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The SK-BR-3 cell line is one of the most important models for HER2+ breast cancers, which affect one in five breast cancer
patients. SK-BR-3 is known to be highly rearranged, although much of the variation is in complex and repetitive regions that
may be underreported. Addressing this, we sequenced SK-BR-3 using long-read single molecule sequencing from Pacific
Biosciences and develop one of the most detailed maps of structural variations (SV's) in a cancer genome available, with near-
ly 20,000 variants present, most of which were missed by short-read sequencing. Surrounding the important ERBB2 onco-
gene (also known as HER2), we discover a complex sequence of nested duplications and translocations, suggesting a
punctuated progression. Full-length transcriptome sequencing further revealed several novel gene fusions within the nested
genomic variants. Combining long-read genome and transcriptome sequencing enables an in-depth analysis of how SVs dis-

rupt the genome and sheds new light on the complex mechanisms involved in cancer genome evolution.

[Supplemental material is available for this article.]

Genomic instability is one of the hallmarks of cancer, leading to
widespread copy number variations, chromosomal fusions, and
other sequence variations (Hanahan and Weinberg 2011). Struc-
tural variations, including insertions, deletions, duplications, in-
versions, or translocations at least 50 bp in size, are especially
important to cancer development, as they can create gene fusions,
amplify oncogenes, delete tumor suppressor genes, or cause other
critical changes to contribute to the evolution of a cancer genome
(Mitelman et al. 2007). Detecting and interpreting these structural
variations is therefore a crucial challenge as we try to gain a more
complete understanding of cancer genomes (Nik-Zainal et al.
2012).

Cancer genomics has been greatly aided by the advances in
DNA sequencing technologies over the last 10 yr (Watson et al.
2013). The first whole-genome analysis of a cancer genome was re-
ported in 2008 (Ley et al. 2008), and today large-scale efforts such
as The Cancer Genome Atlas (Kandoth et al. 2013) or the
International Cancer Genome Consortium (The International
Cancer Genome Consortium 2010) have sequenced thousands
of samples using short-read sequencing to detect and analyze com-
monly occurring mutations, especially single nucleotide and other
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small variations. However, these projects have performed some-
what limited analysis of structural variations, as both the false pos-
itive rate and the false negative rate for detecting structural
variants from short reads are reported to be 50% or more
(Sudmant et al. 2015; Huddleston et al. 2017). While short-read se-
quencing has no doubt revolutionized cancer genomics, this latter
observation is troubling. Furthermore, the variations that are de-
tected are rarely close enough to determine whether they occur
in phase on the same molecule, limiting the analysis of how the
overall chromosome structure has been altered.

Addressing this critical void, we sequenced the HER2 (ERBB2)-
amplified breast cancer cell line SK-BR-3 using long-read sequenc-
ing from Pacific Biosciences. SK-BR-3 is one of the most widely
studied breast cancer cell lines, with applications ranging from ba-
sic to preclinical research (Lewis Phillips et al. 2008; Navin et al.
2011; Ichikawa et al. 2012). SK-BR-3 was chosen for this study
due to its importance as a basic research model for cancer and
because the SK-BR-3 genome contains many of the common fea-
tures of cancer alterations including a number of gene fusions, on-
cogene amplifications, and extensive rearrangements. Critically,
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Long-read sequencing and analysis of breast cancer

the amplifications and genome complexity observed in SK-BR-3
have been demonstrated to be representative of patient tissues as
well (Neve et al. 2006).

Taking full advantage of the benefits of the new long-read
sequencing technology, we applied a split-read and within-read
mapping approach to detect variants of different types and sizes.
This allows us to develop a comprehensive map of structural vari-
ations in the cancer and study for the first time how the rearrange-
ments have occurred with base-pair level accuracy. Furthermore,
combining genomic variant discovery with Iso-Seq full-length
transcriptome sequencing, we discover new isoforms and charac-
terize several novel gene fusions, including some that required
the fusion of three separate chromosome regions. Finally, using
the reliable mapping and coverage information from long-read
sequencing, we show that we can reconstruct the progression of
rearrangements resulting in the amplification of the ERBB2
oncogene, including a previously unrecognized inverted duplica-
tion spanning a large portion of the region. Using long-read
sequencing, we document a great variety of mutations including
complex variants and gene fusions far beyond what is possible
with alternative approaches.

Results

We sequenced the genome of SK-BR-3 using Pacific Biosciences
(PacBio) SMRT long-read sequencing (Eid et al. 2009) to 71.9x cov-
erage (based on the reference genome size) with an average read-
length of 9.8 kb (Supplemental Fig. S1). For comparison, we also
sequenced the genome using short-read [llumina paired-end and
mate-pair sequencing to similar amounts of coverage. To investi-
gate the relevant performance of long and short reads for cancer
genome analysis, we perform an array of comparisons in parallel
using both technologies.

