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Abstract
Malignant gliomas are heterogeneous diseases in genetic basis. The development of sequencing techniques has
identified many gene rearrangements encoding novel oncogenic fusions in malignant glioma to date.
Understanding the gene fusions and how they regulate cellular processes in different subtypes of glioma will
shed light on genomic diagnostic approaches for personalized treatment. By now, studies of gene fusions in
glioma remain limited, and no medication has been approved for treating the malignancy harboring gene fusions.
This review will discuss the current characterization of gene fusions occurring in both adult and pediatric
malignant gliomas, their roles in oncogenesis, and the potential clinical implication as therapeutic targets.

Translational Oncology (2018) 11, 609–618
Address all correspondence to: Juxiang Chen, Department of Neurosurgery,
Changzheng Hospital, Second Military Medical University, 415 Fengyang Road,
Shanghai 200003, China.
E-mail: juxiangchen@smmu.edu.cn
1 Authors contributed equally to this review.
2 Current Address: Children's Cancer Research Institute, University of Texas Health
Science Center at San Antonio, San Antonio, Texas 78,216, USA.
Received 24 January 2018; Revised 23 February 2018; Accepted 28 February 2018

© 2018 . Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access
article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1936-5233/18
https://doi.org/10.1016/j.tranon.2018.02.020
Introduction
Gene fusions are hybrid of two coding or regulatory DNA sequences
between genes. They are pathognomonic mutations resulting from
genomic rearrangements such as translocations, deletions, duplications,
or inversions. This phenomenon was first described in chronic myeloid
leukemia (CML) when researchers used quinacrine fluorescence and
Giemsa staining, finding a cellular oncogene ABL1 on chromosome 9
fused to BCR on chromosome 22, forming BCR-ABL1 fusion gene on
the newly formed Philadelphia chromosome. Later studies found that
this gene fusion had changed this previously deadly type of cancer into
the nearly cured disease using tyrosine kinase inhibitors [1–5]. Since
then, with the development of biomedical technologies, more andmore
gene fusions were detected with further understanding of their
mechanisms and biological functions. At present, more than 10,000
fusion genes in cancer have been found and indexed in the Mitelman
Database of Chromosome Aberrations and Gene Fusions (2017)
(http://cgap.nci.nih.gov/Chromosomes/Mitelman).
Despite most of fusions appearing to be passenger mutations without

oncogenic functions, some of the fusions do constitute strong driver
alterations in the initial steps of tumor development, while other fusions
may play important roles in tumor progression [6–8]. For example,
EML4-ALK fusion causes transformation of non–small-cell lung cancer,
and COL1A1-PDGFRB fusion contributed directly to growth and
progression of dermatofibrosarcoma protuberans [9–12].
The deep insight into oncogenic gene fusions will not only help
extend our understanding of tumor biology but also provide robust
therapeutic targets for selected tumor types [13]. The tyrosine kinase
inhibitor (TKI) imatinib, designed for treating CML with BCR-
ABL1 fusion, was approved by US Food and Drug Administration
(FDA) in 2001 and achieved excellent efficacy with improved lifespan
and quality of life of patients [14]. The successful clinical practice has
spurred interest in developing drugs targeting the products of gene
fusions in multiple tumors. Subsequently, several new kinase
inhibitors were approved by the FDA, such as crizotinib and ceritinib
for the treatment of non–small cell lung cancer with ALK fusions, and
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ponatinib used to treat both CML and acute lymphoblastic leukemia
patients with BCR-ABL1 fusion [7].

Gliomas are the most common primary brain tumors with high
recurrence and mortality rates [15]. Over the past decade, molecular
targeted therapy has underscored the promise of managing the
malignant gliomas. One of the challenges in understanding and
treating gliomas has been the clinical and molecular heterogeneity
associated with this disease [16]. Currently, genomic and transcrip-
tomic analyses are defining the molecular architecture of gliomas and
have uncovered a subset of patients carrying gene fusions [8]. Despite
relatively low-frequency rate in gliomas, gene fusion has a
disproportionate importance in investigating the mechanism of
tumorigenesis and provides potential targeted therapies for selected
patients with specific fusions [8]. In this review, we summarize the
current characterization of gene fusions occurring in both adult and
pediatric malignant gliomas and discuss the potential clinical
implication of oncogenic fusions as therapeutic targets.

