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Abstract Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by muta-
tions in the ABCA4 gene. Complete sequencing of the ABCA4 locus in STGD1 patients
identifies two expected disease-causing alleles in ~75% of patients and only one mutation
in ~15% of patients. Recently, many possibly pathogenic variants in deep intronic sequenc-
es of ABCA4 have been identified in the latter group. We extended our analyses of deep
intronic ABCA4 variants and determined that one of these, c.4253+43G>A (rs61754045),
is present in 29/1155 (2.6%) of STGD1 patients. The variant is found at statistically signifi-
cantly higher frequency in patients with only one pathogenic ABCA4 allele, 23/160
(14.38%), MAF =0.072, compared to MAF =0.013 in all STGD1 cases and MAF = 0.006
in the matching general population (P <1 x 1077). The variant, which is not predicted to
have any effect on splicing, is the first reported intronic “extremely hypomorphic allele”
in the ABCA4 locus; that is, it is pathogenic only when in trans with a loss-of-function
ABCA4 allele. It results in a distinct clinical phenotype characterized by late onset of symp-
toms and foveal sparing. In ~70% of cases the variant was allelic with the ¢.6006-609T>A
(rs575968112) variant, which was deemed nonpathogenic. Another rare deep intronic var-
iant, c.5196+1056A>G (rs886044749), found in 5/834 (0.6%) of STGD1 cases is, conversely,
a severe allele. This study determines pathogenicity for three noncoding variants in STGD11
patients of European descent accounting for ~3% of the disease. Defining disease-
associated alleles in the noncoding sequences of the ABCA4 locus can be accomplished
by integrated clinical and genetic analyses.

[Supplemental material is available for this article.]

INTRODUCTION

Mutations in the ABCA4 gene (STGD1, MIM #248200) (Allikmets et al. 1997) are the
most frequent cause of Mendelian inherited recessive retinal dystrophies. Phenotypes
of ABCA4 disease range from late-onset mild cases of central atrophy to very early-onset,
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Table 1. ABCA4 deep intronic variants investigated in this study

HGVS DNA  HGVS protein Variant  Predicted effect
Gene  Chromosome Variant reference reference type on splicing dbSNP Genotype
ABCA4 1:94496509  c.4253+43G>A G Noncoding Substitution None rs61754045 100%
heterozygous
ABCA4 1:94484082  c.5196+1056A>G A Noncoding Substitution Activates cryptic  rs886044749 100%
donor site heterozygous
ABCA4 1:94471747  c.6006-609T>A T Noncoding Substitution None rs575968112 100%
heterozygous

RP-like, panretinal degeneration (Cremers et al. 1998; Martinez-Mir et al. 1998; Maugeri
et al. 2000; Shroyer et al. 2001a; Lee et al. 2016; Ciccone et al. 2017; Tanaka et al. 2018).
Phenotypic variability is caused by extensive ABCA4 disease-associated genetic variation,
where more than 1000 definitely or possibly disease-causing variants have been determined
in the coding sequences and splice sites of the ABCA4 gene (Cornelis et al. 2017) (J Zernant,
and R Allikmets, unpubl. data). Recently, the understanding of disease-causing genetic var-
iation in ABCA4 has substantially improved as a result of two major advances. First, many
noncoding disease-associated ABCA4 alleles have been identified and proven pathogenic,
mostly by affecting splicing (Zernant etal. 2011; Zernant etal. 2014; Bauwens et al. 2015; Bax
et al. 2015; Sangermano et al. 2016, 2018; Albert et al. 2018). Second, we recently deter-
mined that some ABCA4 variants, which had been considered benign because of high minor
allele frequency (MAF) in the general population, are in fact very mild conditional alleles,
which result in disease expression only when in trans with a deleterious mutation, thereby
called "extreme hypomorphs” (Zernant et al. 2017). Altogether, although these findings
have increased the fraction of definitively diagnosed cases of ABCA4 disease substantially,
10%-15% of all STGD1 cases remain with only one proven disease-causing mutation.