Read mapping and copy number analysis

Long reads have more information to uniquely align to the ge-
nome than short reads do, resulting in overall better mapping
qualities for long reads (Supplemental Fig. S2; Lee and Schatz
2012). Using BWA-MEM (Li 2013) to align both data sets, 69% of
[lumina short paired-end reads (101-bp reads, 550-bp fragment
length) align with a mapping quality of 60 compared to 91.61%
of reads from the PacBio long-read sequencing library (Supplemen-
tal Fig. S2; Supplemental Table S1). We also observed a smaller GC
bias in the PacBio sequencing compared to the [llumina sequence
data which enables more robust copy number analysis and gener-
ally better variant detection overall (Supplemental Fig. S3).

The average aligned read depth of the PacBio data set across
the genome is 54x, although there is a broad variance in coverage
attributed to the highly aneuploid nature of the cell line (Supple-
mental Fig. S4). The short reads showed a few regions of extreme
amplification (>100-fold) that were not detected by the long reads,
although subsequent analysis showed these regions were highly
enriched for low mappability regions (Dolgalev et al. 2017) in
the genome and therefore most likely to be mapping artifacts (Sup-
plemental Fig. S5). Using the long-read alignments, we segmented
the genome into 4083 segments of different copy number states
with an average segment length of 747.0 kbp. The unamplified
chromosomal regions show an average coverage of 28x, which
we consider the diploid baseline for this analysis. Thus, the average
copy number is approximately twice the diploid level, which is
consistent with previous results characterizing SK-BR-3 as tetra-

ploid on average (Navin et al. 2011), and with any given locus be-
ing heterogeneous in copy number across the cell population.

Assuming a diploid baseline of 28x, the locus spanning the
important ERBB2 oncogene (17q12) is one of the most amplified re-
gions of the genome with an average of 33.6 copies (average read
coverage of 470x). A few other regions show even greater copy
number amplification, including the region surrounding MYC,
with 38 copies. Other oncogenes are also amplified, with EGFR at
seven copies and BCAS1 at 16.8 copies, while TPD52 lies in the
middle of an amplification hotspot on Chromosome (Chr) 8 and
is spread across eight segments with an average copy number of
24.8. Thelocus 8q24.12 containing the SNTB1 geneis the most am-
plified region of the genome with 69.2 copies (969x read coverage).
In addition to being the most amplified protein-coding gene in this
cell line, SNTBI is also involved in a complex gene fusion with the
KLHDC2 gene on Chr 14 (see below). Copy number amplifications
are distributed throughout the genome across all chromosomes
(Supplemental Fig. S5). Every chromosome has at least one seg-
ment that is tetraploid or higher, and these amplified regions ac-
count for about one third (1.07 Gbp) of the genome. Extreme
copy number amplifications, above 10-ploid (>140x coverage), ap-
pear on 15 different chromosomes for a total of 61.1 Mbp, with half
on Chr 8 (30.1 Mbp). There is a total of 21.3 Mbp of 20-ploid se-
quences across five chromosomes, with 20.0 Mbp on Chr 8 and
1.3 Mbp distributed across Chromosomes 17, 7, 21, and 1. In addi-
tion to containing the greatest number of base pairs of 20-ploid
sequence, Chr 8 also has 101 segments of 20-ploid sequence com-
pared to only four total segments from Chromosomes 7, 16, 17, and
21. Chr 8 thus has far higher levels of extreme copy number ampli-
fication than all other chromosomes combined.

Structural variant analysis

We aligned the long reads to the reference using NGMLR
(Sedlazeck et al. 2018), a read mapping algorithm optimized for
long single-molecule sequencing reads, and analyzed the align-
ments for structural variations using Sniffles (Sedlazeck et al.
2018). Sniffles was specifically designed for long-read SV analysis
and identifies them from both split-read and within-read align-
ments requiring at least 10 split reads to call a structural variant.
Sniffles found a total of 76,776 variants that were 10 bp or larger,
and of these, 17,313 variants were structural variants (50 bp or larg-
er), composed of 8909 (51%) insertions, 6947 (40%) deletions,
1018 (6%) duplications, 279 (2%) inversions, and <1% total of
translocations and special combined variant types (Fig. 1). Our
work with several other genomes shows that the vast majority of
variants called using this combination of algorithms are correct
(also see below) (Sedlazeck et al. 2018). Within all of the variants
detected using the long reads, 1725 variants intersect transcribed
regions of 361 of the 616 genes in the COSMIC Cancer Gene
Census (Futreal et al. 2004), and 172 of these genes are hit by struc-
tural variants with a minimum size of 50 bp (Supplemental Tables
S4, S8). Counting only sequences identified in GENCODE as ex-
ons, a total of 58 variants intersect the exons of 46 different
Cancer Gene Census genes, including breast cancer genes such
as APOBEC3B and CDH1. The deletion in APOBEC3B is consistent
with a germline variant previously observed to fuse APOBEC3A
and APOBEC3B, which is suggested to confer increased cancer sus-
ceptibility (Nik-Zainal et al. 2014).