Types of Gene Fusions
Gene fusions are two or more genes that form chimeric genes involving
parts of each gene. The formation of fusion genes in different cells can
occur through different mechanisms [17]. Previous studies have
demonstrated that fusion transcripts can be not only produced by
chromosomal rearrangement at the DNA level but also formed through
trans-splicing and cis-splicing between neighboring genes.
Figure 1. Gene fusions leading to chimeric transcripts through a vari
where translocation, insertion, inversion, and deletion occur and pr
mRNA, and E-F fusion mRNA, respectively. Fusion transcripts can als
fusion mRNA) events at posttranscriptional level. Black blocks repr
region.
There are four basic types of chromosomal rearrangements that
could lead to gene fusions (Figure 1): (1) a genomic region between
two genes located on the same strand is deleted, and a fusion gene
arises through deletion; (2) a genomic region is duplicated one or
more times on chromosomal is the tandem duplication; (3) a
chromosomal translocation involves the translocation of genomic
regions on different chromosomes; and (4) two genes located on
opposite strands of a chromosome form an infusion gene, and
inversion event is suspected to happen [17].

Detection of Gene Fusions
Advances in sequencing technologies have refined the “driver”
mutation in tumors and facilitated a move toward “precision
medicine.” These technologies were discussed below with their own
advantages and disadvantages summarized in Table 1.
Immunohistochemistry (IHC)
IHC is the most commonly used method in most pathology

laboratories [18]. It is inexpensive, is easy to perform and requires only a
small biopsy sample, and that tissue morphology is retained during
analysis. However, it cannot detect unknown fusions, while the technique
is time consuming with relatively low efficacy [19]. Also, not all fusion
genes have primary antibodies with high affinity and specificity. Therefore,
IHC is not applicable to genes without well-performing antibodies.
ety of mechanisms. Fusion genes can form at chromosomal level,
oduce B-A and A-B fusion mRNAs, A-B fusion mRNA, C-D fusion
o be caused by trans-splicing (G-H fusion mRNA) or cis-splicing (I-J
esent introns. Cyan block in the pre-mRNA represents intergenic



Table 1. Different Detection Methods of Gene Fusions

Detection Methods Advantages Disadvantages

FISH Gold standard; rapid; capable of detecting rearrangements without knowing
fusion partners

Expensive; not uniformly available in all laboratories; low multiplexing ability

IHC Low cost; easy to perform; small sample requirement, retained tissue
morphology; widespread availability

Time consuming; possible false-negative findings because of low sensitivity;
low multiplexing ability

RT-PCR Rapid; sensitive; low detection limit; identification of specific fusion partners Unable to detect unknown fusion partners; require specialized equipment and
lab settings; rely on the quality of RNA; low multiplexing ability

Gene array Genome-wide profile and high-resolution analysis without prior cell culturing Need confirmation using RT-PCR or FISH to avoid false-positive findings
WGS Comprehensive and unbiased characterization of genomic alterations, capable

of detecting novel fusions.
Short read length; technical artifacts; limited coverage; high false-positive signal;
expensive

RNA-Seq Low cost; quick turnaround time; detect multiple alternative splice variants
caused by a fusion event

Unable to monitor nontranscribed regions; complicated data analysis
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Reverse Transcription Polymerase Chain Reaction (RT-PCR)
RT-PCR is a fast and sensitive method that is routinely used in

detecting low levels of gene fusions. The rapid turnaround time, low
amount of tissue requirement, and identification of specific fusion
partners are advantages of RT-PCR. However, the requirement of
fusion-specific primers results in inability to detect rearrangements
involving unknown fusion partners [20]. Another limitation of RT-
PCR is that when applied in formalin-fixed, paraffin-embedded
tissues, false-negative results might be due to highly degraded RNA
available [18].

Fluorescence In Situ Hybridization (FISH)
FISH is a rapid, expensive, gold standard method that can detect

gene fusions on both DNA and RNA levels [21]. The advantage of
FISH is that it can be performed on formalin-fixed, paraffin-
embedded tissues and nondividing cells (interphase nuclei), and it is
also capable of detecting rearrangements without prior knowledge of
5′ fusion partners compared with RT-PCR [7,18,22]. However, this
technique is not uniformly available in all laboratories [18]; thus, it is
used as a confirmatory tool rather than a screening tool [23–25]. A lot
of gene fusions were identified by using FISH probes, e.g., ETV6/
AML1 fusion in acute lymphoblastic leukemia [26], JAZF1-JJAZ1
fusion in endometrial stromal tumors [27], and EML4-ALK in lung
cancer [28].
Currently, as researches in oncogenic fusion continue, the need to

detect multiple targets at the same time is becoming more and more
urgent, calling for high-throughput methods such as gene array and
next-generation sequencing (NGS). The low multiplexing ability
makes IHC, PT-PCR, and FISH only as orthogonal confirmatory
methods for detection of gene fusions.