It has been also demonstrated that large copy-number variants (CNVs) that elude detec-
tion by sequencing are exceptionally rare in the ABCA4 locus (Lee et al. 2016). Whole-exome
sequencing (WES) of patients with phenotypes compatible with STGD1, but in which no
ABCA4 mutations had been identified after complete sequencing of the ABCA4 locus
(i.e., phenocopies), has uncovered causal genes in ~70% of cases, including known retinal
disease-associated genes (CRB1, CRX, etc.) (Tsang et al. 2014; Yamamoto et al. 2014)
and new genes (RAB28, RDH11) (Xie et al. 2014, Riveiro-Alvarez et al. 2015). Therefore,
the remaining “missing” alleles in monoallelic cases likely reside in the noncoding sequenc-
es of ABCA4 and are waiting to be assigned pathogenicity. In this study, we investigated
three deep intronic variants (Table 1) for pathogenicity by an integrated analysis of clinical
and genetic data in a large, familial cohort of patients with STGD1.

RESULTS

Determining Pathogenicity of Three Noncoding ABCA4 Variants

We had previously identified and described an intronic variant, ¢.4253+43G>A (rs61754045)
in intron 28 of the ABCA4 gene (Zernant et al. 2011). At that time we noted that the variant
was statistically significantly (P = 0.0003) more often found in STGD1 patients and also two
times more frequently in cases with age-related macular degeneration than in matched gen-
eral population controls (individuals >60 yr of age with no retinal pathology) (Zermant et al.
2011). We had suggested that the c.4253+43G>A variant was a good candidate for a dis-
ease-associated allele, but we were not able to make an unequivocal call of pathogenicity.
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According to the updated data, the variant is present in 29/1155 STGD1 cases, almost
exclusively in those with only one definite ABCA4 mutation (23/160, 14.38%; MAF = 0.072;
Table 2), compared to MAF =0.006 in non-Finnish European control cohort (gnomAD;
Table 3). It was also present in 0.41% (3/725) of biallelic patients and in 1.1% (3/270) of cases

Table 2. STGD1 patients with deep intronic disease-associated ABCA4 variants

Deep-intronic disease-associated

Patient Disease-associated ABCA4 variants in trans Pathogenicity class ABCA4 variants

1 c.161G>A (p.Cys54Tyr) PS3 c.[4253+43G>A;6006-609T>A]
2 c.161G>A (p.Cys54Tyr) PS3 c.[4253+43G>A;6006-609T>A]
3 €.247_250dup (p.Ser84Thrfs*15) PVS1 c.4253+43G>A%

4 c.768G>T (p.Leu257Valfs*17) PVS1 c.4253+43G>A8

5 c.768G>T (p.Leu257Valfs*17) PVS1 c.[4253+43G>A;6006-609T>A]
6 c.[1622T>C;3113C>T] (p.[Leu541Pro;Ala1038Val]) PS3 c.[4253+43G>A;6006-609T>A]
7 c.1819G>A (p.Gly607Arg) PS4 c.4253+43G>A

8 c.1819G>A (p.Gly607Arg) PS4 c.4253+43G>A

9 c.1988G>A (p.Trpb63*) PVS1 c.[4253+43G>A;6006-609T>A]
10 ¢.3470T>G (p.Leu1157%) PVS1 c.[4253+43G>A;6006-609T>A]
11 c.3814-2A>G (p.?) PVS1 c.[4253+43G>A;6006-609T>A]
12 c.3898C>T (p.Arg1300%) PVS1 c.4253+43G>A%

13 c.4248C>A (p.Phe1416Leu) PP3 c.4253+43G>A

14 c.4539+1G>T (p.?) PVS1 c.4253+43G>A

15 c.4539+1729G>T (p.?) PP3 c.[4253+43G>A;6006-609T>A]
16 c.4918C>T (p.Arg1640Trp) PS3 c.[4253+43G>A;6006-609T>A]
17 c.5312+2T>G (p.?) PVS1 c.[4253+43G>A;6006-609T>A]
18 ¢.5461-10T>C (p.Thr1821Valfs*13, p.Thr1821Aspfs*6) PVS1 c.[4253+43G>A;6006-609T>A]
19 ¢.5461-10T>C (p.Thr1821Valfs*13, p.Thr1821Aspfs*6) PVS1 c.[4253+43G>A;6006-609T>A]
20 c.5461-10T>C (p.Thr1821Valfs*13, p.Thr1821Aspfs*6) PVS1 c.[4253+43G>A;6006-609T>A]
21 ¢.5461-10T>C (p.Thr1821Valfs*13, p.Thr1821Aspfs*6) PVS1 c.4253+43G>A

