1duosnue Joyiny vd3 1duosnuel Joyiny vd3

1duosnuel Joyiny vd3

EPA Public Access

Author manuscript
. Author manuscript; available in PMC 2018 August 02.

About author manuscripts [ Submit a manuscript

Published in final edited form as:
. 2017 October 31; 9(11): 1-29. doi:10.4236/jwarp.2017.911083.

Community Structures of Phytoplankton with Emphasis on Toxic
Cyanobacteria in an Ohio Inland Lake during Bloom Season

Ke Chenl, Joel Allen?, and Jingrang Lu?"
1Southwest University of Science and Technology, Mianyang, China

2US EPA ORD, Cincinnati, OH, USA

Abstract

The community structures of phytoplankton are important factors and indicators of lake water
quality. Harmful algal blooms severely impact water supply, recreational activities and wildlife
habitat. This study aimed to examine the phytoplankton composition and variations using
microscopy, and identify harmful Cyanobacteria in weekly samples taken from four sites at Harsha
Lake in southwest Ohio. Over the course of the summer in 2015, the phytoplankton of Harsha
Lake consisted mainly of 13 taxa belonging to Bacillariophyta, Chlorophyta, Cryptophyta,
Cyanobacteria, Dinophyta and Euglenophyta. Their significant successions started with
Bacillariophyta and/or Chlorophyta, then bloomed with Cyanobacteria and ended with
Chlorophyta and/or Dinophyta. Cyanobacteria members: Microcystis, Planktothrix,
Dolichospermum, Aphanizomenon, Cylindrospermopsis, and Oscillatoria from the Cyanophyceae
were identified to be dominant genera. These organisms varied spatially and temporally in similar
patterns along with the variations of nutrients and formed the summer bloom with the total
biomasses ranging from 0.01 to 114.89 mg L~! with mean of 22.88 mg L™1. M. aeruginosaand P.
rubescens were revealed as the microcystin producers, while A. circinalis and Aphanizomenon sp.
were identified as a saxitoxin producer through cloning and sequencing PCR products of mcyA,
mcyE and sxtA genes. The biomasses of phytoplankton, Cyanobacteria and Microcystis were
positively correlated to nutrients, especially to total nitrogen. The total ELISA measurement for
microcystin positively correlated with Cyanobacteria (R = 0.66, P < 0.0001), Microcystis (R% =
0.64, P < 0.0001) and phytoplankton (R? = 0.59, P < 0.0001). The basic information on the
occurrence and biomasses of Cyanobacteria and total phytoplankton, and the analysis for toxic
species, which were the first report for the inland water in Ohio, USA, will document the
succession patterns of phytoplankton and toxin production over a season and provide data to
predict risk occurrence to both human and ecological factors.
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1. Introduction

Investigation of phytoplankton by direct microscopy yields information of biomass and
species compositions, which has long been used in lake studies [1], such information is often
of considerable significance in the monitoring of lake water quality [2]. Toxic algal blooms
in inland water are mostly caused by the excessive growth of cyanobacteria [3]. Those
harmful algal blooms (HABSs) can damage freshwater ecosystems, cause human health
problem due to release of cyanotoxin and odors to source water and kill fish and shellfish
[4]. Many HAB species present a risk to the health of humans or animals and other animals
by their toxins and other bioactive compounds [5]. Over the past 10 years, HABs have been
increasing in Ohio inland lake waters [6]. Cyanotoxins including microcystin and saxitoxin
were detected from 74% of the samples collected from Ohio source and recreational surface
waters [7]. The concentrations of microcystin were higher than the Ohio Recreational Public
Health Advisory 3 level of 6 ug L™1 in 44% samples and were higher than 20 pg L™1 (part of
the Recreational No Contact Advisory 4) in 31% of samples [7]. William H. Harsha Lake or
Harsha Lake, a multi-use reservoir and primary drinking water source in southwest OH, has
experienced an increase in HAB frequency and intensity over the past several decades.
Previously, there have been extensive investigations on the chemical contaminants and
nutrients of this lake, such as denitrification [8], total organic carbon concentrations [9] and
pesticides [10]. Recently, HABs and associated toxins are a major water-quality issue not
only in Lake Erie, but also in the other inland lakes in Ohio. Therefore, monitoring of HABs
in this lake has also been carried out [6] [7]. However, the pattern of phytoplanktonic
community successions and toxin producing species during blooms has not been
documented. Phytoplankton are an important basal resource to heterotrophic organisms in
lakes, and their growth, succession and community structures determine the potential
productivity of the ecosystem [11] as well as the status of the ecosystem and water quality.
There are increasing concerns about the impacts on water quality, especially visual
appearance, tastes and odors associated with Cyanobacteria blooms on the lake [12].
Phytoplankton are often considered to be indicators of water quality [13]. For example, the
community composition and succession, as assessed by alterations of the species and their
abundances over time, can indicate changes in the physical and/or chemical status of the
water [13]. The study on the phytoplankton community, especially toxic cyanobacteria, in a
typical Ohio inland lake will provide a basis for further investigation of biomasses and
variations of toxic cyanobacteria and provide an important reference for other Ohio inland
lakes. Thus the purpose of this investigation was to examine phytoplankton composition
with emphasis on Cyanobacteria, community succession and HAB toxic species and to
explore the relationships between the variations of phytoplankton and HABs, and biomasses
and nutrients.
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2. Materials and Methods