Gene Array
The usage of gene array-based technologies provided new options

for detection of gene fusions from 1990s [29]. This technique could
enable a genome-wide profile and offer high-resolution analysis on the
expression level of DNA or exons without the requirement of prior
cell culturing [30]. Numerous novel gene fusions were detected in
different cancer types using high-throughput array-based technolo-
gies, like PAX3-NCOA1 in alveolar rhabdomyosarcoma tumors [31]
and HEY1-NCOA2 in mesenchymal chondrosarcoma [32]. Howev-
er, this method cannot be used alone because of the sheer number of
breakpoints found typically in malignancies and by extensive
constitutional copy number variation; thus, it always needs
confirmation by FISH or RT-PCR to avoid false-positive findings
[33]. Also, not all gene fusions will lead to abnormalities in expression
of involved parts of genes; these fusions are hard to be detected by
gene array. With the development of deep sequencing, gene array-
based technology is not used as widely as before.

Next-Generation Sequencing
NGS has provided a radically new means to identify novel or

known fusions either in genomic DNA or transcriptome sequencing
datasets. This technique contains several subtypes involving whole
genome sequencing (WGS), whole exome sequencing, and whole
transcriptome sequencing (RNA-Seq). WGS and RNA-Seq are the
most commonly used NGS in this field and have achieved important
discoveries [34–38].
WGS offers the large comprehensive and unbiased characterization

of genomic alterations in genomes, especially cancer genomes [39].
Despite being the most powerful sequencing technology, WGS falls
short because of to the short read length, technical artifacts, limited
coverage, and high false-positive signal resulting from sequencing errors
[40–42]. Besides, despite significantly decreased cost of NGS in the last
few years, the cost of WGS is still more expensive than RNA-Seq [43].

RNA-Seq is the most commonly selected technique for transcript
detection of fusion gene owing to its low cost and quick turnaround
time. More importantly, it can detect multiple alternative splice
variants caused by a fusion event [39] and focuses on the expressed
regions of the genome, which makes the detected fusions more
biologically relevant in general. However, RNA-Seq technology only
sequences about 2% of the entire genome compared with WGS [44],
and it cannot monitor fusion events involving nontranscribed regions
[45], which is a double-edged sword that detecting fusion events do
not occur at the DNA level [41].

In general, it is reasonable to believe that development and
progression of fusion gene detection technologies will contribute to
the future studies on diagnosis and personalized treatment of human
cancers.

The Landscape of Gene Fusions in Subtypes of
Malignant Gliomas

Glioblastoma (GBM)
GBM accounts for 82% of malignant gliomas [46]. Patients with

GBMs have a uniformly poor prognosis, with a median survival of
approximately 14 to 16 months after multimodal treatments [47].
Considering the poor prognosis and therapeutic effect, it is of
significance to develop novel and effective treatment strategies. Gene
fusions are frequent genomic abnormalities in GBM; previous studies
have shown that two major specific genomic hotspots where fusion
frequently occurs are on chromosomes 7p and 12q, while other
regions with a higher frequency of fusions are on chromosomes 1, 4,



Table 2. Recurrent gene fusions with verified biological functions in malignant gliomas

Tumor Subtype Fusion gene symbol Incidence Rate Activated Signaling Pathway Prognostic or Diagnostic role Target Medicine

Glioblastoma

FGFR1-TACC1 1.1%
MAPK, ERK, PI3K,
and STAT3

Ponatinib
BGJ398
Erdafitinib
AZD4547

FGFR3-TACC3 1.2%-8.3%

EGFR-SEPT14 4% STAT3 Lapatinib
ErlotinibEGFR-PSPH 2.2%

NTRK fusions 1.2-1.7 % NGF/TrkA-
Entrectinib
Larotrectinib

PTPRZ1-MET 3% Unfavorable prognosis

pHGG
NTRK fusions

4% in DIPGs, 10% in NBS-pHGGs
40% in NBS-pHGGs within 3 years old

PI3K, MAPK Entrectinib

MET fusions 3-7% in pGBM, 10% in pHGG MAPK
Foretinib
Crizotinib

Ependymoma RELA fusion 70% in pediatric supra-tentorial ependymoma patients NF-κB Unfavorable prognosis
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6, and 19 [48]. Although fusions occur in approximately 30% to 50%
of GBM patient samples, only a few of them are found in more than
one patient with oncogenic biological function (Table 2). Potentially
druggable gene fusions in all GBMs are discussed below, some of
which have shown good preliminary antitumor effects in preclinical
and clinical trials.