22 c.5461-10T>C (p.Thr1821Valfs*13, p.Thr1821Aspfs*6) PVS1 c.4253+43G>A

23 c.5914G>A (p.Gly1972Arg) PM2 c.4253+43G>A%

24 c.[70C>T(;)2041C>T] (p.[Arg24Cys(;)Arg681*]) PP3, PVS1 c.4253+43G>A%

25 c.[4139C>T(;)5308T>G] (p.[Pro1380Leu(;)Tyr1770Asp]) PS3, PM2 c.[4253+43G>A;6006-609T>A]
26 €.6543_6578del (p.Leu2182_Phe2193del) homozygote PVS1 c.4253+43G>A

27 ND c.[4253+43G>A;6006-609T>A]
28 ND c.4253+43G>A

29 ND c.4253+43G>A

30 c.1726G>C (p.Asp576His) PS4 c.5196+1056A>G

31 c.3056C>T (p.Thr1019Met) PS4 c.5196+1056A>G

32 c.3413T>A (p.Leu1138His) PM2 c.5196+1056A>G

33 c.5882G>A (p.Gly1961Glu) PS3 c.5196+1056A>G

34 c.5882G>A (p.Gly1961Glu) PS3 c.5196+1056A>G

Nucleotide positions and protein translation correspond to CCDS747.1 and NP_000341.2, respectively. Nucleotide numbering uses the A of the ATG translation

initiation start site as nucleotide 1.
ND, not detected.
®Not screened for c.6006-609T>A.
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Table 3. Population frequency and in silico analysis of deep intronic ABCA4 variants

Chr 1 MAF in non- MAF in STGD1 Predicted

position ABCA4 deep Finnish European MAF in STGD1 with one ABCA4 CADD effect on Associated
(hg19) intronic variant controls cohort (n) mutation (n) score splicing with STGD1
94496509 c.4253+43G>A 0.006 0.013 (1155) 0.069 (160) 6.491 No Yes
94484082 c.5196+1056A>G 0 0.003 (834) N/A 1.067 Yes Yes
94471747 c.6006-609T>A 0.0047 0.009 (834) 0.049 (132) 1.848 No No

with no other disease-causing ABCA4 alleles (Table 2). Therefore, the ¢.4253+43G>A variant
is substantially enriched in STGD1 cases, specifically in those with one known pathogenic
allele (P< 1 x 1077; OR = 12.87 95% C1[8.37;19.79]). Family members were available for seg-
regation analyses in ~30% of cases, which always resulted in phasing the c.4253+43G>A al-
lele in trans with the known ABCA4 mutation. All variants in trans from the c.4253+43G>A
variant are severe, mostly confirmed loss-of-function alleles (Table 2), the situation exactly
matching our recent observation for a frequent missense ABCA4 allele, c.5603A>T (p.
Asn1868lle; rs1801466) (Zernant et al. 2017).

Specifically, 26 unrelated patients harbor the ¢.4253+43G>A allele in trans from another
ABCA4 mutation (Table 2). Of these, 16 patients carry ABCA4 variants, which are either LOF/
null by definition (i.e., nonsense, frameshift, 1 or 2 in splice sites) or as shown in functional
studies, including ¢.5461-10T>C (p.Thr1821Valfs*13, p.|[Thr1821Aspfs*6) (Sangermano
et al. 2016). Of the missense alleles, several (e.g., c.[1622T>C;3113C>T] (p.[Leu541Pro;
Ala1038Val]) (Zhang et al. 2015), c.161G>A (p.Cys54Tyr), c.4139C>T (p.Pro1380Leu)
(Sun et al. 2000), and c.4918C>T (p.Arg1640Trp) (Shroyer et al. 2001b)) have direct function-
al proof. The ¢.5914G>A (p.Gly1972Arg) variant has been identified in a STGD1 patient in
trans from other hypomorphic allele (Zernant et al. 2017). Therefore, the direct functional/
clinical proof is currently vague for only three variants, c.1819G>A (p.Gly607Arg),
c.4248C>A (p.Phe1416Leu), and c.4539+1729G>T (p.?). Altogether, these data allowed
us to assign pathogenicity to the ¢.4253+43G>A variant; it is the second reported extremely
hypomorphic ABCA4 allele, and first in noncoding sequences (i.e., it is causal only when in
trans with a loss-of-function mutation).