2.1. Study Area

Harsha Lake is an open reservoir, located 25 miles east of Cincinnati in southwestern Ohio
(Latitude: 39.0132285, Longitude: —84.1148988). The lake, which was built in 1978 [10]
and is used for flood control, water supply, recreation, and as a wildlife habitat [8] [14], is
estimated to have generated more than thirty million US dollars in visitor expenditures and
to have prevented more than seventy million US dollars in flood damages since its
impoundment [9]. The mean depth of Harsha Lake is 13.1 m with the maximum water depth
of 34 m and a water depth more than 8 m in most areas [15]. It covers an area of 8.7 km? and
drains from a watershed of 890 km?2 with 64% of land use for agriculture and 26%
comprised of forest cover. The lake also serves as the surface water source for the Bob
McEwen Drinking Water Treatment Plant (10 millions of gallons per day) (Personal
communications).

2.2. Sampling

Samples were collected on Harsha Lake for the biological, physico-chemical and cyanotoxin
analysis. Weekly (from May to October, 2015) samples were collected using a plastic water
jug, which was rinsed using 5% hydrochloric acid and deionized water, to scoop up water
from the surface (~0.5 m depth). There were four sites including east fork lake at drinking
water treatment plant intake (EFLS: latitude 39.0367, longitude —84.1381), Harsha Buoy
(BUOQY: latitude 39.032506, longitude —84.137661), camp ground beach (CGB: latitude
39.022506, longitude —84.094618) and east fork lake main beach west of narrows (EMB:
latitude 39.02, longitude —84.1311) (Figure 1). One-liter water samples, which were put into
autoclaved sample bottles, were collected and 100 - 200 mL aliquots were filtered using
EMD Millipore Durapore™ membrane filter (0.40 um, MilliPore, Foster City, CA) for DNA
extraction. For phytoplankton, 200 mL raw water was preserved in 1% Lugol’s solution
buffered with acetic acid and the phytoplankton was concentrated by sedimentation for 24 h
followed by removal of all but 25 mL of the water using a 5 mL disposable serological
pipette. The final volumes for identification and enumeration varied from 5 to 10 mL
depending on observed densities.

2.3. Identification and Enumeration of Phytoplankton

Phytoplankton were identified to genus level under a 400x magnification using an Nikon
microscope (Nikon Corp., Japan) following taxonomic instructions [16]. To enumerate
phytoplankton cells, two slides and a minimum of 20 fields for each slide were examined
using a hemacytometer (Hausser Scientific, Reichert-Jung, Horsham, PA). To estimate
biomass, mean linear dimensions of individual unit (algal cells and filament fragments) were
measured for more than twenty individuals according to geometric shapes described by Sun
and Liu [17]. The measurements were calibrated using a standard scale bar (S22-StageMuic;
Graticules Ltd., UK) mounted on the microscopic objective for the microscopic ocular. After
information on taxa and linear dimensions were input into a Microsoft Excel worksheet, the
biovolume of the algal cells and filament fragments were calculated using the equations for
various shapes simulated by Sun and Liu (2013).
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2.4. DNA Extraction, PCR, Cloning and Sequencing

