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Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the

formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs)

can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human

health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to

be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set con-

sisting of 78 million Alu pairs and predicted∼18% of them are potentially susceptible to AAMR.We further determined the

relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the

predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chro-

mosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 de-

letions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of

the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that medi-

ated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions

and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMRhotspots and their role in human disease.

These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular

mechanisms underlying AAMR.

[Supplemental material is available for this article.]

Alu elements are repetitive sequences originally described by reas-
sociation kinetics (Schmid and Jelinek 1982). The term “Alu” de-
rives from these sequences sharing a cut site for the restriction
endonuclease AluI (Houck et al. 1979). Alu repetitive sequences
comprise ∼11% of the human genome and number more than 1
million copies per haploid genome (Lander et al. 2001). They
belong to the primate-specific short interspersed element (SINE)
family of mobile DNA. Alu elements can be grouped into distinct
subfamilies based on sequence divergence. AluJs are the oldest
Alu dimeric subfamily;AluSs are themost numerous, and are youn-
ger than AluJ, while AluYs are the youngest of this family of repet-
itive elements (Shen et al. 1991; Batzer and Deininger 2002).
Monomeric Alus also exist in the human genome, such as FRAM
and FLAM elements (Quentin 1992). Full-length Alu elements
are ∼300 bp in size and consist of two monomeric repeats derived
from 7SL RNA, an adenosine-rich connector, and a poly(A) tail.
The left monomer contains an internal RNA polymerase III pro-
moter, A Box, and B Box; the right monomer has an A′ box (Fig.
1A; Deininger et al. 2003; Beck et al. 2011).Alu sequences are often
found at the endpoints of segmental duplications (SDs) and the
breakpoints of genomic rearrangements and are associated with

genome instability (Bailey et al. 2003; Shaw and Lupski 2005;
Vissers et al. 2009). Copy number variants (CNVs) differ from a
normal diploid state by deletion or amplification of genomic seg-
ments. When a pair of Alus mediate a genomic rearrangement
(i.e., Alu/Alu-mediated rearrangement [AAMR]), a chimeric Alu hy-
brid will form at the junction (Fig. 1B). Microhomologies are the
sequences surrounding the breakpoint junctions that are identical
between the CNV-Alu elements within a pair. The first observed
AAMR event was described 30 years ago in a patient with hyper-
cholesterolemia and a 7.8-kb deletion of LDLR (Lehrman et al.
1987); similar AAMR-mediated exonic events have been elucidated
during the decades that followed in association with different dis-
eases, including spastic paraplegia 4 (MIM 182601) (Boone et al.
2011, 2014), Fanconi anemia (MIM 227650) (Flynn et al. 2014),
and von Hippel–Lindau syndrome (MIM 193300) (Franke et al.
2009). Alu-associated CNVs have been estimated to cause ∼0.3%
of human genetic diseases (Deininger and Batzer 1999). In spite
of this fairly large potential impact of AAMR events on gene vari-
ation and human health, to date fewer than 300 independent
events have been experimentally characterized at nucleotide-level
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resolution (Supplemental Table S1). Array comparative genomic
hybridization (aCGH) is a robust experimental procedure for
CNVdetection, includingCNVs at the exonic level; however, array
techniques have non-nucleotide-level breakpoint junction resolv-
ing capability. Although the combination of aCGH and PCR can
achieve breakpoint junction sequence resolution, such an ap-
proach is not currently scalable. Thus, it is impractical and costly
to map the breakpoints for all detected disease-associated rare
CNVs using this approach. Moreover, many studies utilizing ge-
nome-wide variant assays, including whole-genome sequencing
(WGS) and whole-exome sequencing (WES), are limited by se-
quence coverage and alignment difficulties inherent to the rela-
tively short length of sequencing reads and high degree of Alu
sequence identity (Treangen and Salzberg 2011).

CNVs and other structural variants (SVs) can result from dis-
tinctmolecularmechanisms, includingDNA recombination–asso-
ciated processes, DNA repair–associated processes, and DNA
replication–associated processes (Carvalho and Lupski 2016), and
lead to human diseases often termed genomic disorders (Lupski
1998). Previously, repeated sequences (e.g., paralogous genes/
pseudogenes, low-copy repeats [LCRs], etc.) and repetitive ele-
ments (e.g., SINEs, long interspersed nuclear elements [LINEs])
that are involved in the formation of genomic rearrangements
have been posited to undergo nonallelic homologous recombina-
tion (NAHR). For example, duplications and deletions of the same
genomic segment can be flanked by similar human endogenous
retroviral sequences (HERVs) (Sun et al. 2000; Campbell et al.
2014), LINEs (Higashimoto et al. 2013; Startek et al. 2015), or
LCRs (Lupski 1998; Sharp et al. 2005). The PRDM9 binding motif
is a cis-acting sequence motif associated with allelic homologous
recombination (AHR) and NAHR hotspots (Lupski 2004; Lindsay
et al. 2006; Myers and McCarroll 2006; Berg et al. 2010; Dittwald
et al. 2013). PRDM9 targeting sites are associated with ∼40% of re-
combination hotspots ascertained through studies of historical re-
combinants (Myers et al. 2008; Webb et al. 2008). Deletions
mediated by LCRs and HERVs in human genomes are enriched

for PRDM9 binding motifs proximal to the junctions, further im-
plicating NAHR as the mechanism for their formation (Repping
et al. 2002; Campbell et al. 2014). Classically, NAHR has been pro-
posed as the mechanism underlying AAMR events (Cordaux and
Batzer 2009); however, the minimal processing segment required
for NAHR is generally thought to be longer than an individual
Alu sequence (Reiter et al. 1998). It has recently been proposed
that Alu repetitive elements may participate in aberrant rearrange-
ment of the genome by mediating template switching (TS) during
replication-based repair mechanisms (Boone et al. 2011, 2014; Gu
et al. 2015) such asMMBIR (Hastings et al. 2009) or by undergoing
SSA (single-strand annealing) orMMEJ (microhomology-mediated
end joining)mechanisms given that they providemultiple regions
of microhomology (Elliott et al. 2005; Morales et al. 2015).

Results

To better understand the mechanism(s) of AAMR and potentially
identify human genes that are prone to instability due to these
events, we conducted a machine learning–based analysis of Alu
and the human genome reference; the steps of which are described
below and summarized in Figure 2.

Collection and characteristics of CNV-Alu pairs

We define the Alu pairs involved in AAMR events as CNV-Alus and
all the other non CNV-Alus as Ctrl-Alus (Fig. 1B). To build a classi-
fier for predicting Alu pairs that may be more likely to mediate ge-
nomic rearrangements, we utilized a positive training data set
composed of 219 CNV-Alu pairs, 218 of which were collected
from deletions published in 58 articles and one that is currently
unpublished (Supplemental Table S1). Each breakpoint of the
219 deletions has been mapped at nucleotide-level resolution
within the resultant chimeric Alu in the original studies, enabling
determination of microhomology at the breakpoint junction of
AAMR. The deletions vary in size from ∼800 bp to ∼4 Mb, and
75% of the deletions are <57 kb (Supplemental Fig. S1A). We
have determined each of the Alu elements involved and their ge-
nomic coordinates, orientation, and the information of subfamily
using the RepeatMasker track of the UCSC Genome Browser
(Supplemental Table S1; Kent et al. 2002).

