

quality (Hupp et al., 2009).

Wetland drainage, primarily for agricultural purposes, has had a great impact on wetland 

loss and connectivity. Drainage causes a direct loss of function and connectivity in cases 

where wetland characteristics are completely lost. In the Des Moines lobe of the prairie 

pothole region, more than 90% of the original wetlands have been drained, 

disproportionately impacting both small and large wetlands. Accompanying this loss has 

been significant decreases in wetland perimeter-area ratios. High perimeter-area ratios are 

associated with greater biogeochemical processing and groundwater recharge rates, so these 

processes would be negatively impacted by decreased ratios. Further, loss is also associated 

with increased mean distances between wetlands, which reduce biological connectivity (Van 

Meter and Basu, 2014). Wetland drainage also enhances hydrologic connectivity between 

the landscape and downstream waters. Effects of this enhanced hydrologic connectivity 

include (1) reduced water storage and more rapid conveyance of water to the network, with 

subsequent increases in total runoff, baseflow, stormflows, and flooding risk (Wiskow and 

van der Ploeg, 2003; Blann et al., 2009); (2) increased delivery of sediment and pollutants to 

downstream waters; and (3) increased transport of water-dispersing organisms (Babbitt and 

Tanner, 2000; Baber et al., 2002; Mulhouse and Galatowitsch, 2003). Biological 

connectivity also can decrease with drainage and ditching, as average distances between 

wetlands increase and limit the ability of organisms to disperse aerially or terrestrially 

between systems (Leibowitz, 2003).

QUANTIFYING CONNECTIVITY

Quantifying connectivity is important for a number of reasons, e.g., to establish a baseline 

against which changes can be measured, to allow the degree of connectivity to be related to 

various watershed functions, and to develop restoration and protection criteria. Connectivity 

can be quantified using structural metrics, measurements, or models of physical landscape 

features (e.g., watershed topography, the spatial arrangement of habitat patches), or 

functional metrics, measurements, or models of system dynamics, which integrate 

information about processes and interactions that influence hydrologic flows or biological 

dispersal. Selection of specific tools for quantifying connectivity depends on purpose of the 

assessment, environmental context, type of connection, spatial and temporal scale of interest, 

and available data (Calabrese and Fagan, 2004; Lexartza-Artza and Wainwright, 2009). An 

overview of the diverse methods that can be used to quantify hydrologic connectivity and the 

scale, environment, and applications relevant to each method is provided in Table 2. See 

Schofield et al. (submitted) for discussion of metrics and measures used to quantify 

biological connectivity.

Movement of water is the primary mechanism by which chemical substances are transported 

downstream. Therefore, quantifying chemical connectivity is closely related to quantifying 

hydrologic connectivity (Michalzik et al., 2001; Borselli et al., 2008). Metrics for 
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quantifying hydrologic connections between upstream and downstream waters vary both in 

the scale at which connections are observed or predicted (e.g., individual waterbody, 

watershed, region) and the methodological approach taken (e.g., field-based measurements, 

topographical approaches, hydrological modeling, and remote sensing; Golden et al., 2017).

Field-based approaches can contribute to a general understanding of connectivity between 

individual water features. They can also be used to evaluate the magnitude of water and 

associated materials transported, as well as the temporal frequency, timing, and duration of 

connections. For example, water quality indicators have been used to identify functional 

connectivity, or the magnitude of actual movement of water between wetlands and streams 

(Johnston et al., 1990; Leibowitz and Vining, 2003; Leibowitz et al., 2016). Tracer 

experiments using 15N, bromide, salt solutions, fluorescing particles, or other conservative 

compounds have also been conducted to assess the frequency, magnitude, and timing of 

flowpaths in aquatic systems (Mulholland et al., 2004; Bencala et al., 2011; O'Brien et al., 
2012). Furthermore, sensors that detect the presence of water in streams can be used to 

determine the duration of functional connections (McDonough et al., 2015) and can assist in 

characterizing the hydrologic permanence of streams, which can inform estimates of the 

duration of connections (Leibowitz et al., 2008; Fritz et al., 2009; Nadeau et al., 2015).