Fibroblast Growth Factor Receptor (FGFR) Fusions. The tyrosine
kinase coding domains of FGFR genes (FGFR1 to FGFR3) were
found to be fused to the transforming acidic coiled-coil (TACC)
coding domains of TACC1 or TACC3, respectively, forming the
FGFR-TACC fusions [49]. TACC proteins are characterized by a
coiled-coil domain at the C-terminus, known as the TACC domain,
which regulates localization to the centrosome and mitotic spindle
[50,51]. It is hypothesized that TACC proteins are oncogenic in
several human cancers including GBM [52,53]. The FGFR family
plays an important role in cell growth, differentiation, and
angiogenesis, and its activation usually contributes to carcinogenic
events [54]. The oncogenic activities of the FGFR-TACC fusion
protein are greater than the sum of its parts when introduced into
astrocytes or stereotactically transduced in the mouse brain [49].
FGFR-TACC1 fusion was found in 1 out of 88 primary GBMs [49].

The incidence of FGFR3-TACC3 is considerably higher than the
frequency of FGFR1-TACC1. The FGFR3-TACC3 fusion gene is a
consequence of a 70-kb tandem duplication on chromosome 4q16.3
[49] and 1.2% to 8.3% of GBM patients harboring FGFR3-TACC
[54–57]. FGFR3-TACC3 fusion protein displays oncogenic activity
that promotes tumorigenesis and enhances tumor progression [49,56].
The abnormal expression of FGFR3-TACC3 in certain cell type was
reported to activate mitogen-activated protein kinase (MAPK),
extracellular signal–regulated kinase (ERK), phosphatidylinositol-4,5-
bisphosphate 3-kinase (PI3K), and signal transducer and activator of
transcription 3 (STAT3) pathways (Figure 2) [56,58,59]. FGFR-TACC
fusions may identify a subset of GBM patients who would benefit from
targeted FGFR kinase inhibition.

Drugs targeting FGFR-TACC fusion genes have shown promising
therapeutic potential in several types of cancer models, while clinical
trials are still ongoing. To date, preclinical studies have shown a
reduction of tumor growth and an increase of apoptosis upon
treatment with the pan-FGFR inhibitor ponatinib in the U87MG cell
line and the mouse xenograft model, suggesting a potential
application of ponatinib as a chemotherapeutic option against
GBM cells [60]. A phase II clinical trial studying ponatinib on
recurrent GBM is now ongoing (NCT02478164); however, it is not
specifically designed for FGFR fusion–positive patients.
Erdafitinib (JNJ-42756493), an oral ATP-competitive pan-
FGFR selective inhibitor, inhibits tyrosine phosphorylation of
activated FGFR at nanomolar concentrations [61]. It was applied to
treat two GBM patients with FGFR3-TACC3 in a phase I trial and
showed a tolerable toxicity and clear antitumor activity [61].
BGJ398, an FGFR1-3 kinase inhibitor, is evaluated in a phase II
study in recurrent GBM with FGFR-TACC fusions and/or FGFR
mutation (NCT01975701). Another clinical trial involving
AZD4547 (a selective inhibitor of FGFR tyrosine kinase family)
in recurrent glioma patients with FGFR fusion is under recruiting
(NCT02824133). Given the encouraging outcome of FGFR
inhibition in preclinical studies and earlier trials, further studies
are warranted to identify the most effective FGFR inhibitors
targeting FGFR-TACC fusion so as to translate them into clinical
trials.

Epidermal Growth Factor Receptor (EGFR) Fusions. EGFR is a
transmembrane protein which serves as a receptor for the epidermal
growth factor family [62]. Overexpression of EGFR is frequently found
in GBM, and EGFR-targeted therapy represents a promising anti-
GBM therapy [63]. Besides the FGFR3-TACC3 fusions, EGFR
emerged as the most frequent recurrent in-frame fusion in GBM
[64]. EGFR is commonly fused to intron 9 of SEPT14 or to the gene
PSPH, andmost of them presented a carboxyl-terminal truncation [65].

EGFR-SEPT14 fusion gene is an in-frame fusion with C-terminal
deletion of EGFR [48] and was found in about 4% of GBMs [64].
This fusion gene has been shown to activate STAT3 signaling, thus
increasing tumor proliferation, migration, and stemness [64]. EGFR-
PSPH fusion was also found in GBM, and the frequency of which was
2.2% (3/135), whereas signaling of EGFR-PSPH fusions remains
unclear [64]. Interestingly, most of the EGFR-SEPT14 or -PSPH
fusions lack EGFRvIII (exon 2-7 deletion) expression, which may be
the reason that the C-terminal deletion of EGFR via gene fusion
could serve as an alternative mechanism of EGFR activation [65].