To determine whether CNV-Alu pairs are enriched for a spe-
cific subfamily, we first calculated the relative frequency of each
subfamily composition in CNV-Alu pairs. Considering the differ-
ent frequency of Alu subfamilies, we further calculated the expec-
tation of the relative frequency of each composition in Ctrl-Alu
pairs that were documented in the RepeatMasker database (Smit
et al. 2013–2015). We found that AAMR events are more likely to
be mediated by younger Alu elements, such as AluS-AluY and
AluY-AluY (P < 0.001, one-tailed binominal test) (Fig. 3A). This
could be potentially explained by a higher possibility of aligning
better with each other due to a less divergent sequence in the
younger families (Batzer and Deininger 2002). Of note, younger
subfamilies are more active in retrotransposition assays (Bennett
et al. 2008; Konkel et al. 2015). Thus, one potential explanation
for younger Alus being involved in AAMR is that open chromatin
exists over active Alus during transcription, which could allow
them to function as better substrates for DNA repair.

We next analyzed the properties and characteristics of AAMR
breakpoint junctions. The majority of AAMR microhomologies
are <25 bp (Fig. 3B), and have a higher GC content than that of
whole–CNV-Alu element sequences (P < 0.0001, one-tailed t-test)

A

B

Figure 1. Alu structure and Alu/Alu-mediated rearrangement (AAMR)
event formation. (A) A consensus Alu element is depicted, with both left
and right 7SL monomers indicated. A Box, B Box, and A′ Box are internal
Pol III promoter elements; the linker is an A-rich sequence; and the element
ends in a poly(A) tail. (B) A diagram of an AAMR event is shown: A genomic
rearrangement is mediated by a substrate pair of Alu elements followed by
the formation of a relatively complete chimeric Alu. Block arrows represent
Alu elements on the + (forward arrow) and− (reverse arrow) strand. The 5′
CNV-Alu is colored maroon, and the 3′ CNV-Alu is pink. Ctrl-Alu elements
not involved in AAMR are in blue. The microhomology generated at the
breakpoint junction after the AAMR event is shown in green.
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(Fig. 3C). The higher GC percentagemight facilitate strand anneal-
ing by a stronger hydrogen bonding than A-T. We mapped the se-
quence of each breakpoint microhomology generated during
AAMR formation to an Alu consensus sequence (Fig. 3D), and not-
ed enrichment downstream from RNA pol III promoters (A Box, B
Box, and A′ Box). The location of breakpoint junctions in 18 rear-
rangements with at least one Alu element involved was previously
described by Rudiger et al. (1995); a 26-bp core sequence was at or
close to the breakpoint junctions (Fig. 3D–H, shaded light blue).
With the 219 AAMR events, we further showed that more break-
point junctions (n = 62) are located at or near the first 26-bp core
sequence. There is no significant enrichment of a specific subfam-
ily in these 62 events compared with all of the 219 junctions (P >
0.05, one-tailed binomial test) (Supplemental Fig. S2).

Of note, the microhomology distribution we observed is con-
sistent with Alu/Alu-mediated evolutionary deletions previously
identified by comparing human and chimpanzee genomes (Fig.
3E; Sen et al. 2006; Han et al. 2007). To infer the underlyingmech-
anism for AAMR, we adapted a yeast TS assay to examine human
Alu pairs that occur more often in AAMR events, where AluS-
AluS and AluS-AluY are most numerous; the elements were chosen
from experimentally determined events at the SPAST locus (Boone
et al. 2014). We induced a nick downstream from a replication or-
igin to generate a single-ended, double-strand DNA break (seDSB),
inducing a substrate that is repaired via TS during break-induced
replication (BIR). The previously published 74 events displayed
an enrichment pattern of breakpoint junctions (Supplemental
Fig. S3A,C; Mayle et al. 2015); this pattern was robust and was sup-

ported by an additional 429 events (Supplemental Fig. S3C–E). To
test if this pattern is peculiar to the construct used, we made a
strain with the same distal Alu and a different proximal Alu ele-
ment (AluSx-AluY, 88.4% similar) (Fig. 3F). Despite the distinctive
pattern of available microhomologies (Supplemental Fig. S3A,B),
the experimentally detected junctions from the two yeast assays
differ from the observed pattern in human events and display pref-
erences for similar regions (Fig. 3G,H). The yeast junctions favor
blocks of nearly identical sequence that are minimally interrupted
by single-base-pair mismatches, therefore representing the largest
sequence homeology (highly similar but not identical sequences)
between each pair. These data support the contention that AAMR
can bemediated by TS and potentially occurs byMMBIR (Hastings
et al. 2009). The divergent frequency distribution patterns ob-
served between human and yeast experimental data might be
due to the distribution of homeology between the two Alu pairs
in the TS assay and species differences.

Predicting CNV-Alu pairs

The skewed distribution of the properties of AAMR breakpoint
junctions discussed above indicates that AAMR events could be
generated byAlu pairs enriched for particular features. This finding
motivated characterization of a group of factors that can potential-
ly distinguish CNV-Alu pairs from their genomicmilieu.We inves-
tigated whether features of an individual Alu and its surrounding
genomic region may potentially influence genomic instability
and the choice of which elements serve as templates for repair.
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Figure 2. Diagram of the workflow used for predicting CNV-Alu pairs and AAMR hotspot genes in this study. Approximately 1.2 million Alus are doc-
umented in the “Repeating Elements by RepeatMasker” track at the UCSC Genome Browser. CNV-Alus are those with experimental evidence supporting
their role in AAMR (Supplemental Table S1), and all the others are Ctrl-Alus. We selected Alu pairs that are in the same orientation, span at least one exon,
and are located <250 kb from each other. Both the individual Alu sequence features and genomic architectural features were characterized, and a subset of
features were utilized in model training. The QDA (quadratic discriminant analysis) model achieved the highest sensitivity and was applied for predicting
CNV-Alu pairs. The amount of predicted CNV-Alu pairs is significantly correlated with the number of observed AAMR events for known hotspot genes.
Therefore, we further determined the relative risk of AAMR in 12,074 human genes that have a MIM entry using the count of predicted CNV-Alu pairs.
Finally, we experimentally validated this prediction with 89 samples selected by correlating predicted hotspot genes with a database of approximately
54,000 chromosomal microarrays (CMAs) by performing aCGH and mapping the breakpoint junctions of detected CNVs. We achieved an 87% positive
predictive value overall.
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Figure 3. Features of CNV-Alu pairs and microhomology preferences. (A) The relative frequency of Alu subfamilies is shown. For example, the AluS-AluY
indicates CNVs mediated by Alus from family AluS and AluY respectively, and “Other” indicates monomeric Alus such as FRAMs. We compared the relative
frequency of a given subfamily composition of CNV-Alu pairs (inmaroon)with that of the expected relative frequency of observing a given subfamily pair (in
blue) using the one-tailed binomial test. (∗∗) P≤ 0.01; (∗∗∗) P≤ 0.001. (B) The histogram describes the distribution of microhomology length at breakpoint
junctions. (C ) The histogram indicates the %GC content within the stretch of microhomology. (D) The figure depicts the collected 219 microhomologies
fromdisease-related studies in humanwith respect to their relative position on an Alu consensus sequence (lower panel). The peak in the histogram indicates
an enrichment of breakpoint junctions on the specific locus. The light blue shading shows a 26-bp core sequence detected by a previous compilation study
of Alu-involved gene rearrangements (Rudiger et al. 1995). (E) Adapted from a comparative genomic study on chimpanzee and human reference genome
(Han et al. 2007). The blue line describes 492 human-specific breakpoint junctions of Alu/Alu-mediated deletions, and the red line depicts 663 chimpanzee-
specific events. The dashed horizontal line indicates the average percentage of breakpoints across the entire Alu element. (F) The schematic shows the con-
struct utilized to detect template switches in yeast. Two human Alu pairs were inserted into Chr II separately with the same distal AluSx element. URA3 and
TRP1 are the markers for selecting colonies with successful transformation. We induced a single-strand DNA break at the FRT site using a mutation of FLP
recombinase. (G,H) The relative positions of microhomologies generated by mapping junctions from the yeast assay are depicted in relation to an Alu con-
sensus sequence. (G) Data from 503 AAMR events observed in the first AluSx-AluSp strain. (H) Distribution of 114 events from the AluSx-AluY construct.
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There are more than 1.1 million Alu elements in the human ge-
nome. If one also considers interchromosomal recombination
events, more than 6 × 1011 Ctrl-Alu pairs exist in the human ge-
nome. As the number of CNV-Alu pairs is grossly unequal to that
of Ctrl-Alu pairs, factors were selected before utilization in our ma-
chine learning model to abrogate concerns of overfitting the
model.