Structural indices derived from topography, alone or in combination with other watershed 

characteristics (e.g., infiltration and storage capacity, presence of barriers), can be used to 

predict structural patterns in the spatial frequency, magnitude, and spatial extent of potential 

connections. For example, the Topographic Wetness Index (Quinn et al., 1995) and other 

landscape wetness and community indices (Ali et al., 2014), as well as quasi-dynamic 

indices that calculate the effective contributing area (variable source area) in a watershed 

(e.g., Barling et al., 1994; Tarboton, 1997; Creed and Beall, 2009), can be used to predict the 

spatial frequency, total magnitude, and spatial extent of hydrologic connectivity at the 

watershed scale. These indices can be used to predict the location of hydrologic flowpaths 

and areas of a watershed that might be efficient material exporters (Creed and Beall, 2009; 

Lane et al., 2009). The mass transfer efficiency of a watershed can be measured and modeled 

using a parameter such as the sediment delivery ratio, which describes and predicts the 

relationship between erosion and sediment yield in a watershed. This information can 

indicate the degree of structural connectivity in a watershed, thereby allowing for inferences 

concerning water movement based on the spatial relationships between wetlands and 

streams within a watershed (Atkinson, 1995; Hooke, 2003; Bracken and Croke, 2007). 

These kinds of models can be used to analyze functional connectivity if they simulate actual 

fluxes of water or materials between landscape elements (e.g., a wetland and stream) in 

response to precipitation events. But they can also be used to examine structural 

connectivity, i.e., by predicting potential water movement as precipitation increases, based 

on variations in topography (Chu et al., 2013). Other indices and models can be used to 

quantify basin-scale hydrologic connectivity using the ratio of stream reaches with flow 

connected to the outlet to the total potential number of reaches that could connect to the 

outlet (Phillips et al., 2011; Spence and Phillips, 2015), or as transport potential in a given 

direction (e.g., the directional connectivity index; Larsen et al., 2012). Similar to this, the 

volume-to-breakthrough concept quantifies the frequency and magnitude of hydrologic 

connectivity as actual runoff relative to water inputs, where connectivity decreases with 
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increased infiltration, depression storage, slope length, barriers, or other factors (Bracken 

and Croke, 2007).

Numerous modeling and simulation tools can be modified and applied to investigate 

watershed scale hydrologic connectivity dynamics from geographically isolated wetland 

systems (Golden et al., 2014) and headwaters (e.g., TOPMODEL; Beven and Kirkby, 1979) 

to downstream surface-water systems. For example, at the watershed-scale, hydrological 

models have begun to be modified and applied to quantify the effect of geographically 

isolated wetlands on stream flow (McLaughlin et al., 2014; Evenson et al., 2015; Evenson et 
al., 2016; Fossey and Rousseau, 2016). Furthermore, groundwater (Harbaugh, 2005) and 

coupled surface-water-groundwater models (Ameli and Creed, 2017) are beginning to be 

adapted and applied to answer questions about wetland connectivity. Such approaches could 

be structural or functional, depending on how estimates are made about water movement 

(fluxes) across the landscape in response to precipitation inputs. These approaches have the 

potential to provide a number of connectivity metrics, including the magnitude, spatial 

extent, temporal frequency, duration, timing, and rate of change (Golden et al., 2016). 

Geostatistical modeling approaches are also being advanced to quantify connectivity within 

stream networks, but tend to only address structural connectivity (Fagan, 2002; Ganio et al., 
2005; Peterson et al., 2007). Consideration should be given to watershed characteristics 

(e.g., climate, geology, soils) in order to select the best set of modeling tools for a given 

application. For example, in flatter landscapes a more dynamic contributing area model is 

typically required (Shaw et al., 2013). In these systems, the model should have the capacity 

to quantify wetland fill and spill dynamics (Evenson et al., 2016), which can cause 

watershed contributing area to expand.