Several modes of targeted therapies have been used to target EGFR
including TKIs, antibody-based therapy, immunotherapy, and
preclinical trials of RNA therapies. TKIs are small-molecule
inhibitors, which bind to the ligand-binding site on the extracellular
domain, and are the most clinically advanced EGFR-targeting therapy
to date [66]. Preclinical studies suggest a beneficial role when EGFR-
SEPT14 was targeted by TKIs like lapatinib and erlotinib; tumors
with EGFR genomic alterations show delay on growth. However,
clinical trials of EGFR inhibitors failed to show a definitive survival
superiority in GBM, probably because of nonspecific patient
selection; only a small portion of study populations were harboring



Figure 2. FGFR3-TACC3 fusion-mediated oncogenic pathways in GBM. FGFR3-TACC3 protein can constitutively and automatically
activate tyrosine kinase domain, which exerts oncogenic function weakly through PI3K/ATK, RAS/MAPK, and STAT3 signaling and may
localize to mitotic spindle poles to trigger aneuploidy.
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EGFR fusions [67–70]. Future studies may focus on targeting
patients purely with EGFR-fusions based on individualized genomic
examination.

Neurotrophic Tyrosine Kinase Receptor Type (NTRK) Fusions.
NTRK encodes the tropomyosin receptor kinase (Trk) receptor
family. TrkA, B, and C receptors are encoded by NTRK1, NTRK2,
and NTRK3 genes, respectively. The rearrangements of the Trk
receptor family play important roles in the oncogenesis in many types
of tumor including glioma as well as NSCLC, colon cancer, and
papillary thyroid cancer. Several drugs targeting cancers harboring
these gene rearrangements are within clinical trials, yet none has been
approved by the FDA so far [71].
NTRK1 is a well-known oncogene that is found commonly in

many human cancers but largely lacked in GBMs. In the RNA-Seq
data of The Cancer Genome Atlas (TCGA), 2 out of 162 GBM
(1.2%) patients were found to have NTRK1 fused with two genes,
neurofascin (NFASC) and brevican (BCAN), both of which are
expressed in neuronal tissues. The fusion gene showed elevated
expression of NTRK1, as well as neuro growth factor (NGF)–
triggered activation of the NGF/TrkA- downstream pathway.
Transduction of the NFASC-NTRK1 fusion gene in cell model
increased proliferation both in vitro and in vivo [72]. What's more,
both patients with NTRK fusion showed EGFR amplification (less
than two-folds), indicating some potential linkage between these two
genes. In another study involving 115 GBMs, Zongli et al. found two
novel NTRK1 fusions in two separate GBM patients, CHTOP-
NTRK1and ARHGEF2-NTRK1, both of which are in-frame fusions.
Interestingly, the CHTOP-NTRK1 case harbored IDH1 R132
mutation, while the ARHGEF2-NTRK1 showed EGFR amplification
[73]; the biological functions of these two novel fusions are not clear
yet.

Although more data need to be accumulated to support the
efficiency of Trk inhibitors in clinical trials, it is very promising that
targeting the Trk family of receptor tyrosine kinases will help glioma
patients with NTRK fusions. Entrectinib (RXDX-101) is a pan-Trk
inhibitor with good blood-brain barrier penetration. In an open-label,
multicenter, global, Phase II basket study (STARTRK-2) examining
the use of entrectinib in patients having different types of tumors with
the Trk gene rearrangements, the only pontine astrocytoma patient
harboring BCAN-NTRK1 fusion showed 45% tumor volume
reduction after dosing entrectinib [74]. Larotrectinib (LOXO-101)
is a selective pan-TRK inhibitor that has no significant activity
outside of the Trk family. Preliminary results from NAVIGATE
Phase 2 larotrectinib trial showed its potential role in treating NTRK
fusion-positive recurrent GBM. A 35-year-old woman with recurrent
multifocal GBM harboring in-frame EML4-NTRK3 fusion was
treated with larotrectinib [75]. The periventricular tumor shrank
significantly (from 67 × 52 mm to 8 × 4 mm), while tumor at frontal
and occipital lobes had no shrinkage. The trial is continuing to further
understand this biological effect.

Other Fusions. There are several other gene fusions detected;
however, the functional outcomes of these fusions are yet to be
studied. The FIG-ROS1 fusion was the first identified fusion gene in
GBM cell lines; an intrachromosomal homozygous deletion on 6q21
caused the FIG-ROS locus, this fusion encodes an in-frame fusion
protein that has an active kinase activity, suggesting an oncogenic role
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[76]. Nameeta et al. explored genomic data of 185 GBM patient
samples from both TCGA and Ivy center and found in total 27 genes
that were fusion partners in more than one patient sample, including
some novel finding of fusion involving noncoding genes. For
example, noncoding RNA RP11-745C15.2 was found fusing with
LANCL2 gene in two patients, one in TCGA database and the
other in Ivy database. The same noncoding RNA was fused with
EGFR in two other TCGA patients. Both fusions lead to C-
terminal truncation of the fused gene [48]. In a study carried out
based on Chinese Glioma Genome Atlas database, a novel PTPRZ1-
MET fusion was found in 3% (3/99) of GBM patients. This fusion
can induce elevation expression and phosphorylation of MET
oncoprotein, and was associated with poor prognosis [77]. Currently,
there have been no studies featuring targeting these gene fusions in
adult GBM patients.