The distribution across the genome of the 219 events in our
positive training set was biased because of the limited number of
studies and the focus on several disease genes (Supplemental Fig.
S1B,C). To maximize the knowledge that one could potentially
gain from these events, we treated each deletion as an individual
locus and have characterized each locus independently.

Generating a control, i.e., a negative training data set, is chal-
lenging because the absence of evidence for an Alu to be involved
in CNV formation does notmean that the element cannot be used
in a heretofore-uncharacterized event. To overcome this issue, we
constructed distinct control data sets for analyzing individual fea-
tures and genomic features (see Methods; Supplemental Fig. S4).
To decrease the possibility of choosing false-negative CNV-Alu
pairs, 1000 Ctrl-Alu pairs with the same orientation as each other
(either plus or minus) in each region were randomly collected as a
negative control data set. Since the local environmental genomic
features can be variable simply because of the relative position
within the gene, the negative control data sets for these features
were generated analogously to the collected CNV-Alu pairs, which
are intragenic exonic CNVs in/near disease-associated genes. Of
note, the CNV sizes for these experimentally determined AAMR
events tend to be <250 kb (Supplemental Fig. S1A). There are
only 27 deletions spanning >250 kb, and none were between
250 and 500 kb in size. We chose “<250 kb” as a cutoff to include
the majority of the known events and generate a comparable test
data set to the training data. For each of the 192 CNV-Alu pairs
that are <250 kb apart, we selected 1000 directly oriented Ctrl-
Alu pairs that could delete at least one exon and that have the
same distance between them as the CNV-Alu pair.

As it was not clear whether each Alu element within a pair
would contribute equally to AAMR events, we calculated the pair-
wise value for each feature by computing the minimum, mean,
andmaximumvalues for each pair; andwe also considered the dif-
ference between the two elements for genomic features. We then
characterized each pairwise feature for Alu pairs in the training
data set. At each locus, we plotted the Ctrl-Alu pair distribution
as a boxplot andmarked the CNV-Alu pair as a red dot.We also cal-
culated a P-value using aMonte Carlo approach (seeMethods). For
example, at most loci, the red dots showing the value of pairwise
alignment of CNV-Alu pairs are located above the medians of
Ctrl-Alu pairs (Fig. 4A). The distribution of P-values across different
loci is plotted in Figure 4B. The geometric mean of P-values for the
feature of pairwise alignment is 0.102. Therefore, CNV-Alu pairs in
the majority of loci have a higher sequence similarity with each
other than the control pairs. We next examined the region of
500 bp upstream of and downstream from each Alu element to
identify putative PRDM9 bindingmotifs that match >85% to a po-
sitionweightmatrix (PWM) (Campbell et al. 2014). There is no sig-
nificant difference between CNV-Alu pairs and their locus-specific
controls with respect to the number of surrounding PRDM9 bind-
ing motifs (Fig. 4C,D; Table 1). We summarized the Monte Carlo–
based P-values for this and other tested parameters, including both
individual Alu sequence features and genomic features surround-
ing CNV-Alu pairs, in Table 1 and Supplemental Figure S5. After
conducting these analyses and combining results from the plots

and P-values, we noted that not all the features distinguish CNV-
Alu pairs from control elements and that distinct pairwise values
also perform differently. Therefore, we utilized the following pa-
rameters to train our model for prediction: minimum Alu element
length and Alu density, mean GC percentage, sequence similarity
of A Boxes/B Boxes, poly(A) tail length, replication timing, and the
pairwise alignment score (marked with asterisks in Table 1).

We applied these features to train a model using quadratic
discriminant analysis (QDA) with the CNV-Alu pairs and 10,000
control pairs. The prior probability was set to 0.3, which provided
the highest sensitivity in testing the known 192 CNV-Alu pairs
(sensitivity = 0.83, 10-fold cross validation) (Supplemental Fig.
S6). Our test data set, consisting of approximately 78 million
Ctrl-Alu pairs, was built to enrich potential intragenic exonic
events but efficiently decrease the computational burden by
choosing Alu pairs that have the same orientation, span at least
one exon, and are located within 250 kb of each other.We utilized
the BlueGene supercomputer at Rice University to calculate the se-
lected features for each pair, as calculating pairwise alignment
scores of the 78 million pairs was computationally intensive.
These analyses predicted 17.6% of the Ctrl-Alu pairs to be more
likely to mediate CNVs.

Of note, the features utilized in theQDAmodel training share
some degree of codependence. For example, evolutionarily young
Alus tend to have a higher sequence similarity and be more active
in retrotransposition (Bennett et al. 2008). The QDAmodel explic-
itly accounts for codependence (covariance) between variables in
making its predictions; in this way, the influence of correlation
is statistically controlled and accounted for in the model. Any un-
wanted or erroneous impact of covariance on prediction should be
minor. In addition, to better understand the level of feature code-
pendence, we measured the impact of feature codependence by
training a series of models with all selected features and removing
one feature at a time and evaluating the performance of eachmod-
el. The model that was trained with all selected features performed
best in terms of having the lowest error rate as shown in Figure 5A;
however, the feature of Alu length seems to be redundant based on
the same error rate as the overall model. The feature of Alu density
contributed tremendously to the prediction as the error rate in-
creased dramatically when this feature was removed; removing
the other features could increase the error rate to some degree
as well.

Predicting hotspot genes for AAMR events

We developed a risk score to estimate the relative effect of AAMR
events at a gene level. We first tested the correlation between the
count of predicted CNV-Alu pairs from our QDA analysis and the
count of reported CNV-Alu pairs in known AAMR hotspot genes
(Supplemental Table S1): They are significantly correlated (linear
regression, P < 0.001). We then utilized this model to predict the
risk score for 12,074 human genes that are collected in the
OMIM database (https://www.omim.org/) with a gene MIM num-
ber and have complete information for each involved Alu element
(Supplemental Table S2). We focused on a disease-related gene set
because we only chose the potentially pathogenic Alu pairs in the
test data set. In addition, we could implement validation experi-
ments using a clinical microarray database, which mainly interro-
gates disease-related genes. Although the prediction might not be
as accurate as the OMIM genes, we also performed the same gene-
level prediction on a total of 23,637 RefSeq genes with available
tested Alu pairs (Supplemental Table S2).
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An AAMR risk score of one indicates a prediction of 10 (101)
CNVs intersecting this gene were expected. Using a score greater
than one as a cutoff determined a subset of 329/12,074 OMIM
genes, or ∼3% of the total. Given the left skewed distribution of
AAMR scores (Fig. 5B), we regarded a AAMR risk score greater than
one as an extremely strict cutoff. In addition, we showed the distri-
bution of the genes that have been affected by AAMR more than
once (n = 133) (Fig. 5C; Supplemental Table S1). These genes have
a median score of 0.601, and the scores enrich around 0.6; we sug-
gest a score of 0.6 as a loose “cutoff” for at-risk genes. Genes with
a score of less than 0.6 might be more susceptible for AAMR.