For comparison, we also called structural variants from a
standard paired-end short-read sequencing library, using our
SURVIVOR algorithm (Jeffares et al. 2017) to form a high-quality
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Figure 1. Variantsfound in SK-BR-3 with PacBio long-read sequencing. (A) Circos (Krzywinski et al. 2009) plot showing long-range (larger than 10 kbp or
inter-chromosomal) variants found by Sniffles from split-read alignments, with read coverage shown in the outer track. (B) Variant size histogram of dele-
tions and insertions from size 50 bp up to 1 kbp found by long-read (Sniffles) and short-read (SURVIVOR 2-caller consensus) variant calling, showing similar
size distributions for insertions and deletions from long reads but not for short reads, where insertions are greatly underrepresented. (C) Sniffles variant
counts by type for variants above 1 kbp in size, including translocations and inverted duplications.

consensus call set from three different short-read variant callers
(Manta [Chen et al. 2016], DELLY [Rausch et al. 2012], and
LUMPY [Layer et al. 2014]), requiring that at least two of these var-
iant callers identified the same variant. We have found this ap-
proach reduces the false positive rate without substantially
reducing sensitivity (Jeffares et al. 2017). The total number of
short-read structural variants in the consensus set was 4174, com-
posed of 2481 (59%) deletions, 603 (14%) translocations, 580
(14%) inversions, 448 (10%) duplications, and 62 insertions
(1.4%). Comparing the counts, the short-read consensus has a
much smaller number (only 24%) of total variants than the
long-read set (see Supplemental Figs. S9-S16 for examples of vari-
ants not detected by the short-read analysis). This difference is
largely driven by the lack of insertions in the short-read call sets:
DELLY and Manta report a small number of insertions, but
LUMPY does not attempt to report any (Rausch et al. 2012; Layer
et al. 2014; Chen et al. 2016). To further address the limited num-
ber of insertions detected, we also ran a new insertion-finding algo-
rithm called Poplns (Kehr et al. 2016). Using the recommended
settings, Poplns finds 579 insertions that it could anchor to the ge-
nome, of which six were also found by DELLY and 11 were also
found by Manta (two were found by both). Overall, this raised
the total number of insertions detected by two or more short-
read mapping algorithms to 77 (Figs. 1B, 2B). Supplemental
Table S5 shows the count of variant calls of each type, and
Figure 1C shows the counts for variants that are at least 1 kbp in
size. For noninsertions, we also note that the short-read SV callers
are highly enriched for false positive calls, especially false translo-
cations (see below). The disagreement between the short- and
long-read variant calls does not appear to be related to coverage.
Using SAMtools (Li et al. 2009) bedcov, we found the mean
short-read coverage for variants found by both short and long
reads was 25.6x coverage at the breakpoint, while the short-read
coverage for variants only detected by long reads was S1x.

In parallel, we performed assembly-based variant calling with
Assemblytics (Nattestad and Schatz 2016) using a de novo assem-
bly of the long reads using FALCON (Chin et al. 2016) and
the short reads using ALLPATHS-LG (Supplemental Note S1;
Gnerre et al. 2011). The long-read assembly achieved a 2.4-Mbp
contig N50 and showed good sensitivity for many structural
variant types, especially insertions and deletions <1 kbp in size
(Supplemental Figs. S6-S8) and found variations within many
hundreds of ALU sequences (Supplemental Table S3). However,
we also found this approach misses many long-range variants
due to splitting of the assembly graph into contigs at or near the
branch points caused by large variants. Therefore, the long-range
variants are not always captured well within the contigs, and the
evidence can be skewed to the end of the contigs where alignment
and assembler errors are more common. Consequently, assembly-
based variant calling is therefore not ideal for this class of variants.
The short-read assembly was even more limited, as the contig N50
was only 3.2 kbp, and only a small number of SVs could be found
(Supplemental Tables S2, S3).

Our initial expectation was that approximately the same
number of insertions and deletions would be present due to nor-
mal human genetic variation. However, the long-read variant
call set has a ratio of 1.28:1 insertions to deletions. This insertional
bias has been seen previously and suggests an underestimate of the
lengths of low-complexity regions in the human reference genome
(Chaisson et al. 2015). In support of this analysis, using the repeat
annotation tracks from the UCSC Genome Browser, we found that
52 Sniffles insertions are within annotated microsatellites, 5015
insertions are within simple repeats, and 6027 are within regions
identified by RepeatMasker (Smit et al. 2013-2015), in agreement
with the prior studies.

As long-range variants are of particular interest in cancer ge-
nomics, we performed several analyses specific to this subset of
variants. We define long-range variants as those that are either
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Figure 2. Comparing results of mapping and variant calling between
PacBio and lllumina paired-end sequencing. (A) Venn diagram showing
the intersection of structural variants between the Sniffles call set versus
the SURVIVOR 2-caller consensus, with counts indicated. (B) Percentage
of variant calls in each area of Venn diagram in A that have matching
CNV calls within 50 kbp (the smallest segment allowed in segmentation),
where a CNV is a difference in copy number (long-read sequencing) be-
tween segments of at least 28x, the diploid average. (C) Venn diagram
showing the intersection of long-range variants between the Sniffles call
set versus the SURVIVOR 2-caller consensus. Validation rates are shown
as percentages below the counts for each category, and extrapolated over-
all validation rates are shown for Sniffles and SURVIVOR.