Remotely sensed imagery can also be used to directly map and evaluate functional surface-

water connections, including spatial extent and frequency, timing, and changes in hydrologic 

connectivity over time (Sass and Creed, 2008; Lang et al., 2012; Huang et al., 2014; 

Vanderhoof et al., 2016). While moderate resolution sources of imagery, such as Landsat, 

are effective to identify connections that occur through the expansion of larger features, such 

as lakes (Vanderhoof and Alexander, 2016), finer resolution sources of imagery (e.g., lidar, 

Worldview-2) can be used to identify changes in spatial extent of surface water for smaller 

wetlands and facilitate the identification of narrower connections (Huang et al., 2011; Simon 

et al., 2015; Vanderhoof et al., 2017b).

While all of the preceding approaches are scientifically sound and have their own advantages 

and disadvantages, there is currently limited consensus regarding the best methods or 

metrics to quantify or predict hydrologic or chemical connectivity (Lexartza-Artza and 

Wainwright, 2009; Ali and Roy, 2010; Bracken et al., 2013). Future efforts to quantify 

connectivity based on frequency, magnitude, duration, timing, and rate of change or other 

connectivity metrics are necessary. The best path forward will likely require the integration 

of various types of measurements and models to provide information on connectivity based 

on convergent evidence (Golden et al., 2017).
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SUMMARY AND CONCLUSIONS

Streams and wetlands can influence downstream waters because of (1) their ability to alter 

material fluxes through source, sink, refuge, lag, and transformation functions, and (2) the 

presence of various transport mechanisms that connect these systems. Connectivity between 

these systems is not constant, but varies over space and time. This variability can be 

described in terms of frequency, duration, magnitude, timing, and rate of change. These 

characteristics are influenced by climate and the physical features of the watershed—

including geology, topography, and the spatial patterns of the component systems—as well 

as human alterations. Biological connectivity is also affected by species’ traits and 

behavioral responses to climate and the landscape. Human activities, such as dam 

construction and wetland drainage, affect connectivity, often in complex ways. There are 

many scientifically sound approaches for quantifying connectivity, including tracer studies, 

use of remote sensing, hydrologic models, and graph theoretic approaches, and new 

applications of these methods continue to appear in the literature. The literature suggests that 

different analytical approaches and methods are necessary to quantify different types of 

connectivity across diverse environments and scales.

As aquatic scientists have increasingly focused on interactions between aquatic ecosystem 

components, there has been an upsurge in research on how connectivity supports these 

interactions and the factors affecting connectivity. Besides its importance in determining 

watershed function, research into connectivity has been spurred on by science needs related 

to the CWA. The current work adds to the literature by providing an integrated systems 

framework for understanding how streams and wetlands contribute to downstream waters. 

Although we focus on these specific systems and downstream waters because of their 

relevance to the CWA, many of the concepts discussed herein are applicable to other 

systems, such as connectivity between rivers and estuaries, between aquatic and terrestrial 

systems, and connectivity between similar ecosystem types (e.g., between wetlands).

The existing scientific literature provides substantial information about the connectivity of 

streams and wetlands to downstream waters. However, further research is necessary in many 

areas to improve our ability to understand and maintain the long-term sustainability and 

resiliency of valued aquatic resources. These research areas include:

1. Although we now have a good general understanding of connectivity between 

non-floodplain wetlands and rivers, this has not translated into a specific 

understanding of how these wetlands affect downstream systems. For example, 

we know that non-floodplain wetlands can serve as source areas that export 

organic matter and other materials to rivers, but their importance relative to 

exports from other sources is difficult to assess and not well understood.

2. Although most research has been focused on the effects of greater connectivity, 

hydrologic isolation of aquatic ecosystems can also reduce material and energy 

fluxes that would otherwise arrive at downstream waters. Further study is needed 

on the benefits that isolated ecosystems provide to downstream waters.
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3. Research is needed to classify and quantify the connectivity of ecosystems in 

specific watersheds or regional landscapes, e.g., watersheds containing prairie 

potholes, Carolina and Delmarva bays, pocosins, western vernal pools in 

California, and Texas coastal prairie wetlands, as well as watersheds dominated 

by ephemeral streams. This need includes the level of connectivity or isolation 

prior to and following human impacts. Such information could allow us to better 

understand the aggregate function of these waters within different kinds of 

landscapes.