Another deep intronic variant we had previously described (Zernant et al. 2014) and sug-
gested as “possibly associated with the disease,” ¢.6006-609T>A (rs575968112), was seen
in 15/834 (1.8%; MAF =0.009) screened cases (MAF =0.0047 in non-Finnish European
control cohort, Table 3). Upon further analysis we determined that it forms a complex allele
c.[4253+43G>A;6006-609T>A|] (i.e., occurs on the same allele) in about 70% of cases in our
cohort (Table 2). The ¢.6006-609T>A variant is always allelic with the ¢.4253+43G>A variant
and has not been detected alone. According to the gnomAD database, the ¢.4253+43G>A
variant is 1.2-2 times more frequent than c.6006-609T>A in every population except for
Finnish Europeans, where the frequency of both variants is the same. Both variants are
absent in East Asian population. Because both alleles, the c.4253+43G>A variant alone
and the complex allele ¢.[4253+43G>A;6006-609T>A], are equally pathogenic based on
genetic and clinical analyses, it is very likely that the hypomorphic ¢.4253+43G>A allele is
pathogenic and the ¢.6006-609T>A is not, because the c.6006-609T>A allele does not
add severity to the complex allele. Neither of these two variants are predicted to have any
effect on splicing, whether on existing cryptic splice sites or on creating new sites, although
c.4253+43G>A alters a splice silencer (ESS) and creates a splicing enhancer (ESE) SF2/ASF
site (Supplemental Fig. 1A,B). Thus, an alternative splicing in photoreceptors caused by the
c.4253+43G>A variant is likely. Recently, aberrant splicing caused by other ABCA4 intronic
disease-associated variants, ¢.5461-10T>C, c.4539+2001G>A, and c.4539+2028C>T, was
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Figure 1. Examples of pedigrees showing the segregation of the deep intronic variants, c.[4253+
43G>A;6006-609T>A] and ¢c.5196+1056A>G, of ABCA4 in the families of (A) Patient 2, (B) Patient 33, and
(C) Patient 31. Black arrowheads indicate the affected index patient in each family.

demonstrated in patient-derived photoreceptor precursor cells (PPCs), whereas no effect on
splicing by these variants was predicted in silico (Sangermano et al. 2016; Albert et al. 2018).

The third rare deep intronic variant, ¢.5196+1056A>G (rs886044749) (Braun et al. 2013;
Zernant et al. 2014), is found in 5/834 (0.6%) of STGD1 cases (Tables 2, 3). Unlike the c.4253
+43G>A and ¢.6006-609T>A variants, the ¢.5196+1056A>G variant is predicted to strongly
activate a cryptic splice donor. Together with a strong cryptic splice acceptor downstream
at ¢.5196+1318, splicing from these cryptic sites would result in a putative 262-bp pseu-
doexon inclusion and a frameshift in translation (Supplemental Fig. 1C). The variant is very
rare, it is not described in any public databases (gnomAD, 1000 Genomes), and it was
found exclusively in patients with one known ABCA4 mutation. All variants in trans from
the ¢.5196+1056A>G are known disease-associated ABCA4 alleles (Table 2). In contrast
to the ¢.4253+43G>A and the complex, c.[4253+43G>A;6006-609T>A] alleles, variants in
trans from the ¢.5196+1056A>G variant do not include obvious loss-of-function alleles.
For example, the frequent p.Gly1961Glu pathogenic variant in two families (Fig. 1B,C) con-
sistently segregates with milder disease phenotypes similar to those observed in patients
harboring p.Asn1868lle (Burke et al. 2012, 2014; Zernant et al. 2017). Therefore, the aggre-
gate evidence suggests that the ¢.5196+1056A>G variant is a rare, severe, deep intronic
disease-associated allele.

According to ENCODE analysis the three deep intronic variants are not located in pre-
dicted gene regulatory regions. The Combined Annotation Dependent Depletion (CADD)
scores for these variants are also below the predicted pathogenic range of >20, but variants
closer to coding sequences (c.4253+43G>A and ¢.6006-609T>A) score higher for their pre-
dicted possible deleterious effect (Table 3).