(1) between different chromosomes, (2) connecting breakpoints at
least 10 kbp apart within the same chromosome, or (3) inverted
duplications. These long-range variants indicate novel adjacencies
joining chromosomal regions that were originally distant in the
genome. This causes novel sequences to be formed at the junction,
potentially leading to gene fusions, large deletions or duplications,
and other aberrant genomic features. Split reads provide a robust
signal for detecting these long-range variants and chromosomal
rearrangements. Within the long-read Sniffles call set, we found
665 variants in this long-range class (Fig. 1A; Supplemental Table
S6), 125 of which were between different chromosomes. From
the SURVIVOR short-read consensus calls, 1493 are long-range
variants, with 603 of these being between different chromosomes.

Focusing on the long-range variants, we analyzed the inter-
sections between the Sniffles and SURVIVOR (two-caller consen-
sus) call sets. Compared to the SURVIVOR consensus call set,
Sniffles detects the same 461 and an additional 204 variants,
whereas the short-read SURVIVOR consensus detects an additional
1032 (Fig. 2A). We randomly selected 100 variants from each sub-

set for PCR plus Sanger validation, with 100 calls from the inter-
sect, 100 Sniffles calls not shared by SURVIVOR (two-caller
consensus), and 100 SURVIVOR 2-calls not shared by Sniftles.
Within each randomly selected group of 100 variants, some vari-
ant calls could not be validated due to primer issues or other tech-
nical issues, so the final validation rates are calculated as successful
Sanger validation counts out of the total valid attempts. As expect-
ed, the variants called by both Sniffles and SURVIVOR had the
highest validation rate of 82.8% (77/93) (Supplemental Table
S7). Of the 16 variants called by both short- and long-read ap-
proaches that failed validation, five calls were translocations, and
the rest were paracentric. All of the reported variants had at least
10 supporting long reads (the minimum threshold we used for
Sniffles), and ranged from 10 to 31 supporting reads (mean:
17.6x), except for one outlier with 113 supporting reads. Seven
of the PCR attempts produced no recognizable product even after
multiple attempts and two primer designs. The other nine at-
tempts produced a weak product or a multibanded product but
failed to report the expected sequence during Sanger validation,
and so we consider them as failing validation. Given the strong
support from both PacBio and Illumina sequencing, we attribute
the failures as either inadequate primer design and/or other sys-
tematic errors in the validation protocol. Of the calls unique to
one method, long-read Sniffles variants have a validation rate
more than twice that of the short-read variants: 48.2% (26/54)
compared to 21.3% (17/80). Furthermore, extrapolating the vali-
dation rates for these subsets, the overall validation rate of
Sniffles calls is 72%, while the SURVIVOR 2-calls is only 29.6%.
We emphasize that this is the validation rate for the most compli-
cated long-range variants present in the genome, and our work
with structural variant detection in other long-read data sets
reached 94% to over 99% (Sedlazeck et al. 2018). We also note
that several of these long-range variants were previously found
through RNA-seq and confirmed with mate-pairs in previous stud-
ies (Table 1; Kim and Salzberg 2011).

Further supporting this higher validation rate of long-read
variants, the Sniffles variants were also more likely to occur at
the breakpoint of a copy number variant than their short-read
counterparts. Specifically, 58.3% of the Sniffles unique variants
show a matching copy number variant, compared to only 23.2%
of the SURVIVOR unique consensus variants, where 58.1% of the
variants shared by both sets show a matching CNV (Fig. 2B,C).
Similar results were also found using the short reads for segmenta-
tion. The high rate of CNV matching for the shared set indicates
that copy number evidence can serve as a measure of confidence
in a variant call. CNV matching provides additional support for
the majority of the Sniffles unique calls, though it does not exclude
others that may be copy number neutral variants such as balanced
translocations. The low rate of CNV support for the short-read con-
sensus suggests that a larger proportion of these variants are either
false positives or Sniffles is not sensitive enough to capture them.
Reducing the threshold in Sniffles to five split reads (instead of
the 10 split reads employed throughout this analysis) captures an-
other 134 of the short-read consensus variants out of 1032, so there
appears to be little long-read evidence of these additional variants.

Characterization of the ERBB2 copy number amplification

Chromosome 8 is the most aberrant chromosome in the genome
of SK-BR-3, accounting for over half of the highly amplified se-
quence in the genome and almost half of the long-range variants.
Most of the new connections between sequences originally on Chr
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Table 1.
SplitThreader from Sniffles variant calls

Gene fusions with RNA evidence from Iso-Seq and DNA evidence from SMRT DNA sequencing where the genomic path is found using

SplitThreader path

Number of Distance Number Chromosomes

# Genes Iso-Seq reads (bp) of variants in path Previously observed in references

1 KLHDC2 SNTBI 34 9837 3 14(17|8 Asmann et al. (2011) as only a 2-hop fusion

2 CYTHI EIF3H 30 8654 2 17|18 Edgren et al. (2011); Kim and Salzberg
(2011); RNA only, not observed as 2-hop

3 CPNET PREX1 15 1777 2 20 Found and validated as 2-hop by Chen et al.
(2013)

4  GSDMB TATDNT 95 0 1 17|18 Edgren et al. (2011); Kim and Salzberg
(2011); Chen et al. (2013); validated by
Edgren et al. (2011)