Furthermore, Alu density alone, a parameter previously sug-
gested to influence AAMR-mediated genomic instability (Boone
et al. 2014), did not achieve the same performance in prediction
compared with the model trained with all the selected features
(P < 0.001, χ2 test). To clarify the potential effect of gene size, we
performed two analyses: First, we fit a model treating count divid-
ed by gene size as a predictor and compared this model to our re-
ported model; a goodness of fit test shows that these two models
are not significantly different (χ2 P = 0.331). This result suggests
that accounting for gene size does not alter the predictive power
of themodel. As a second analysis, we created amultiple regression

model that examined predicted count and gene size as indepen-
dentcontributors to themodel (SupplementalTableS3).The results
analyzing thismodel show that although count is a significant var-
iable, there is no residual variation significantly associated with
gene size. Taken together, we conclude that the gene size does
not significantly contribute to our results. Therefore, we trained
this gene-level prediction only using the count of predicted CNV-
Alu pairs.

Validating the computational prediction

We tested our pairwise prediction results against a list of 663 hu-
man Alu pairs that recombined during evolution as the corre-
sponding positions in the chimpanzee genome only contain one
chimeric Alu element at the breakpoint junction (Han et al.
2007). However, only one Alu pair was collected in our test data
set and was not predicted as a likely CNV-Alu pair. The narrow
overlap of the two data sets might be due to the pathogenicity
and constraint on AAMR events between predicted pairs in hu-
mans that could delete at least one exon.

We then experimentally tested our prediction by cross-refer-
encing the list of 329 predicted hotspot genes (risk score > 1)

Figure 4. Determining feature enrichment for CNV-Alu pairs with respect to Ctrl-Alu pairs. (A) The comparison of pairwise alignments between CNV-Alus
(n = 219) and the corresponding Ctrl-Alu pairs (n = 1000 per CNV-Alu) is shown. The y-axis is a score showing the alignment performance, a higher value of
which indicates a better alignment between two sequences. As shown in the key, at each locus, we displayed the alignment score of CNV-Aluwith a red dot
and showed the distribution of the Ctrl-Alus with a boxplot. The information of all the 219 events is summarized in an increasing order of the median value
of the Ctrl-Alus. (B) The distribution of P-values calculated using Monte Carlo simulation for pairwise alignment is shown. (C,D) The same strategy was
adopted for analyzing the mean value of the maximum matching score of the PRDM9 targeting motif within an Alu pair.
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(Supplemental Table S2) with an anonymized database of exon-
targeted clinically applied CMAs performed in approximately
54,000 individuals. We selected subject samples that have one or
more CNVs that intersect with genes in this hotspot gene list. To
investigate any enrichment of AAMR versus variants mediated
by other repeats/repetitive elements, we chose genes with three
or more samples available. We developed a high-density aCGH
platform targeted to 15 regions (covering 18 predicted hotspot
genes), and performed custom-designed high-density array CGH
against gender-matched controls on the obtained 89 DNA samples
from the CMA laboratory to both validate the original clinical ar-
ray findings and facilitate our breakpoint junction analyses
(Supplemental Table S4). We found that two of the duplications
were complex genomic rearrangements (CGRs). About 95% (83/
87) of the samples contain simple deletions or duplications that
have at least an Alu located within the uncertain region defined
by oligonucleotide probes at one or both ends. Furthermore,
81.0% (51/63) of the samples that potentially intersect with Alu
pairs at both ends likely terminatewithin predictedCNV-Alu pairs.

After determining breakpoints at a higher resolution, we next
mapped the nucleotide-level breakpoint junctions for 52 out of the
87 simple CNVs with long-range PCR and Sanger sequencing
(Supplemental Fig. S7). The reasons for an inability to experimen-
tallymap the remaining breakpoints include a lowquality of geno-
micDNA, complex genome structure (e.g., tandemAlus), and a low

resolution of uncertain breakpoint intervals in some regions. For
each of those resolved CNVs, we have tabulated the resultant se-
quence and the exons affected by the SV; an example detailing a
duplication intersecting CLIP1 mediated by an Alu pair is shown
as Figure 6, A through C. Seventy-three percent (38/52) of the
experimentally solved breakpoint junctions were meditated by
Alu pairs (including 19 unique events) (Fig. 6D). As shown in
Supplemental Figure S8A, 14 unique events were detected, i.e.,
found only once in the validation data set. Two junctions were ob-
served four times each (eight events in total), and another three
Alu pairs were used twice, five times, and nine times separately
(16 events in total). To answer whether the frequently observed
events are truly independent or due to a founder effect, we com-
pared five of these events with SVs in the DGV database
(Database of Genomic Variants) (MacDonald et al. 2014). As the
resolution of DGVvariants varies from each other due to the differ-
ent detectionmethods/assays utilized, we could only roughly indi-
cate whether an apparent same variant was also observed in the
DGV. As shown in Supplemental Figure S8B,C, two recurrent
variants were recaptured in the DGV. We hypothesized these
two variants are polymorphisms in the human genome. For the re-
maining three, we were unable to obtain family information, and
therefore, they could come from a common founder or could be
independent but contribute to the same clinical phenotypes.

Alu elements participated in another 21% (11/52) of junc-
tions with a LINE element (four of 52, two unique events) or non-
repetitive sequences (seven of 52, four unique events) at the other
end. One unique Alu-LINE mediated event and two unique Alu-
nonrepetitive sequence-mediated duplications have microhomol-
ogy detected at the breakpoint junction. Only 6% (3/52) of these
events were mediated by non-Alu elements, including one LINE-
LCR and two LCR-LCR events. We also resolved the two break-
point junctions in one complex rearrangement event (Sample88,
Supplemental Fig. S7), both of which contain one Alu element, in-
dicating an involvement of Alus in potential TS events.

Validation of the performance of our score for predicted low-
risk genes using wet-bench experimental studies is challenging,
because these studies would be directed toward the absence of ob-
servations. Therefore, we analyzed the association between lower-
scoring genes and their relative risk for potential absence of AAMR-
mediated genomic instability. First, we examined the CMA data-
base and collected the susceptible AAMR CNVs, which have at
least a pair of predicted Alus located within the uncertain region.
Second, we then counted the overlapping susceptible CNVs for
each gene and assigned zero for the well-targeted genes but with
no potential AAMRCNV detected.We established another catego-
ry for those genes with exactly one, and finally a third category for
genes with more than one likely AAMR CNV. There are 2433 well-
targeted genes with no potential CNV, 1260 genes with one, and
824 genes with more than one. Third, to examine the association
of the observedCMAdatawith the scores, we independently divid-
ed the genes (N = 4517) into three categories using the tertiles of
the predictive risk score. Fourth, we tested the enrichment of genes
with variable risk score in each subset based on real data from
CMA.