Pediatric High-Grade Glioma (pHGG)
pHGGs account for approximately 8% to 12% of all childhood

central nervous system tumors, with a distinct biological entity
compared with adult HGGs [78]. Most of the pHGGs are
histologically anaplastic astrocytoma or GBM; the general prognosis
is poor, especially for tumors that are not amenable to resection like
diffuse intrinsic pontine glioma (DIPG) [79]. Gene fusions were
commonly seen in pHGG including DIPG, although most of them
were not recurrent, with uncertain influence on tumor initiating and
progressing (Table 2).

NTRK Fusions. In a study done by Wu et al. analyzing
transcriptome and WGS data from 127 pHGG patients, the NTRK
fusions, which were detected also in adult GBM with a low frequency
as described above, were found in 4% of DIPGs, 10% of non–brain
stem pHGGs, and, most notably, 40% of non–brain stem pHGGs in
infants within 3 years old [80].

A total of five NTRK fusion genes were found: TPM3-NTRK1,
BTBD1-NTRK3, ETV6-NTRK3, VCL-NTRK2, and AGBL4-
NTRK2. The first two fusion proteins even showed the ability to
induce high-grade astrocytoma in Tp53-null mice models with PI3K
and MAPK pathway activation. Taken together, these results
indicated that NTRK fusion genes may act as important tumorigenic
drivers in infant pHGGs. Based on these findings, a phase I/Ib study
is conducted in pediatric population to evaluate entrectinib in
primary central nervous system tumors (NCT02650401).

MET Fusions. MET gene encodes the protein c-Met, which
possesses tyrosine kinase activity and is involved in different types of
cancers.MET amplification has been described in about 3% to 7% of
pediatric GBMs [81]. A recently published study from the
International Cancer Genome Consortium PedBrain Tumor Project
found an up to 10% chance of MET fusions with activated MAPK
signaling.

The whole-genome sequencing of tumor and blood DNA was
done in 53 pediatric GBM samples, as well as 5 pediatric GBM cell
lines; researchers found 5 partners that fused with MET. They were
TFG-MET, CLIP2-MET, PTPRZ1(exon1)-MET, PTPRZ1(exon1-
2)-MET, and PTPRZ1(exon1-8)-MET. What's more, all these
samples with MET fusion also harbor impaired cell cycle regulation
resulting from Tp53 mutation or CKDN2A and CDKN2B deletion.

The TGF-MET fusion showed strong oncogenicity when induced
to neonatal mice with impaired cell cycle (Ckdn2a-dificient or p53-
null) in very short periods; histopathology confirmed that the tumor
was high-grade glioma expressing fusion protein as well as
phosphorylated MET and ERK. Notably, foretinib, an experimental
inhibitor targeting MET and vascular endothelial growth factor
receptor 2, decelerated MET fusion–driven tumor growth in vivo.
The therapeutic effect of foretinib was further confirmed in another
CLIP2-MET fusion SCID mice model.

Based on these findings, crizotinib, an FDA-approved inhibitor
targeting ALK as well as MET and ROS1, was used in an 8-year-old
GBM patient with PTPRZ1-MET fusion; this therapy led to
substantial tumor shrinkage at 2 months, but treatment-resistant
lesions were also detected with rapid progression that finally caused
death of this patient, indicating that pediatric GBM remains a
heterogenetic lesion that needs combined therapies on multitargets to
help maintain a long-term response [82].

DHX57-TMEM178-MAP4K3 Fusion. Carvalho et al. found
and validated a novel fusion complex including three genes in a DNA
copy number profiling study of 100 pHGG cases. The fusion gene
DHX57-TMEM178-MAP4K3 was found on chromosome 2p22.1
of an anaplastic astrocytoma case; it comprised exons 1-12 of
DHX57, exons 2-4 of TMEM178, and exons 13-34 of MAP4K3.
The resulting fusion gene contains key regulatory domains from all
three proteins. Although the biological function is yet to be studied,
the oncogenic capacity of all three components draws the hypothesis
that this DHX57-TMEM178-MAP4K3 gene may be associated with
tumor cell growth and proliferation [83].