All three deep-intronic nucleotide positions are fully conserved, and adjacent sequences
are also relatively conserved in nonhuman primates, suggesting an important functional role
for these nucleotides—a crucial additional evidence for determining pathogenicity for a
variant. All three alleles segregated with the disease in available families; that is, they
were in trans from the proband’s second pathogenic ABCA4 allele (examples in Fig. 1A-C).

Clinical Expression of the Three Noncoding ABCA4 Variants

Patients harboring the ¢.4253+43G>A variant alone or as a complex allele with ¢.6006-
609T>A were predominantly Caucasian and relatively older in age with most cases present-
ing to the clinic in the fifth and sixth decade of life (median age at initial examination, 49.0 yr;
range, 19-71 yr) (Supplemental Fig. 2). Most patients had relatively centralized fixation and
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visual acuity was correctable to 20/40 or better in at least one eye in 83% of patients.
Reported ocular histories were consistent with a more recent or later onset of visual symp-
toms (median, 40.5 yr). Three patients reported symptomatic onset before the age of 20
yr; however, visual acuity in both eyes at the time was only marginally decreased, correctable
between 20/25-20/40. Anterior segment examinations were unremarkable with the excep-
tion of mild nuclear sclerosis (NS+1) in a few cases. Dilated funduscopic examinations
showed healthy optic discs, intact retinal vasculature, and otherwise normal peripheral reti-
na. The most predominant features on funduscopy were retinal pigment epithelium (RPE)
mottling, small patches of atrophy, through which large choroidal vessels were visible,
and a reticular arrangement of yellow, pisciform flecks across the macula and mid-periphery
(Fig. 2A,D). Disease changes were notably absent in the peripapillary region. The presence
of dark pigment migration was only noted in the macula of one case (Patient 15), depositing
in the foveola and along the temporal edge of the atrophic lesion in the right eye.

Fundus autofluorescence (AF, 488-nm) abnormalities corresponding to changes ob-
served on funduscopy were evident in all patients (Fig. 2B,E). Flecks were generally more
hypoautofluorescent within the central macula and comparatively less confluent in the
periphery indicating a centrifugal pattern of expansion. Lesions of discrete atrophy were
homogenously hypoautofluorescent with uneven but well-demarcated edges. Very few pa-
tients demonstrated a complete loss of autofluorescence in the fovea. Remarkably, 83.3% of
the cohort presented with structural and functional sparing of the fovea (VA 20/40 or better)
in at least one eye at the initial examination—three patients (Patient 6, Patient 8, and Patient
9) exhibited unilateral sparing. SD-OCT through the fovea revealed intermittent disruptions
of the reflective outer retinal bands, ELM, EZ, and interdigitation zone (IZ). Regions of
discrete atrophy presented as areas of increased signal transmission into the underlying
choroid because of the visible disruption of the photoreceptor layers and thinned or absent
RPE. SD-OCT revealed visible preservation of all outer retinal bands (Fig. 2C, inset) in cases
of complete foveal sparing such as Patient 9 (c.[4253+43G>A;6006-609T>A], p.Cys54Tyr*).
Those with poor central acuity, such as Patient 2 (c.[4253+43G>A;6006-609T>A], p.Trp663*)
(Fig. 2F, inset), were generally found to have ELM-EZ layer disruption but residual RPE reflec-
tivity and thickness in the fovea on SD-OCT.

Virtually all patients for whom data were available had preserved generalized cone and
rod function on full-field electroretinogram (ffERG) testing. Marginal decreases in 30-Hz flick-
er peak amplitudes were measured in five patients at the mean age of 57.6 yr (range, 42 to
71 yr). Representative scotopic, maximal, 30-Hz flicker and photopic waveforms from the
right and left eyes of Patient 2 and Patient 7 are presented in Figure 2G. Follow-up exami-
nations across periods of 1 to 29 yr revealed little indication of disease progression with re-
spect to observable changes on funduscopy. Most patients also remained functionally stable
at subsequent follow-up examinations, although a decrease in visual acuity, greater than two
lines of vision, was evident in 25% of the cohort between the third and fifth decades of life.
No significant distinctions between the clinical characteristics of patients harboring the
¢.4253+43G>A variant alone and patients harboring the c.4253+43G>A as a complex allele
with ¢.6006-609T>A were noted.