As shown in Figure 6E, in the group of genes with zero AAMR
CNV, we observed a significant overrepresentation of low-scoring
genes and a depletion in geneswith a high score (binomial test, P <
1 × 10−16), consistent with a lower score being predictive of lower
rates of AAMR CNVs. Correspondingly, the genes with at least
one observed susceptible AAMR CNV are highly enriched among
the high-scoring group (binomial test, P < 1 × 10−16). Overall, a

Table 1. Comparison of CNV-Alu pairs with controls

Geometric mean of P-values from Monte
Carlo simulation across different loci

Minimum Mean Maximum Difference

Individual DNA
sequence features
Length of Alu

element
0.181∗ 0.181 0.266

GC percentage 0.191 0.232∗ 0.307
Maximum matching

score to a PWM
of A Boxesa

0.234 0.208∗ 0.413

Maximum matching
score to a PWM
of B Boxesa

0.160 0.132∗ 0.302

Length of poly(A)
tail

0.218 0.203∗ 0.277

Maximum matching
score of PRDM9
motif

0.348 0.281 0.327

No. of PRDM9 motif 0.567 0.401 0.446

Genomic features
Alu density 0.219∗ 0.232 0.220 0.463
Replication timing 0.284 0.285∗ 0.274 0.516
Average methylation

level
0.317 0.310 0.317 0.432

Percentage of
methylated region

0.277 0.276 0.278 0.392

We compared both individual features and genomic features of CNV-Alu
pairs with respect to relative controls. We calculated the minimum/
mean/maximum value of an Alu pair for each feature and the difference
for genomic features. The ability of a feature in distinguishing CNV-Alu
pairs from controls is measured by the geometric mean of P-values from
Monte Carlo simulation across different loci.
aA Boxes and B Boxes taken from Alus that are evolutionarily young and
active (Bennett et al. 2008).
(∗) Features used in model training. These were determined to be en-
riched in CNV-Alus and useful in model training.
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test of independence between the risk score tertiles and the poten-
tially AAMR CNV count classes shows a highly significant associa-
tion (P < 1 × 10−16) for both Fisher’s exact test and a χ2 test.

Assessing the role of AAMR in causing genome instability

and human disease

We further developed a tool, AluAluCNVpredictor, to help query
the data. With this tool, investigators can query a gene and receive
output for the gene rank in the total 12,074OMIMgenes or 23,637
RefSeq genes, the relative gene-level risk score, the count of predict-
ed CNV-Alu pairs, and a plot showing the AAMR risk score of this
gene on the total score distribution. AluAluCNVpredictor may
also assist a query for any predicted CNV-Alu pairs intersecting a
genomic interval pair of interest, e.g., a pair of uncertain regions
from aCGH data. This tool is publicly available (see Supplemental
File S1; http://alualucnvpredictor.research.bcm.edu:3838).

We annotated the hotspot genes for human disease pheno-
types using OMIM. The known disease relevant genes (77 out of
329) are listed in Table 2 (in alphabetical order). Of the 77
OMIM entries, 33 are associated with recessive disease traits, in
which a CNV-Alu mediated exonic deletion may contribute to a

carrier state (Boone et al. 2013; Harel et al. 2016). Twenty-five of
the OMIM entries represent dominant disease traits, and 19 are ei-
ther lacking documentation or have cases in which both inheri-
tance patterns were observed. Although not all of these 77 genes
have been associated with Alu/Alu CNVs, we emphasize a poten-
tially underappreciated role of Alu in causing variants in these
genes as AAMRevents are easilymissed by routine short-read geno-
mic sequencing techniques.

Finally, we tested the correlation between the AAMR risk
score and the number of events of CNVs (<250 kb) within each
hotspot gene in the CMA database by Poisson regression. At the
relatively low resolution of the CMA CNVs, we could not deter-
mine directly whether they are mediated by Alu pairs. The two
scores are positively correlatedwith each other (P < 1 × 10−16), indi-
cating that the Alu pairs around these genes make the region
genomically unstable, supporting the contention that these genes
may be more susceptible to exonic CNVs.

Discussion

We identified characteristics of CNV-Alu pairs, predicted Alu pairs
that are more likely to mediate genomic rearrangements, and

A

B C

Figure 5. Comparing and selectingmachine learningmodels and the result of a gene-level prediction. (A) Themeasurement of feature codependency in
model training.We tested the error rate formodels trainedwith all selected features (Table 1) as well as by removing one feature at a time (seeMethods). (B)
The frequency distribution of the gene-level AAMR risk scores for 12,074 OMIMgenes. (C ) The frequency distribution of the gene-level AAMR risk scores for
133 genes that have been involved in AAMR more than once.
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Figure 6. Experimental and computational validation of AAMR hotspot prediction. (A) High-density aCGH results from one individual selected from the
CMA database shows a duplication of the two terminal exons of CLIP1, a predicted AAMR hotspot gene. Red dots signify probes that indicate relative copy
number gain (the region indicated contains a duplication); black dots, a region unaffected by CNV; and green dots, deletion. (B) The UCSC Genome
Browser image depicts RefSeq genes and RepeatMasker annotations within the same genomic interval as shown in the aCGH result. The red block repre-
sents the duplicated region. The two SINE elements, AluSc8 and AluSx, in which the breakpoints of this CNV are located aremarkedwith red arrows. (C) The
first line of sequence shows the reference sequence of the AluSx; themiddle line, the sample sequence; and the bottom line, the sequence of the AluSc8. The
sequences are on the plus strand, and both Alus are in the plus orientation. The sequence ofmicrohomology at the breakpoint junction is highlighted in red.
The gray sequence starts from the first mismatching base. The genomic coordinates of the microhomologies are annotated in the hg19 assembly. (D) A
chart summarizing 52 breakpoint junctions mapped at nucleotide level is depicted. The CNVs are grouped into three types: Alu-Alu, CNVs mediated by an
Alu pair; Alu-Other, Alu pairing with a non-Alu sequence, including LINE, LCR, and nonrepeat/repetitive sequence, mediates the CNV formation; andOther,
no Alu elements were involved. For those mediated by an Alu pair, the QDA prediction result is shown to the right. True prediction indicates these Alu pairs
were predicted as high risk for AAMR. (E) A box plot showing the enrichment of genes within different risk score tertiles among three classes of the count of
susceptible AAMR CNVs in the CMA database.

Song et al.

1236 Genome Research
www.genome.org



determined the relative risk of AAMR for 12,074 OMIM human
genes with machine learning methods. We further evaluated the
validity of our score for predicted high-risk genes by performing
molecular biology experiments combining custom-designed
high-resolution aCGH, breakpoint junction PCR and Sanger se-
quencing and performed an association analysis to explore more
carefully the observed abundance of potential AAMR events for
genes with a lower score. We provided a tool, AluAluCNVpredic-
tor, for assessing the predicted potential susceptibility of a gene
or genomic interval to AAMR events.