Ependymomas
Ependymomas are glial tumors that arise from the cells lining the

ventricles and central canal within the spinal cord. They can arise on
various age groups and make up 3.6% of malignant primary central
nervous system tumors [46]. Ependymomas have a variable prognosis,
probably because of their different genomic landscape including
transcriptional profiles, DNA copy number alterations, et al. The
molecular classification of ependymoma involving nine subgroups
helps make therapeutic strategies and prognosis prediction than
classical histopathology [84]. Gene fusions were used to characterize
two specific subgroups which were discussed below.

V-rel Avian Reticuloendotheliosis Viral Oncogene Homolog A
(RELA) Fusion. By whole-genome sequencing in 41 tumors with
matched normal blood and RNA sequencing in 77 tumors, Parker et
al. found that a novel fusion of two genes in chromosome 11q13.1,
RELA and a poorly characterized gene, C11orf95. This fusion
resulted from chromothripsis, leading to constitutive aberrant
activation of the nuclear factor-kB (NF-κB) signaling pathway
(Table 2). After inducing the fusion gene to the neural stem cell, it
rapidly generated tumor in xenograft models [85].

Another study from an independent cohort including 500
ependymoma data confirmed that C11orf95-RELA fusion is mostly
seen in pediatric patients with a median age of 8 years old, but only in
supratentorial ependymomas and not in posterior fossa or spinal
ependymomas [84]. The incidence is more than 70% [84–86], and
most tumors harboring fusion are World Health Organization
(WHO) grade II to III tumors. About 15% patients with C11orf95-
RELA fusion also have homozygous deletions of CDKN2A, which
indicates poor prognosis for ependymomas [84,87]. In the newly
released 2016 WHO Classification of Tumors of Central Nervous
System, ependymomas with C11orf95-RELA fusion were put into a
specific diagnostic entity [88], indicating high-risk biological
behavior, with a 10-year overall survival of around 50% and a 10-
year progression-free survival of around 20% [84].
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YAP1 Fusions. YAP1 fusions were found in the same studies with
RELA fusion; it is regarded as the character of another subgroup of
supratentorial ependymoma, which is distinct from RELA fusion–
positive ones [84]. There are two partners found to be fused with
YAP1 gene in chromosome 11. The most common fusion partner
is MAMLD1, identified in 86% (6/7), followed by FAM118B,
identified in 14% (1/7) of the cases. The exact function of these
fusions is still not clear and remains to be investigated. Unlike RELA
fusion, tumors harboring YAP1 fusion showed no evidence of
chromothripsis and had relatively stable genomes. YAP1 fusion was
found mostly in ependymoma patients with a median age at diagnosis
of 1.4 years, with a relatively favorable prognosis and with a 5-year
progression-free survival of 66% and overall survival of 100% [84].
The detailed mechanism why the fusion is related with good
prognosis is not clear yet.

Conclusion and Perspectives
Malignant gliomas are characterized by extensive genomic instability
[89], while most of them are associated with a corresponding increase in
fusion transcript frequency [8,90]. The advent of high-throughput
technologies, especially NGS, has revolutionized the detection of gene
fusions, with an overwhelming majority identified in the past 5 years
[7]. Discovery of gene fusions in gliomas benefits from the new wave of
technology, as fusions are identified in approximately 30% to 50% of
GBMs and 47% of DIPGs and non–brain stem HGGs [48,80]. To
capture exactly what proportion oncogenic drivers account for among
Figure 3. Overview of downstream signaling linked to selected drive
Glioma-associated oncogenic fusion proteins commonly activate ca
NF-κB, involved in tumor survival, proliferation, and tumorigenesis. S
inhibit glioma.
all gene fusions, the significant organization is urgently required with
the rapid increase of gene fusion data. Excitedly, concerted efforts have
been made to develop computational algorithms and tools involving
Oncofuse and Pegasus for separating driver fusions from passenger
mutations with sequencing data [91,92]. Furthermore, bioinformatics
approaches also have elucidatedmany aspects of oncogenic gene fusions,
from the genetic changes and a causative importance of fusion events to
the structural properties and regulatory functions of fusion proteins
[90]. Thus, the computational study will catalyze advancements in
oncogenic gene fusion identification and guide experimental validation
studies in glioma.