5 LINC00536 PVTI 40 0 1 8 No

6  MTBP SAMD12 21 0 1 8 Validated by Edgren et al. (2011)

7  LRRFIP2 SUMF1 18 0 1 3 Edgren et al. (2011); Kim and Salzberg
(2011); Chen et al. (2013); validated by
Edgren et al. (2011)

8  FBXL7 TRIO 10 0 1 5 No

9  ATADS TLK2 9 0 1 17 No

10 DHX35 ITCH 9 0 1 20 Validated by Edgren et al. (2011)

11 LMCDI1-AST MECOM 6 0 1 3 No

12 PHF20 RP4-723E3.1 6 0 1 20 No

13 RADSIB SEMA6D 6 0 1 14]15 No

14 STAU1 TOX2 6 0 1 20 No

15 TBCID31 ZNF704 6 0 1 8 Edgren et al. (2011); Kim and Salzberg

(2011); Chen et al. (2013); validated by
Edgren et al. (2011); Chen et al. (2013)

SplitThreader found two different paths for the RAD51B-SEMA6D gene fusion and for the LINC00536-PVT1 gene fusion. Number of Iso-Seq reads refers
to full-length HQ-filtered reads. Alignments of SMRT DNA sequence reads supporting each of these gene fusions are shown in Supplemental Note S2.

8 are clustered in three major hotspots. The ERBB2 oncogene, orig-
inally located on Chr 17, is amplified to, on average, 32.8 copies,
while most of the remainder of Chr 17 is present in just two copies,
consistent with selection against gains of tumor suppressor pro-
teins on Chr 17, such as TP53 and BRCAI. The amplified region
that includes ERBB2 contains five translocations (Fig. 3A) into
the hotspot regions on Chr 8, as well as an inverted duplication.
Each of the six variants mark the site of an abrupt change in
copy number, meaning they mediated the overall amplification
to 32.8-fold, and all six were validated by directed PCR and
Sanger sequencing. It is notable that the inverted duplication
was not identified by any of the short-read variant callers, al-
though it is clearly visible in the long-read alignments and is auto-
matically identified by Sniffles.

The ERBB2 oncogene appears to have been amplified to such
a great extent due to its association with the highly mutated hot-
spots in Chr 8 and suggests a remarkably complex and punctuated
mutational history (Fig. 3B). The long-range variants within the
amplified region containing ERBB2 were studied to determine
whether the number of split and reference-spanning reads at
each breakpoint are consistent with the copy number profile,
which was found to be true for all five translocations and the in-
verted duplication. In order to determine the order in which these
six events took place, we derived the most parsimonious recon-
struction factoring in a couple of important assumptions estab-
lished within population genetics, analogous to the widely used
infinite sites model used in population genetics (Kimura 1969).
First, we assume that variants we observe have taken place only
once, since it is extremely unlikely that the same long-range vari-
ant at the same two breakpoints would recur down to base-pair
resolution. Second, once a variant has occurred and created an
observable breakpoint, the breakpoint would not be repaired in

some copies of the sequence and not others. Therefore, all refer-
ence-spanning reads represent an ancestral state and not a repaired
breakpoint. In this analysis, the long-range variants have more re-
liability to reconstruct the genomic history rather than SNPs
because those two simplifying assumptions are extremely unlikely
to be violated when two breakpoints are involved.

Given these conditions, we conclude that the orange segment
(A-F) in Figure 3B must have translocated first, as the other break-
points are shared on the leftmost edge (variant A). Next, the yellow
segment shown in Figure 3B derived from the orange segment
because otherwise, variant A must have occurred more than
once. Applying the same logic, the green segment must have de-
rived from the yellow segment because it shares variant E, and it
is not yellow derived from green because that would violate as-
sumption 2 by requiring that variants C and D were repaired.
Variants C and D appear to co-occur in the same sequences
because the copy number is the same between those two parts of
the green segment and because the other sides of the variants are
at breakpoints within only 1.5 Mb of each other. The only uncer-
tainty in the ordering of events is that the purple segment could
have derived from any of the segments sharing variant A: the or-
ange, yellow, or green segments. There is not enough information
to determine which of these segments it came out of, but we can
conclude that it only came out of one of them, given assumption
1 that precludes multiple occurrences of the same variant.

Complex gene fusions captured fully by long reads

In addition to genome sequencing, we performed long-read tran-
scriptome sequencing using PacBio Iso-Seq to capture full-length
transcripts. Although traditional short-read RNA-seq approaches
allow isoform quantification, in many cases these reads are too
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Figure 3. Reconstruction of the copy number amplification of the ERBB2 oncogene. (A) Copy number and translocations for the amplified region on Chr
17 thatincludes ERBB2 showing the relations to Chr 8. Note Chr 8 has extensive rearrangements shown by the green intra-chromosomal arcs. (B) Sequence
of events that best explains the copy number and translocations found in this region. Segment 1 (orange) first translocated into Chr 8, followed by the
segment 2 (yellow) translocating to a different place on Chr 8. Then, the segment 3 (green) was duplicated from segment 2 by an inversion of the piece
between variants D and E along with a 1.5-Mb piece of Chr 8 that was attached at variant E, all of which then attached at variant C. The whole green seg-
ment including the 1.5 Mb of Chr 8 then underwent an inverted duplication at variant D. The purple segment could have come from the orange, yellow, or
green sequences since it only shares breakpoint A. Additionally, there is a deletion of 10,305 bp between breakpoints D and E.

short to reconstruct all isoforms, even with paired-end analysis,
exon abundance, or other indirect measurements. Instead, long
reads overcome such limitations by spanning multiple exon junc-
tions and often covering complete transcripts. This makes it possi-
ble to exactly resolve complex isoforms and identify large
transcripts, without the need for statistical inference (Sharon
et al. 2013; Weirather et al. 2015; Wang et al. 2016).