The potential biological and clinical utility for delineating ge-
nomic instability due to AAMR hotspots is indicated from studies
focusing on disease loci. For example, 45.5% (20/43) of the CNVs
described in 17p13.3 were mediated by Alu pairs (Gu et al. 2015),
56% (9/16) in the FOXF1 locus (Szafranski et al. 2016), 68% (39/
57) in the SPAST locus (Boone et al. 2014), 88% (29/33) in the
VHL locus (Franke et al. 2009), and 100% (45/45) in EPCAM
(Kuiper et al. 2011). Previously, the prevalence of AAMR in disease
was estimated based on observed events (Deininger and Batzer
1999). However, this earlier approximation of ∼0.3% is likely an
underestimate due to the inherent challenges in the detection of
repetitive element–mediated events genome-wide. Batzer and col-
leagues (Sen et al. 2006; Han et al. 2007) analyzed human-specific
Alu/Alu-mediated deletions by comparing the haploid genomic
reference sequences of chimpanzee and human. Alus have also
been shown to be enriched at or near the junctions of SDs/LCRs,
a correlation consistentwith a potential role in genomic instability
(Bailey et al. 2003). These studies indicate a potentially important
role for AAMR events during evolution. However, the genes/geno-
mic regions potentially susceptible to a pathogenic mutagenic ef-
fect due to AAMR have not been elucidated. An alternative in
silico approach to estimate the distribution of putative AAMR
events could be analyzing next-generation sequencing data

(NGS) from large cohorts with a multitude of disease phenotypes,
such as samples recruited to the Centers for Mendelian Genomics
(CMG) (Chong et al. 2015). However, the range of read length in
widely used NGS platforms is 50–150 bp (Goodwin et al. 2016),
shorter than the length of an Alu sequence (∼300 bp). The highly
repetitive and interspersed nature of Alus further challenges read
alignment and local assembly (Treangen and Salzberg 2011).
Although longer read sequencingmethods such as 454 sequencing
andmore extended long-read sequencing technologies potentially
overcome this limitation, they are more expensive and can be
error-prone (Wheeler et al. 2008;Goodwin et al. 2016). Accumulat-
ing genome-wide long-read sequencing data from large disease co-
horts is currently cost prohibitive. Moreover,WES does not resolve
AAMR events due to most of Alus mapping in intergenic regions
and introns.

Our machine learning method for discerning gene/variant
genomic instability susceptibility due to AAMR-mediated intra-
genic exonic CNV may find utility in genome-wide studies: (1)
The machine learning model directly adopts the current knowl-
edge of AAMR events in the human genome, and (2) this method
examined all possible disease-associated genes instead of focusing
on a specific locus. We validated the reliability of the risk score in
predicting hotspots by performing “wet-bench” experiments on
variants in 18 out of 329 genes that have an AAMR risk score great-
er than one. We examined a total of 52 breakpoint junctions, 73%
of which were mediated by Alu pairs and another 21% of which
were partially Alu mediated. Overall, we achieved an 87% positive
rate in predicting at risk Alu pairs. We suggest a cutoff of 0.6 based
on the risk score frequency distributionof genes involved in AAMR
more than once (Fig. 5C). NXN is a potential hotspot gene given a
risk score of 0.87 and being ranked among the top 6% of OMIM
genes (663/12,074) (Supplemental Table S2). An Alu/Alu-mediated
exonic deletion interrupting NXN together with a variant on the

Table 2. Human disease-associated genes in predicted AAMR hotspots

Gene MIM no. Score Gene MIM no. Score Gene MIM no. Score

AARS 601065 1.07 HIP1 601767 1.71 PRPF3 607301 1.11
ACACA 200350 1.33 HPD 609695 1.08 PTPN11 176876 1.01
AMT 238310 1.03 ICAM1 147840 1.01 RAD51C 602774 1.10
ASL 608310 1.07 IL12RB1 601604 1.01 RERE 605226 1.01
ATCAY 608179 1.20 INSR 147670 1.43 RNF216 609948 1.12
ATP6V1E1 108746 1.11 ITCH 606409 1.20 RPGRIP1 605446 1.04
ATXN2 601517 1.38 KANK2 614610 1.17 RYR1 180901 1.27
BMPR2 600799 1.43 KIF1B 605995 1.34 SAMHD1 606754 1.17
BRCA1 113705 1.08 LDLR 606945 1.39 SIPA1L3 616655 1.41
CDH1 192090 1.10 MICU1 605084 1.20 SLC25A20 613698 1.36
CPAMD8 608841 1.02 MKL1 606078 1.07 SLC5A5 601843 1.09
CSF2RA 306250 1.01 MTO1 614667 1.19 SMARCA4 603254 1.34
CTCF 604167 1.10 MYH11 160745 1.29 SNTA1 601017 1.09
DAG1 128239 1.18 MYO9B 602129 1.42 SPAST 604277 1.07
DEPDC5 614191 1.47 NDE1 609449 1.00 SPTAN1 182810 1.14
DHTKD1 614984 1.25 NDUFAF1 606934 1.21 STOX1 609397 1.08
DIP2B 611379 1.14 NSD1 606681 1.35 TBCE 604934 1.16
DNM2 602378 1.41 NUP155 606694 1.23 TECPR2 615000 1.24
DNMT1 126375 1.26 OPA3 606580 1.11 TICAM1 607601 1.28
DOCK6 614194 1.29 ORAI1 610277 1.15 TLE6 612399 1.05
EIF2B3 606273 1.05 PAFAH1B1 601545 1.05 TRIP4 604501 1.13
EP300 602700 1.18 PDSS2 610564 1.01 TRPM4 606936 1.00
EPB41 130500 1.37 PI4KA 600286 1.03 TRPM7 605692 1.17
FANCA 607139 1.08 PIGL 605947 1.20 TYK2 176941 1.13
GNB1 139380 1.05 PIK3CD 602839 1.03 XPNPEP3 613553 1.01
GPX1 138320 1.07 PMS2 600259 1.13

Seventy-seven genes out of the predicted 329 hotspot genes (OMIM genes with an AAMR risk score greater than one) have been associated with
disease entries. We listed here the MIM gene symbol and the AAMR risk score for each of the 77 genes in alphabetical order.
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other allele was recently shown to cause recessive Robinow syn-
drome (MIM 268310) (White et al. 2018). In contrast, CFTR has
a risk score of 0.43 and ranks at 10,285 out of the 12,074 genes,
suggesting a “nonhotspot gene” for AAMR; none of the 18 success-
fully mapped unique breakpoint junctions were mediated by Alu
pairs (Quemener et al. 2010). These experimental results demon-
strate the utility and performance of our predictive model.

The limitations of our study include the small training data
set and the fact that most CNVs are pathogenic; however, these
are the only published, experimentally determined AAMR events
available at the time of initiation of this study. Alus close to
genes might be conserved in particular features, especially geno-
mic environmental features, during evolution. Therefore, we
only chose Alu pairs into our test data set that share similar char-
acteristics with the 219 CNV-Alu pairs, including internal size,
pair orientation, and covering at least one exon. We have ob-
tained evidence to support the contention that the 219 pairs
can capture as least some of the features enriched in AAMR
events given the similar microhomology enrichment pattern
with both a smaller compilation study and a human–chimpan-
zee comparative study; as shown in Figure 3D,E. This approach
was not a whole-genome level analysis and did not cover inter-
genic or intronic only events, which could cause diseases by af-
fecting transcription modifiers, and ignores AAMRs that are
larger in size (>250 kb).

Of note, when we collected the CNV-Alu pairs from the liter-
ature, we retrieved 219 Del-Alu pairs but only nine Dup-Alu pairs.
To minimize the potential impact of a mixture of deletion and
duplication in feature preference analyses, we recruited only the
deletions in the training data set but tested both in the experimen-
tal validation step. As a result, we successfully mapped the break-
point junctions of six Alu/Alu-mediated duplications and made a
correct prediction for four events (Supplemental Table S4).
Although this performance (66.7% accuracy, four of six) is not
comparable to the 100% accuracy in predicting Del-Alu pairs, the
prediction could still be helpful considering only ∼17.6% of Alu
pairs were predicted as potential CNV-Alu pairs.