Fusions with well-characterized kinases make up a significant part of
oncogenic drivers, which is attributed to their susceptibility to kinase
inhibitors [57,93]. Recently, a deep-sequencing data study reported
4.4% of GBMs and 1.5% low-grade gliomas harboring potentially
druggable kinase fusions [8]. Consistently, a more recent analysis of
RNA-seq confirmed a similar prevalence (9.7%) of potentially
targetable fusions in gliomas, of which 11% (24/226) of GBMs, 12%
(5/42) of anaplastic astrocytomas, and 8% (2/25) of grade II
astrocytomas carried targetable fusions [94]. As demonstrated, the
portion of kinase gene involved in the fusion encoded the intact domain
which is conserved across all fusions and essential for activity [95]. It is
reasonable that drugs targeting primary oncoproteins have great
promise to be applied directly to clinical samples which are addicted
to the oncogenic fusion kinases in malignant gliomas (Figure 3). Several
drugs have been granted approval by FDA as standard therapy for tumor
r fusions and potential intervention of specific targeting inhibitors.
nonical pathways, such as JAK/STAT3, ERK/MAKP, PI3K/ATK, and
ome of the proteins have been explored as therapeutic targets to



Table 3. Gene Fusions as Therapeutic Targets in Malignant Gliomas

Fusion Gene Medicine Clinical Trial Status

FGFR fusion BGJ398 Phase II study in recurrent GBM patients with FGFR-TACC fusions and/or FGFR mutation. (ongoing, NCT01975701)
Erdafitinib (JNJ-42756493) Phase I study in adult participants with advanced or refractory solid tumors or lymphoma. (ongoing, NCT01703481)

- Two GBM patients with FGFR3-TACC3 showed clear anti-tumor activity.
AZD4547 Phase I/II study in relapsed/refractory glioma patients positive for an FGFR fusion (recruiting, NCT02824133)

NTRK fusion Entrectinib (RXDX-101) Phase II basket study in patients having different types of tumors with the TRK gene rearrangements (recruiting, NCT02568267)
- The only pontine astrocytoma patient harboring BCAN-NTRK1 fusion showed 45% tumor volume reduction after dosing entrectinib;
Phase I/Ib study in children and adolescents with recurrent or refractory solid tumors and primary central nervous system tumors, with or
without TRK, ROS1, or ALK fusions (recruiting, NCT02650401).

Larotrectinib (LOXO-101) Phase II study in patients with advanced solid tumors harboring NTRK fusions (recruiting, NCT02576431)
- A 35-year-old woman with recurrent multifocal GBM harboring in-frame EML4-NTRK3 fusion was treated with larotrectinib.
The periventricular tumor shrank significantly (67 × 52 mm to 8 × 4 mm), while tumor at frontal and occipital lobes had no shrinkage.

MET fusion PLB1001 Phase I study in recurrent high-grade glioma patients with PTPRZ1-MET fusion gene (recruiting, NCT02978261)
Crizotinib Single case experience.

- Used in an 8-year-old GBM patient with PTPRZ1-MET fusion, led to substantial tumor shrinkage at 2 months,
but treatment-resistant lesions were also detected with rapid progression that finally caused death of this patient.
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patients harboring specific gene fusions [96], and in malignant glioma
patients, clinical trials are still ongoing, with some exciting preliminary
findings (Table 3). The successful targeting of oncogenic fusion kinases
is now driving a major paradigm shift in oncology, whereby somatic
genetic alterations rather than the histological subtype can provide the
guidance for selecting therapeutic strategies. Although the frequency of
recurrent fusion transcripts is generally substantially low [7], the subset
of different types of glioma stratified by the druggable oncogenic fusions
will benefit from the precise treatment approaches.

The revised 2016 WHO Classification of Tumors of the Central
Nervous System combines biology-driven molecular marker diagnos-
tics in addition to classical histology [88], formulating a concept for
how glioma diagnoses should be structured in the molecular era and
facilitating management of outcome prediction and treatment
decisions. Different from many cancer-associated mutations with a
variable and heterogeneous nature occurring in various morpholog-
ically and clinically distinct tumors, gene fusions, for the most part,
are typically disease specific, which implicates its promising
application in cancer diagnosis [42]. Recurrent gene fusions, such
as ERG, ETV1, TFE3, NUT, POU5F1, NFIB, PLAG1, PAX8, and
RELA, have been emerging as required diagnostic biomarkers in
different type of cancers including ependymoma [13]. It is the
inexorable trend to establish more gene fusions as clinical biomarkers
across different subtypes of gliomas to identify patients with specific
promising therapeutic targets.

Taken together, data-intensive studies are playing the key role in
detecting gene fusions, while further functional characterization of
these fusions should be a high priority. A more detailed understand-
ing of its diverse regulatory pathway and involvement in cellular
processes will provide valuable insight into malignant glioma biology.
The integration of diagnosis, stratification, and targeted treatment
based on gene fusion will direct the future avenues of next-generation
personalized treatment for glioma patients.
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