Iso-Seq reads were consolidated into isoforms using the
SMRTAnalysis Iso-Seq pipeline (Gordon et al. 2015). In total,
1,692,379 isoforms (95.7%) mapped uniquely to the reference ge-
nome. The Iso-Seq RNA sequence reads indicated a total of 53 pu-
tative gene fusions each with at least five Iso-Seq reads of evidence
(Supplemental Table S9). We further refined this candidate set us-
ing SplitThreader (Nattestad et al. 2016a) to exclude variants not
supported by genomic structural variations, especially to account
for any residual sequencing error or mapping errors in the data.
Specifically, SplitThreader searches for a path of structural varia-
tions linking the pair of genes in the putative gene fusion, requir-
ing that the variants bring the genes together within a 1-Mbp
distance. Out of 53 candidate gene fusions, SplitThreader found
genomic evidence for 39 of these: 15 are the high-quality gene fu-
sions with a genomic path between the gene bodies of, at most, 10
kbp, shown in Table 1; 19 fusions overlap the first 15 (sharing the
same variant and often one of the genes), and five fusions (three
nonoverlapping) have paths longer than 10 kbp, leaving 14 candi-
date gene fusions with no genomic paths.

Three of the gene fusions had no single variant directly link-
ing the genes, but SplitThreader discovered that the genes could be
linked by a series of two or even three variants. One of these,
CPNEI-PREX1 had been discovered previously using RNA-seq
data and validated using genomic PCR as a two-variant gene fusion
(Chen et al. 2013). We have now confirmed this by showing long
reads that not only capture the two variants but capture them to-
gether in a single read along with robust alignments to both genes
(Supplemental Fig. S19). CYTHI-EIF3H had been discovered previ-

ously with RNA-seq and been validated with RT-PCR (Edgren et al.
2011), but it was not known to be a “2-hop” gene fusion (taking
place through a series of two variants) until now. This fusion was
also captured in full by several individual SMRT-seq reads that
contain both variants and have alignments in both genes (Supple-
mental Fig. S18). Interestingly, we discovered a novel 3-hop gene
fusion between KLHDC2 and SNTB1, which has been misreported
before as only taking place through two variants (Asmann et al.
2011). We observe both the previously reported 2-hop path
(600,326 bp) and this additional 3-hop path (9837 bp), which
would both result in the same gene fusion. Given the shorter dis-
tance for the 3-hop gene fusion, we were able to find direct linking
evidence for the 3-hop fusion between these two genes. We ob-
serve 37 reads that stretch from one gene to the other through
all three variants, bringing the genes within a distance of just
9837 bp across three different chromosomes (Fig. 4; Supplemental
Fig. S17). Due to the long distance between the genes through the
previously reported 2-hop fusion, we believe the 3-hop fusion is
more likely to produce the observed fusion transcript.

Most of the gene fusions observed are contained within a few
of the most rearranged chromosomes. Four gene fusions take place
within Chr 20, which is rich in intra-chromosomal variants, while
Chr 8 is involved in six gene fusions both intra- and inter-chromo-
somally. The genomic variant fusing TATDN1 and GSDMB is one
of the variants contributing to the amplification of the ERBB2 on-
cogene. All of the gene fusions are captured fully with individual
SMRT-seq reads that align to both genes, with some novel variants
affecting important cancer genes (e.g., PVT1 and RAD51B). See
long-read alignments spanning all 15 gene fusions in Supplemen-
tal Note S2 and Supplemental Figures S20-S32.

Discussion

Advances in long-read sequencing have produced a resurgence of
reference quality genome assemblies and exposed previously
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Figure 4. The KLHDC2-SNTBI1 gene fusion in SK-BR-3 occurs through a series of three variants and is directly observed to link the two genes in several

individual SMRT-seq reads (A), one of which is shown in detail in B.

hidden genomic variation in healthy human genomes (Chaisson
etal. 2015; Pendleton et al. 2015; Seo et al. 2016). Now, we have ap-
plied long-read sequencing to explore the hidden variation in a
cancer genome and have discovered nearly 20,000 structural varia-
tions present, most of which cannot be found using short-read se-
quencing and many are intersecting known cancer genes. More
than twice as many of the copy number amplifications could be ex-
plained through long-range variants identified by long-read se-
quencing compared to short-read sequencing. We further found
the ERBB2 oncogene to be amplified through a complex series of
events initiated by a large translocation into the highly rearranged
hotspots of Chr 8, where the sequence was then copied dozens of
times more, with further translocations and inverted duplications
resolved only by the long reads. Furthermore, we find 20 additional
inverted duplications throughout the genome, highlighting the
importance of this underreported structural variation type.
Overall, using long-read sequencing, we see that far more bases in
the genome are affected by structural variation compared to SNPs.