We lack a true-negative data set and have a small training data
set from the literature and therefore could not precisely test the
overall performance of our score, especially for interpreting the
genes with a lower score and whether that implied genomic stabil-
ity, or absence of instability by AAMR. Instead, we performed an
indirect analysis to provide a brief thread using aCGH data, which
are of low resolution compared with NGS data. The association
analysis between the risk scores and susceptible AAMR CNVs in
the CMA database suggests a likely good performance of the risk
score in predicting both potential hotspot and nonhotspot genes.
Nevertheless, the pattern is not perfect, suggesting that somehigh-
scoring genes have zero susceptible AAMR CNVs, and some low-
scoring genes have counts greater than zero.

Our results could also improve the understanding of AAMR
mechanisms. AAMR events result in the formation of a chimeric
Alu element at the breakpoint junction; therefore, imprecise repair
mechanisms, e.g., nonhomologous end joining (NHEJ), are less
likely (Inoue et al. 2002; Lieber et al. 2003). Theminimum require-
ment for efficient homologous recombination is thought to be
∼300–500 bp (Waldman and Liskay 1988; Metzenberg et al.
1991; Reiter et al. 1998; Gu et al. 2008), which is longer than the
length of an Alu element. PRDM9 targeting sites are associated
with ∼40% of recombination hotspots (Myers et al. 2008; Webb
et al. 2008). We did not observe an enrichment of these sites sur-
rounding CNV-Alus. Eighteen out of 219 AAMR loci have no

PRDM9 binding motif present surrounding either Alu involved
in the rearrangement (Supplemental Fig. S5). SSA was also impli-
cated as a potential mechanism underling AAMR events (Morales
et al. 2015), in which double-strand breaks (DSBs) could be
repaired by end resection and RAD52-mediated strand annealing
(Bhargava et al. 2016). Efficient SSA requires at least 15-bp-long
microhomology and is inhibited by sequence divergence (Villarreal
et al. 2012). However, microhomologies that are <15 bp were
found in 82 out of the 219 AAMRs. Therefore, neither NAHR nor
SSA can explain all of the reported AAMR events alone.

Replication-based mechanisms can utilize iterative TSs be-
tween Alu elements to generate CGRs (Gu et al. 2015; Liu et al.
2017). The microhomologies present at the breakpoint junctions
of our AAMR events are <50 bp. Replication-based mechanisms
were preferred when the homologies at junctions are <150 bp in
yeast (Mehta et al. 2017). Furthermore, in a yeast model of seDSB
repair via TS during BIR, Alu elements involved in CNV at the hu-
man SPAST locus were effective at mediating TSs (Mayle et al.
2015); these results were extended in this work (Fig. 3F,G). After in-
troducing a DSB in mammalian cell lines, MMEJ was the predom-
inant pathway tomediate the repair between twoheterologousAlu
elements (Elliott et al. 2005;Morales et al. 2015); this also results in
an intact and full-length chimeric Alu. We hypothesize that both
MMBIR and MMEJ could contribute to AAMR events, but they
might be utilized to repair different DNA DSBs. It appears that
seDSBs, which can result from a collapsed fork generated during
replication through a nick,may bemuchmore common than dou-
ble-ended DSBs, indicating a potentially more universal use of
MMBIR. In our study, we cannot completely exclude the possibil-
ity of a cooperative model with multiple mechanisms involved in
AAMR, which could be potentially dependent on the type of dam-
age (e.g., seDSB, DSB, or single-strand break), cell fate, and se-
quence divergence. Future studies could experimentally attempt
to elucidate which DNA repair pathways are responsible for gener-
ating the AAMR events observed in human and which are
predominant.

We show the power of our model to predict genes susceptible
to AAMR-associated genomic instability by correlating our risk
scorewith theCNV frequency in a database of clinical array results.
These data further underscore the importance of Alu elements in
gene and genome evolution and in mediating human disease
and point to a potentially underappreciated source of CNVs, par-
ticularly those resulting in exonic deletions. Such information
may help elucidate novel disease–gene associations, assist molecu-
lar diagnosis, and reveal further insights into genomic instability
and human gene and genome evolution.

Methods

Building a positive training data set with CNV-Alu pairs

We collected 219 CNV-Alu pairs (218 from the literature and one
currently unpublished) (Supplemental Table S1). Inclusion criteria
included that all breakpoint loci were determined at nucleotide-
level resolution in the original studies; microhomologies were
observed at the breakpoints, and resultant Alus are intact. We col-
lated the coordinates of each Alu pair and each microhomology
in the GRCh19/hg19 assembly. We downloaded the “Repeating
Elements by RepeatMasker” track at the UCSC Genome Browser,
which was last updated in April 2009 and built in GRCh37/
hg19, with which the information of subfamily and orientation
for each Alu element was annotated.
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A TS assay performed in S. cerevisiae

We previously generated a derivative of the yeast W303 strain
with two Alu elements from the SPAST locus, AluSx1 (Chr 2:
32378388–32378684, GRCh37/hg19) and AluSp (Chr 2:
32381110–32381405, GRCh37/hg19), that are known to mediate
an AAMR event (Boone et al. 2014; Mayle et al. 2015). Colonies
were screened on 5-FOA plates, and 74 Alu-mediated deletion
events were determined by PCR and sequencing. Details of the
assay can be found in work by Mayle et al. (Nielsen et al. 2009;
Mayle et al. 2015). Here, we further mapped 429 breakpoint junc-
tions from colonies with the same construct to determine the
minimum number of events required to reveal a consistent and
persistent frequency distribution pattern of the breakpoint junc-
tions. A second strainwas constructedwith the sameAluSx1 paired
with an AluY (Chr 2: 32403014–32403315, GRCh37/hg19). We
mapped 114 Alu-mediated deletions in this construct. We aligned
each CNV-Alu sequence with a consensus Alu utilizing EMBOSS
Water, an online tool based on the Smith–Waterman algorithm
(McWilliam et al. 2013). The position of each microhomology
on the consensus sequence was manually curated. The frequency
that each nucleotide is involved in the microhomology was calcu-
lated, and the distribution was plotted as histogram using an R
script (R Core Team 2016).

Analyzing features of Alu elements

The element length and GC percentage were analyzed
using Biostrings package in R (http://bioconductor.org/packages/
Biostrings/). We calculated the poly(A) tail length from the 3′

end to the 5′ end of each Alu in + orientation (from 5′ end to 3′

end forAlu in−) and stopped countingwhen two continuous non-
adenineswere read that are not followed by at least five continuous
adenines. The PWM for the A Box and B Box were developed from
active Alu element sequences (Bennett et al. 2008). Each Alu se-
quence was searched for the PWM pattern using the matchPWM
function of the Biostrings package, and the maximum PWM
matching score was returned. The PRDM9 binding motif was que-
ried in 500 bp upstream of and downstream from each Alu by
matching a previously developed PWM (Campbell et al. 2014).
The maximum matching score (>0.4) and the count of matches
>0.85 were both determined. We tested the alignment perfor-
mance using global alignment with default penalties of
Biostrings package. We characterized the Alu density by calculat-
ing the percentage of Alu sequences in the ±60 kb surrounding
each Alu element. The replication timing data were generated by
the McCarroll group (Koren et al. 2012) and converted to hg19 co-
ordinates using liftOver (Hinrichs et al. 2006). We assigned the
replication timing value for eachAlu element by choosing the clos-
est peak within ±2 kb. The methylation level was estimated by
both the greatest signal value and the count of methylated bases
as determined in the DNA methylation track from ENCODE in
H1 hESC cell line (Meissner et al. 2008).

