Skip to main content
. 2018 Jun 11;8(8):2573–2583. doi: 10.1534/g3.118.200443

Table 2. Mean predictive ability of each model in each trait for three SNP densities (NSNP).

TRAIT TYPE NSNP ABLUP GBLUP BayesB BLUPGA#
OC OIL 10K 0.278 0.333 0.353 0.339
OC OIL 100K 0.278 0.360 0.375 0.362
OC OIL 500K 0.278 0.368 0.380 0.368
MONO OIL 10K 0.276 0.374 0.401 0.390
MONO OIL 100K 0.276 0.398 0.417 0.403
MONO OIL 500K 0.276 0.406 0.422 0.407
SESQ OIL 10K 0.444 0.438 0.459 0.439
SESQ OIL 100K 0.444 0.465 0.475 0.539
SESQ OIL 500K 0.444 0.469 0.473 0.497
CIN OIL 10K 0.335 0.688 0.705 0.703
CIN OIL 100K 0.335 0.701 0.724 0.711
CIN OIL 500K 0.335 0.706 0.727 0.716
APIN OIL 10K 0.302 0.552 0.566 0.553
APIN OIL 100K 0.302 0.563 0.574 0.573
APIN OIL 500K 0.302 0.567 0.576 0.587
PCIN OIL 10K 0.398 0.770 0.764 0.771
PCIN OIL 100K 0.398 0.784 0.787 0.785
PCIN OIL 500K 0.398 0.783 0.787 0.790
HT BIOMASS 10K 0.084 0.197 0.187 0.247
HT BIOMASS 100K 0.084 0.161 0.169 0.196
HT BIOMASS 500K 0.084 0.160 0.163 0.172
dHT BIOMASS 10K 0.108 0.136 0.132 0.192
dHT BIOMASS 100K 0.108 0.134 0.133 0.182
dHT BIOMASS 500K 0.108 0.141 0.140 0.167
#

BLUP|GA with weighting of the top 0.1% of SNPs by squared effect size as estimated with BayesB. BLUP|GA includes the case of ω=0 in each CV, so the minimum possible outcome for each CV is equal to GBLUP.