DISCUSSION

Variation in the ABCA4 gene is extensive, and the complete understanding of genetic
causality still remains obscure in at least 20% of all cases. The gene is expressed only in
photoreceptors and, possibly, in the RPE, which renders RNA-based functional analyses
challenging. This is specifically true for analyses of variants outside of coding regions for
which protein-based tests are impossible.
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Figure 2. Clinical phenotype of patients harboring the deep intronic ¢.4253+43G>A variant of ABCA4 as a
complex allele with ¢.6006-609T>A. (A) Color fundus photograph and (B) 488-nm autofluorescence (488-
nm AF) image of the left eye of a 66-yr-old man (Patient 9, with c.1988G>A (p.Trp663*) in trans) exhibiting mot-
tled atrophy and a distribution of autofluorescent flecks across the paramacular region of the fundus. (C)
Spectral domain-optical coherence tomography (SD-OCT) revealed complete sparing of the photorecep-
tor-attributable layers, outer nuclear layer (ONL), external limiting membrane (ELM), ellipsoid zone (EZ), and
RPE in the fovea resulting in preserved visual acuity of 20/20. (D) Color fundus photograph, (E) 488-nm AF im-
age, and (F) SD-OCT scan of a 52-yr old woman (Patient 2, with c.161G>A (p.Cys54Tyr) in trans) revealing sim-
ilar disease changes extending out into the midperiphery. Residual thickness of the foveal RPE layer can be
noted, although the visible thinning of the ONL and absence of the ELM and EZ layers resulted in significantly
decreased visual acuity (20/200) in this eye. (G) Full-field electroretinograms (ffERG) of Patient 2 and Patient 9
revealed relatively normal scotopic, maximal, and photopic and borderline 30-Hz flicker responses in both
eyes. Areas delineated by dashed boxes indicate healthy amplitude and implicit time ranges.

Analyses of intronic variants have been attempted (Rivera et al. 2000; Braun et al. 2013)
with the “illegitimate transcript” or “minigene” strategies to assess the effect of certain var-
iants on splicing. These studies have limitations and the results, although suggestive, cannot
be considered unequivocal (Sangermano etal. 2016). Most recently, a “midigene” approach
was proposed, which is very effective for variants in canonical and noncanonical splice con-
sensus sequences (Sangermano et al. 2018). Analysis of variants in deep intronic sequences
of ABCA4, however, remains a tedious endeavor through iPSC-derived PPC (Albert et al.
2018). Although the PPC approach is gaining traction, the initial analysis for pathogenicity
can be performed in very large, familial cohorts of STGD1 patients by a combination of in
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silico approaches including the assessment of variant frequencies in STGD1 patients and in
the matched general populations, suggestions by predictive software programs, segrega-
tion analyses in families, and integration of clinical and genetic analysis. As demonstrated
in this and in previous studies (Zernant et al. 2014, 2017), we have been able to assign path-
ogenicity to several variants in intronic sequences of ABCA4 by using these strategies prior
to direct RNA- or protein-based functional studies. The latter, however, are still needed
to determine the specific effect of variants on ABCA4 RNA and protein and would allow sug-
gesting specific treatment modalities, such as AON-based correction of splicing (Albert et al.
2018).

The clinical phenotype of patients with the c.4253+43G>A allele is largely consistent
with the described profile of STGD1 patients harboring the recently described hypomorphic
c.5603A>T (p.Asn1868lle) allele (Zermnant et al. 2017). As compared to the more prevalent
adolescent-onset form of STGD1, (Lambertus et al. 2015; Tanaka et al. 2018) patients
harboring ¢.4253+43G>A or ¢.5603A>T (p.Asn1868lle) progress through milder disease
trajectories characterized by the confinement of disease changes to the macula, slower
accumulation of flecks, and a significantly later onset of disease symptoms (fifth to sixth de-
cade). The latter is likely a reflection of the enrichment of foveal sparing subphenotype in
both the ¢.4253+43G>A (83.3%) and c.5603A>T (p.Asn1868lle) (84.7%) groups. Several
mechanisms for foveal sparing in ABCA4 disease and age-related macular degeneration
(AMD) have been proposed, including the protective role of luteal macular pigment, ana-
tomical arrangement, and morphology of foveal cones (Curcio et al. 1990) and the utilization
of 11-cis retinol from Muller cells (Lee et al. 2014). However, our current findings support the
hypothesis that slow disease progression is likely a major contributing factor for the function-
al persistence of cones in the fovea.