4. Additional research is needed to understand and predict how different impacts 

may affect connectivity, and how this might alter watershed function and the 

integrity of downstream waters. In particular, research is needed on how climate 

change will affect connectivity. Climate change is expected to cause more 

extreme weather (Hirabayashi et al., 2008; Diffenbaugh et al., 2012). Studies are 

needed to consider how these changes might affect downstream waters by 

impacting the frequency, duration, magnitude, timing, and rate of change of 

connectivity.

5. Methods need to be developed based on the best available scientific information 

that would allow regulators and aquatic managers to incorporate advances in the 

scientific understanding of connectivity into the process of identifying waters of 

national, state, or local importance.
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FIGURE 1. 
Water movement in river systems. (A) Common hydrologic flowpaths by which water flows 

between watersheds and river networks. The three-dimensional process of hyporheic flow, or 

the movement of water from a river or stream to nearby alluvium and then back to the river 

or stream, laterally (B) and longitudinally (C). Source: U.S. EPA (2015), as modified from 

Winter (1998).
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FIGURE 2. 
Illustration of the sequential transformation of materials as they move through the river 

network, via either downstream transport with water flow (solid black arrows) or via aerial 

or terrestrial movements (dashed black arrows). Here, an ephemeral headwater stream 

exports organic matter (at left) and an intermittent headwater stream exports ammonium, 

which is incorporated into algal biomass (at right). Macroinvertebrates consume these basal 

food resources and transform them into biomass, which in turn is eaten and transformed into 

fish biomass in both local and downstream reaches. The blue and green hashed polygons 
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represent non-floodplain wetlands with and without surface outlets, respectively. Source: 

U.S. EPA (2015).
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FIGURE 3. 
Examples of longitudinal expansion of river networks. Extent and connectivity of streams 

with flowing water, wetlands, and other water bodies in Spring Valley Creek, Oregon during 

dry summer (a) and wet winter (b) conditions, and Spoon Creek, Oregon during summer (c) 

and winter (d) conditions. Source: (a) and (b) U.S. EPA (2015); (c) and (d) modified from 

Wigington et al. (2005).
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FIGURE 4. 
Example of lateral expansion of a river network. Landsat 5 satellite images of the 

Mississippi River along the borders of Tennessee, Kentucky, Missouri, and Arkansas on (A) 

May 12, 2006 and (B) May 10, 2011. Green and white shades represent land while blue 

shades represent water. Discharge on May 12, 2006 and May 10, 2011 was 14,977 and 

36,529 m3 s−1, respectively, based on gage data at Baton Rouge, Louisiana (USGS gage 

07374000, data downloaded from waterdata.usgs.gov/nwis on Oct. 19, 2017; discharge for 

May 12, 2006 was estimated from discharge-gage height relationship). Images courtesy of 

U.S. Geological Survey/National Aeronautics Space Administration.
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FIGURE 5. 
Generalized hydrologic landscape forms. A fundamental hydrologic landscape unit is 

defined by land-surface form, geology, and climate. (A) Mountain Valley: narrow uplands 

and lowlands separated by large steep valley sides; (B) Playa: large broad lowland separated 

from narrow uplands by steeper valley sides (playas and basins of interior drainage); (C) 

Plateau and High Plains: small narrow lowlands separated from broad uplands by steeper 

valley sides; (D) Riverine Valley: small fundamental landscape units nested inside broader 

fundamental landscape unit; (E) Coastal Terrain: small fundamental landscape units nested 

inside broader fundamental landscape unit (coastal plain with terraces and scarps); and (F) 
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Hummocky Terrain: small fundamental landscape units superimposed randomly on larger 

fundamental landscape unit. Source: U.S. EPA (2015), as modified from Winter (2001).
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FIGURE 6. 
Major hydrologic flowpaths for hillslopes with combinations of permeable and impermeable 

soils and geologic formations. (A) Permeable soil and impermeable underlying geologic 

formation; (B) permeable soil and permeable underlying geologic formation; (C) 

impermeable soil and impermeable underlying geologic formation; and (D) impermeable 

soil and permeable underlying geologic formation. Width of arrow indicates relative 

magnitude of flow. Note that pavement can be another source of impermeable surfaces and 

subsequent overland flow in anthropogenically influenced settings. Source: U.S. EPA 

(2015).
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FIGURE 7. 
Types of hydrologic connections between non-floodplain wetlands and streams or rivers. (A) 

A wetland connected to a river by surface flow through a headwater stream channel. (B) A 

wetland connected to a river by surface flow through a nonchannelized swale. Such a 

wetland would be considered geographically isolated if the swale did not meet the Cowardin 

et al. (1979) three attribute wetland criteria. (C) A geographically isolated wetland 

connected to a river by groundwater flow (flowpath can be local, intermediate, or regional). 