Using long-read transcriptome sequencing, we capture full
gene fusion isoforms, and by combining this with our genomic
variant discovery, we discover several novel gene fusions in this
seemingly well-characterized cell line. Notably, we uncover for
the first time a gene fusion that takes place through a series of three
variants: KLHDC2-SNTBI1 through the fusions of Chromosomes 8,
14, and 17, captured fully by 37 genomic SMRT-seq reads. In a sin-
gle cancer genome, we discovered three gene fusions that take
place through a series of two or more variants, suggesting that
such multi-hop gene fusions could also be common in other can-
cers, although they will be exceedingly difficult to discover using
short-read sequencing. Conducting a similar search for multi-

hop gene fusions in other highly rearranged cancers could reveal
other instances of a complex type of variation.

The differences between variants found with long reads ver-
sus short reads is likely due to an interplay of sequencing technol-
ogy and algorithmic approach. The primary advantages of long
reads are better mapping through repetitive elements that often
flank SVs and an increase in the probability that a SV breakpoint
will be spanned by individual reads. These advantages are offset
by the increased error rate that makes them more difficult to
map and analyze, although new mapping and SV detection tools
are now available that can largely overcome these challenges. For
short-read analysis, using paired-end or mate-pair sequencing
can partially offset the short-read lengths, but they still have rela-
tively poor sensitivity using current approaches. In addition to the
results presented here, a previous study by Hillmer et al. (2011) an-
alyzed SVs in SK-BR-3 using long-range mate-pairs. In this work,
they generated 68.4x physical coverage of mate-pairs averaging
8.2 kbp and yet only found 1145 SVs, most of which were deletions
(606), followed by inversions (191), and other complex intra-chro-
mosomal rearrangements (158). This represents <10% of the vari-
ants that we could detect using long reads. Further algorithmic
advances may be possible to improve accuracy, and we currently
recommend using a consensus approach for short-read analysis
to alleviate false positives. It may also be possible to improve sen-
sitivity of certain types of variants using focused methods. For ex-
ample, ARC-SV (Arthur et al. 2018) and SVelter (Zhao et al. 2016)
were recently developed to focus on distal and inverted duplica-
tions from short-read sequencing, although these classes of varia-
tions are a minority in this sample. What is most needed is a robust
method to detect insertions from short reads, as they are currently
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not well captured by either mapping-based or assembly-based
approaches.

We have shown that long-read sequencing can expose com-
plex variants with great certainty and context, suggesting that
more multi-hop gene fusions, inverted duplications, and complex
events may be found in other cancer genomes. Having observed
complex variants such as inverted duplications with the increased
informational context of long reads, the resulting variant signa-
tures could make these events more observable even using stan-
dard short-read sequencing. However, there may be many other
types of complex variations present in other cancer genomes
that were not found in SK-BR-3, so it is essential to continue build-
ing a catalog of these variant types using the best available technol-
ogies. Long-read sequencing is an invaluable resource to capture
the complexity of structural variations on both the genomic and
transcriptomic levels, and we anticipate widespread adoption for
research and clinical practice as the costs further decline.

Methods

Sequencing

Long-read sequencing was performed using the Pacific Biosciences
Single-Molecule Real-Time (SMRT) sequencing technology with
P6C4 SMRT cell chemistry. After selecting the longest subread
from each polymerase PacBio read, our sequencing of SK-BR-3
yielded a mean read length of 9872 bp, where the longest read
was 71,518 bp. Total coverage of the genome is 71.9x (79.0x if re-
dundant sequences from the same polymerase reads are included)
where x refers to the number of reads that cover the average geno-
mic base. The coverage of reads at least 10 kbp long is 51.0%, and
the coverage of reads at least 20 kbp long is 13.3x. These read depth
values and those in Supplemental Figure S1B are based on a female
genome size of 3,101,804,739 bp, the total lengths of Chromo-
somes 1-22 and Chr X in hg19.

For short-read variant calling, [llumina sequencing was per-
formed on a 550-bp paired-end library (2 x 250 bp). This library
produced a total of 795,942,102 reads and 64.2x genome coverage
based on the same female genome size. For the short-read assem-
bly, Illumina sequencing was performed on 180-bp paired-end
overlapping library (2 x 100-bp reads), as well as 2-3 kbp and
5-10 kbp mate-pair libraries.

Alignment and variant calling

The hg19 reference genome (the 1000 Genomes version) was used
for all analysis. Results aligning to GRCh38 are expected to be sim-
ilar as no major differences were introduced in the ERBB2 locus
and only a minority of the bases changed genome-wide. Reads
were aligned to the reference using NGMLR (v0.2.1) (Sedlazeck
et al. 2018), and Sniffles (v1.0.6) (Sedlazeck et al. 2018) was used
to call variants from long-read split alignments using the recom-
mended parameters. Variants were called on the short-read vari-
ant-calling Illumina sequencing data set using Manta (Chen
et al. 2016), DELLY (Rausch et al. 2012), LUMPY (Layer et al.
2014), and Poplns (Kehr et al. 2016), and a consensus was taken us-
ing SURVIVOR (Jeffares et al. 2017) with the recommended param-
eters, requiring two of these variant callers to support the same
variant , except where noted otherwise. Because there is often var-
iability in the reported location of SVs, this process allows for
merging of SVs that have breakpoints within 1 kbp of each other,
as long as the type of variant is the same. For purposes of intersect-
ing Sniffles and SURVIVOR long-range variant call sets, for which
breakpoints must be 10 kbp apart, we used BEDTools (Quinlan