In summary, the analysis of three possibly disease-associated ABCA4 deep intronic
variants revealed that two of these, the c.4253+43G>A and c.5196+1056A>G variants,
are pathogenic, whereas the ¢.6006-609T>A variant is not. The ¢.5196+1056A>G variant
is a highly penetrant, likely severe, allele, whereas the ¢.4253+43G>A variant is an “extreme
hypomorph,” which is clinically expressed only when in trans with a loss-of-function ABCA4
allele. Functional studies involving ABCA4 RNA obtained from individual patients via iPS
cells differentiated into PPCs would be the ultimate proof of specific functional outcome
of each allele. However, these analyses are unlikely to change the clinical pathogenicity
assessment obtained by integrated clinical and genetic analyses.

METHODS

Patients

STGD1 patients were recruited and clinically examined during a 20-yr period in different
centers in the United States and in Europe. Ancestry of all patients was assessed from ques-
tionnaires and determined to be non-Finnish European. In total, 1155 patients were included
in the analyses. Age of onset was defined as the age at which symptoms were first reported.
Visual acuity was measured using the Early Treatment Diabetic Retinopathy Study Chart 1
or a Snellen acuity chart. Clinical examination, fundus photography, AF, and SD-OCT
(Heidelberg Spectralis HRA+OCT) were performed using standard acquisition protocols
following pupil dilation with Tropicamide 1% and Neosynephrine 2%.

Sequencing and Analysis of the ABCA4 Variants

Sequencing of the ABCA4 gene in 1155 patients was performed using 454 Titanium method
(Roche) or Illumina TruSeq Custom Amplicon protocol (lllumina). (Zernant et al. 2011, 2014)
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Sequencing of the entire ABCA4 locus was performed in 217 patients using the RainDance
target enrichment (RainDance Technologies) with Roche 454 sequencing or lllumina TruSeq
Custom Amplicon protocol (Zernant et al. 2014). For genotyping of deep intronic variants
in patient and control cohorts TagMan Genotyping technology (Life Technologies) was ap-
plied. The variants’ segregation with the disease in available families was analyzed by Sanger
sequencing.

All variants and their allele frequencies were compared to the 1000 Genomes database
(Genomes Project et al. 2012) and to the gnomAD data set (Lek et al. 2016) (http://gnomad.
broadinstitute.org; accessed April 2018). Frequent variants (MAF >0.01) were considered
nonpathogenic. Rare variants and variants identified with at least two times higher frequency
in STGD1 patients than in the general control population were analyzed by a combination of
predictive in silico methods and statistical analyses (Zernant et al. 2014). The possible effect
of noncoding ABCA4 variants on splicing was assessed using five different algorithms
(SpliceSiteFinder, MaxEntScan, NNSPLICE, GeneSplicer, and Human Splicing Finder) via
Alamut software (http:/www.interactive-biosoftware.com). The regulatory potential of the
ABCA4 intronic variants was assessed by comparing their chromosome coordinates against
the predicted regulatory regions from two ENCODE data sets: (1) combined DNase |
hypersensitivity clusters from 125 cell types (“Digital DNase | Hypersensitivity Clusters in
125 cell types from ENCODE") and (2) ChlIP-seq clustered regions for 161 transcription fac-
tors in 91 cell types (“Transcription Factor ChIP-seq V4 (161 factors) with Factorbook motifs
from ENCODE"). Evolutionary conservation of the variants was noted via UCSC Genome
Browser (http://genome.ucsc.edu). The CADD algorithm (http:/cadd.gs.washington.edu/
score) was used to estimate combined predicted general deleteriousness of every variant.
Combined data from MAF comparisons, predictive programs, determining the variants’ seg-
regation with the disease were used to determine pathogenicity for the identified deep
intronic variants. Statistical calculations using allele frequencies in cases and controls were
performed with a 2 x 2 table. More detailed methods are provided in Supplement Materials.

ADDITIONAL INFORMATION
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