(D) A geographically isolated wetland that is hydrologically isolated from a river. Note that 
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in A–C, flows connecting the wetland and river may be perennial, intermittent, or 

ephemeral. Source: U.S. EPA (2015).
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FIGURE 8. 
Examples of different landscapes showing interspersion of wetlands and streams or rivers, 

based on National Wetlands Inventory maps (http://www.fws.gov/wetlands) and high 

resolution National Hydrography Dataset streams (ftp://nhdftp.usgs.gov/DataSets/Staged/

States/FileGDB/HighResolution). (A) Prairie potholes within the Missouri Coteau in North 

Dakota; (B) prairie potholes within the Drift Prairie in North Dakota; (C) playas in Texas; 

(D) vernal pools in California; (E) bottomland hardwood wetlands in Illinois; and (F) 

Carolina bays in North Carolina. Note all maps are at the same scale. Wetlands smaller than 

the minimum mapping unit (currently 0.4 ha) might not appear on maps.
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TABLE 1

Functions by which streams and wetlands affect material and energy fluxes to downstream waters. Arrows 

indicate material and energy imports to and exports from a stream or wetland, in terms of mass or energy; 

arrow widths represent relative material mass or energy and differences in arrow shades represent timing (lag) 

or composition (transformation) changes. Imports to streams and wetlands can come from upland terrestrial 

areas, other streams and wetlands, or from the river itself. Arrows are meant to be illustrative, and do not 

necessarily represent upstream/downstream relationships. For example, materials and energy can move 

downstream, upstream, or laterally into streams and wetlands. Examples of commonly exchanged materials 

and energy include water, heat energy, nutrients, contaminants, sediment, particulate organic matter, 

organisms, and reproductive propagules; note that exchange of materials and energy between streams and 

wetlands and downstream systems can result in positive or negative effects on downstream waters. For the 

refuge function, arrows on the left side represent a river that lacks a refuge and so experiences a reduction in 

material or energy.

Function Definition Examples

Net increase in a material or energy flux (exports > imports) Streams: invertebrate production (Wipfli and 
Gregovich, 2002)

Wetlands: phytoplankton production from 
floodplain (Schemel et al., 2004; Lehman et al., 
2008)

Net decrease in a material or energy flux (exports < imports) Streams: upstream fish populations that are not 
sustainable without net immigration from 
downstream areas (Woodford and McIntosh, 
2010)

Wetlands: sediment deposition, denitrification 
(Johnston, 1991)

Avoidance of a nearby sink function, thereby preventing a net 
decrease in material or energy flux (exports = imports)

Streams: headwaters as summer coldwater 
refuges (Curry et al., 1997; Ebersole et al., 2015)

Wetlands: riparian wetlands as aquatic refuges in 
dryland rivers (Leigh et al., 2010)

Temporary storage and subsequent release of materials or energy 
without affecting cumulative flux (exports = imports); delivery is 
delayed and can be prolonged

Streams: delay of downstream peak flows due to 
bank storage (Burt, 1997); temporary heat 
storage within the alluvial aquifer (Arrigoni et 
al., 2008)

Wetlands: flood attenuation (Bullock and 
Acreman, 2003)

Conversion of a material or energy into a different form; the amount 
of the base material or energy is unchanged (base exports = base 
imports), but its composition (e.g., mass of the different forms) can 
vary

Streams: conversion of coarse to fine particulate 
organic matter (Wallace et al., 1995)

Wetlands: mercury methylation (Galloway and 
Branfireun, 2004; Selvendiran et al., 2008)

Source: U.S. EPA (2015).
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