and Hall 2010) pair-to-pair with a slop parameter of 1000 to test
if variants shared both breakpoints with matching strands within
a 1000-bp range. Copy number segmentation was computed using
SplitThreader (Nattestad et al. 2016a), which internally uses the
DNAcopy R package for circular binary segmentation (Olshen
et al. 2004). The SplitThreader source code is also available as a
Supplemental File. The Circos plot in Figure 1A was generated us-
ing Circa (http://omgenomics.com/circa). Cancer gene intersects
were determined using BEDTools pairtobed to intersect Sniffles
variants down to 10 bp in size with the GENCODE hg19 annota-
tion (Harrow et al. 2012) and filtered by matches to the COSMIC
Cancer Gene Census (Futreal et al. 2004).

Mapping comparison

In order to compare the mappability of long and short reads, we
aligned both the paired-end Illumina sequencing and the PacBio
long-read sequencing data sets to the hg19 reference genome using
BWA-MEM (Li 2013). The Illumina sequencing was performed us-
ing a 550-bp paired-end library with each read being ~250 bp of se-
quence. We trimmed these reads to 101 bp and compared both of
these against the PacBio data set. All three read sets were aligned
using default parameters, except that the PacBio reads were aligned
using the pacbio alignment mode in BWA-MEM (-x pacbio). The
maximum mapping quality in BWA-MEM is 60, and the minimum
is 0. Using the same aligner allows us to better compare mapping
quality scores for the reads. We analyzed the mapping quality
from each type of sequencing in two different ways, by individual
reads and by binned windows in the genome. First, we selected the
best alignment by mapping quality for each read and counted the
number of reads in each category: mapping quality of 60, mapping
quality between 1 and 59, mapping quality of 0, or unmapped.
Alignment of PacBio sequence reads resulted in 91.6% of reads
mapping with a mapping quality of 60, compared to only 71.2%
of [llumina reads (69.0% of the 101-bp trimmed reads). A greater
fraction of reads from PacBio long-read sequencing map uniquely
to the genome compared to short reads from Illumina sequencing
(Supplemental Fig. S2; Supplemental Table S1).

In order to determine the effect of GC content (the fraction of
guanine and cytosine as opposed to adenine and thymine in a par-
ticular region), we counted the GC-fraction of each 10-kbp win-
dow in the genome, excluding those containing Ns in the
reference, and calculated the read coverage from each data set.
The read depth of each 10-kb bin is shown in Supplementary
Figure S3 on a log scale versus the GC fraction, along with a
Lowess fit for each data set. There is a higher GC-bias in the
Ilumina data sets compared to the PacBio data set, as seen by a
lower read depth in bins with a higher GC fraction, while for
SMRT sequencing there is a much lower bias.

To determine the read depth per chromosome, we used
BEDTools to find the distribution of read depth for each chromo-
some for the PacBio, Illumina 250-bp, and Illumina 101-bp data
sets. These are shown as a violin plot of Gaussian kernel distribu-
tions for each chromosome in Supplemental Figure S4. The shapes
of the distributions are largely consistent between sequencing
technologies.

Iso-Seq and gene fusion analysis

PacBio Iso-Seq sequencing was performed in four size batches
(0.8-2, 2-3, 3-5, and 5-10 kb). The Iso-Seq data were processed us-
ing the SMRTAnalysis (version 2.3) Iso-Seq pipeline, which gener-
ated 441,932 high-quality (HQ), full-length Quivered consensus
sequences, which were then aligned using GMAP (Wu and
Watanabe 2005; Wu et al. 2016) to hg19. The GMAP alignments
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were filtered using quality scores from BWA-MEM (Li 2013) align-
ments by removing any reads that in BWA-MEM have alignments
below a mapping quality of 60. The remaining GMAP alignments
were used for gene fusion detection using ToFU (Gordon et al.
2015). Aligned fusion transcripts identified by ToFU were inter-
sected with the GENCODE hgl9 annotation (Harrow et al.
2012), and the total number of full-length reads supporting fu-
sions between each pair of genes was counted. All putative gene
fusions with at least five full-length Iso-Seq reads from ToFU
were input into SplitThreader (Nattestad et al. 2016a) to identify
those with any combination of long-range variants that place
the genes within 100 kbp of each other. Gene fusion alignments
were visualized and figures generated using Ribbon (Nattestad
et al. 2016b). The Ribbon source code is also available as a
Supplemental File.

Data access

[llumina and PacBio sequencing data from this study have been
submitted to the NCBI BioProject (https://www.ncbi.nlm.nih.
gov/bioproject) under accession number PRJNA476239. Variant
calls from all callers are available as a Supplemental File. The align-
ments, assemblies, and variant calls are also available at: http://
www.schatz-lab.org/publications/SKBR3/.
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