Feature selection

The Monte Carlo simulation method was utilized to generate con-
trol data sets for analyzing both individual and genomic features.
As shown in Supplemental Figure S4A, 1000 Ctrl-Alu pairs in the
same orientation (either plus or minus) were randomly selected
within ±57 kb of each CNV-Alu pair as one local control set. We
generated 219 local control sets for analyzing individual features.
Genomic control sets were determined by first selecting the Alu
pairs across the whole human genome satisfying three criteria as
shown in Supplemental Figure S4B: (1) same orientation, (2) at
least one exon would be deleted, and (3) the Alu elements are

<250 kb apart. In total, 78,291,946 Alu pairs were selected. Next,
for each CNV-Alu pair, 1000 Alu pairs with the same distance
size (difference <1 kb) between them were randomly chosen
from the approximately 78 million pairs as one genomic control
set. By using this approach, we developed 192 genomic control
sets; 27 of the CNV-Alu pairs were not utilized for determining ge-
nomic features, as they were >250 kb apart.

We calculated scores for each CNV-Alu element and control
elements and then determined for each pair of Alu sequences the
minimum, mean, and maximum value of each feature. We also
calculated the absolute difference for genomic features. For every
pairwise feature, we plotted the control sets in boxplots in an order
of increasing median values and labeled the values of CNV-Alu
pairs as red dots. The P-value for each locus was defined as

P = n( fCtrl-Alu ≥ fCNV-Alu)
n( fCtrl-Alu) ,

where f was a pairwise value of one feature. We integrated the
P-values of the same pairwise feature from different loci by calcu-
lating the geometric mean of P-values across different loci. We se-
lected the pairwise features that could distinguish CNV-Alu pairs
and the corresponding control pairs by P-value. Calculating pair-
wise alignment of the 78 million pairs is computationally inten-
sive; therefore, we used the BlueGene supercomputer at Rice
University.

Predicting hotspot genes for AAMR

We predicted CNV-Alu pairs by performing QDA using the MASS
package in R (Venables and Ripley 2002).We used a prior probabil-
ity of 30% of all Alu pairs being capable of mediating CNVs, as the
0.3 prior settings gave the highest prediction sensitivity as shown
in Supplemental Figure S6. We further evaluated the potential im-
pact of feature codependency by first choosing Alu pairs that are
most likely to be non CNV-Alu pairs given the lowest posterior val-
ue. The data set consists of 192 CNV-Alu pairs and 448 controls
that fit the 0.3 prior setting in the QDA model. We then trained
a series of models with all selected features as well as removing
one feature at a time.We evaluated the performance of eachmodel
using the error rate from the 10-fold cross validation.

To predict loci-level AAMR hotspots, we built a linear regres-
sion model by utilizing the lm function in the R stats package (R
Core Team 2016) as follows:

lm(formula = logy � n) model1,

where y is the number of CNV-Alu pairs with experimental evi-
dence for each gene, and n is the number of predicted CNV-Alu
pairs that overlap with the same gene.We next applied this model
to assign a risk score of AAMR events for 12,074 genes, as well as
23,637 RefSeq genes with available tested Alu pairs. To answer
whether gene size has an impact on the gene-level prediction,
we build two additional models as follows:

lm(formula = logy � n/m) model2,

lm(formula = logy � n+m) model3,

where m is gene size. We compared the fit of model2 to model1
with a χ2 test and showed the results of model3 in Supplemental
Table S3.

We developed the AluAluCNVpredictor using R package
Shiny(http://CRAN.R-project.org/package=shiny) forqueryingthe
prediction results in both hg19 and hg38. We remapped the coor-
dinates of predicted CNV-Alu pairs to GRCh38/hg38 using R pack-
age rtracklayer (Lawrence et al. 2009). We cross-referenced the
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coordinates after liftOver with the hg38 version of RepeatMasker
track at the UCSC Genome Browser, which was updated in
January 2014, and only used the overlapping Alu pairs (99.6%)
that remained.

Verifying hotspot genes by correlating with a CMA database

The CMA database at Baylor Genetics includes the genome-wide
custom-designed oligonucleotide arrays from approximately
54,000 individuals. We cross-referenced the gene list of 329
AAMR hotspot OMIM genes with the CMA database. We selected
samples that have one or more CNV intersecting hotspot genes
and chose geneswith three ormore samples available.We acquired
89 samples from Baylor Genetics. This study was approved by the
institutional review board for human subject research at BCM (IRB
No. H-37586). The DNA samples were de-identified in our analy-
ses. We verified the CNVs with a custom-designed 8 × 60K aCGH
chip with ∼90 bp per probe coverage and mapped the breakpoint
to nucleotide level by long-range PCR (see Supplemental Table S4)
and Sanger sequencing.

We cross-referenced each CMA CNV with predicted AAMR
Alu pairs using BEDTools (Quinlan and Hall 2010) to ascertain a
data set of potential AAMR events. We calculated an odds ratio
to estimate the enrichment of genes with variable risk score in
each subgroup based on the CMA data as follows:

rij = n(genes have a score of i and jCNV)/n(genes have a score of i)
n(genes have a j CNV)/N ,

where i is determined by the tertiles of the predictive risk score—
genes with a score ≤0.485, genes with a score >0.485 but ≤0.643,
and genes with a score >0.643; j is the count of genes that have po-
tential AAMR CNVs of zero, one, or more than one; and N is the
total number of genes (4517); this represents genes that are well
targeted but lack a putative AAMRCNV or have at least one poten-
tial CNV.

Statistics

The statistical analysis was performed with R version 3.2.5.We cal-
culated the frequency expectation of everyAlu family composition
by using the combination value of Alus from the specific family
composition as recorded in RepeatMasker. The difference in this
relative frequency of CNV-Alus and the expectation was tested us-
ing a one-tailed binominal test. The one-tailed t-test was applied to
compare the GC percentage of microhomology (n = 219) and the
CNV-Alu element (n = 438). We selected the features for training
the Alu pair prediction model using a Monte Carlo approach (see
details in Methods described above). We tested the linear associa-
tion between the number of experimentally verified CNV-Alupairs
per gene and different parameters (e.g., Alu density versus all the
chosen features) by linear regression using lm function in R. To
compare the performance of these models, we performed a χ2

test. The enrichment of low-scoring genes was compared with
genes with a higher score in each subset based on the CMA data
by binomial test. We applied both Fisher’s exact test and a χ2 test
to test of independence between the risk score tertiles and the po-
tentially AAMR CNV count classes.

Data access

The microarray data generated in this study have been submit-
ted to the NCBI Gene Expression Omnibus (GEO; https://www.
ncbi.nlm.nih.gov/geo/) under accession number GSE100590.
The Sanger traces from this study have been submitted to
the Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/

sra) under accession number SRP130889. The source script of
AluAluCNVpredictor is available as Supplemental File S1 and
can also be accessed at https://github.com/BCM-Lupskilab/
AluAluCNVpredictor.
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