DNA extractions were conducted using AllPrep DNA (QIAGEN, Valencia, CA) following
manufacturer’s instruction. To examine the toxin producers or those potential toxic genera
found by microscopy, PCR analysis targeting conserved sequences of cyanotoxin
biosynthesis and genus-specific genes were done. The targeted genes included mcyA (CD1
assay) and mcyE (HEP assay) for the producers of various genera (Table 1) of microcystin,
cylindrospermopsin biosynthesis genes (cyr) and RNA polymerase gene (rpoC) for toxic and
total Cylindrospermopsis, saxitoxin (sxtA) for toxic Dolichospermum and Aphanizomenon,
and nodularin biosynthesis gene (nda) and total populations (nts) for Nostoc (Table 1). The
25 pl PCR mixtures contained 2 pl of template DNA, a 0.2 mM concentration of each of the
four deoxynucleoside triphosphates (dTTP, dCTP, dGTP, and dATP), 1.5 mM MgCI2, 1 uM
(each) primer, and 2.5 U of TagDNA polymerase (Clone Tech, Mountain View, CA). Each
PCR for specific assay was conducted with total of twelve DNA extracts isolated from EFLS
and BUQY samples collected during June to September. Thermocycling conditions included
1 min of denaturation at 94°C, 1 min of primer annealing at the specific temperature (°C)
indicated in Table 1, and 5 min of primer extension at 72°C. This cycle was repeated 25
times. When a sample was positive, the amplicons containing genus-specific sequences were
cloned using a pCR4.1 TOPO E. colikit (Invitrogen, Carlsbad, CA) to aid in further
identification. Individual clones (8 colonies for each library) were sequenced by using
BigDye Terminator chemistry (Life Technology), in order to confirm the targets. Raw
sequences were edited using Sequencher (Gene Codes Corp., Ann Arbor, Ml). Phylogenetic
trees were constructed from the alignments of sequences based on the neighbor joining
method. The software mega v6 [18] was used to build trees using 1000 replicates to develop
bootstrap confidence values. Representative mcyA, mcyE, rooC and sxtA gene sequences
from clone libraries were deposited in GenBank with accession numbers: KY117603-
KY117652.

2.5. Analysis of Microcystin and Other Parameters

Measurements of microcystin (MC) were measured in raw and filtered water using the MC-
ADDA Enzyme Linked Immunosorbent Assay (ELISA) kit (Abraxis, Warminster, PA),
which quantifies the p-amino acid ADDA (all-S all-E)-3-Amino-9-methoxy-2,6,8-
trimethyl-10-phenyldeca-4,6-dienoic acid. The mean percent recovery for each laboratory
fortified sample matrix and duplicate set should be greater than, or equal to, 60% and less
than, or equal to, 140% of the true value. Both raw water and filters underwent three freeze-
thawing cycles prior to proceeding measurement procedures introduced by the ELISA
manufacturer. Surface water temperatures were taken during sampling. Nutrients [total
nitrate (TNO3), total nitrite (TNO2), total nitrogen (TN), total ammonia (TNH4), soluble
reactive phosphorus (SRP), total phosphorous (TP), Table 2] are measured using the Latchat
Quickchem 8000, Flow Injection Analysis, Autoanalyzer (Hach Co, USA) according to
manufacturer’s instruction.

2.6. Data Analysis

Pearson correlations were calculated between factors (nutrients, temperatures and MC) and
phytoplanktonic and cyanobacterial biomasses. The multiple comparisons of between
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months and between locations were also conducted to examine the evenness and variations
of phytoplanktonic distribution.

3. Results

3.1. Biomass and Composition of Phytoplankton Community

During the entire sampling period, the phytoplankton of Harsha Lake consisted mainly of 13
genera belonging to Bacillariophyta (Cyclotella, Melosiraand Synedra), Chlorophyta
(Chlamydomonas and Pediastrum), Cryptophyta (Cryptomonas), Cyanobacteria
(Aphanizomenon, Dolichospermum, Microcystis and Oscillatoria), Dinophyta (Ceratium
and Peridinium) and Euglenophyta (Euglend), and their total biomass varied from 2.06 to
122.72 mg L~ with a mean of 34.12 mg L1 (Table 3). There were significant variations
over time at 0.05 level (Figure 2 and Table 4). The biomasses were lower during May and
September and had a peak at each site in June or July. For example, peaked at CGB (122.72
mg L™1) and EMB (107.94 mg L™1) on July 6™, at BUOY (82.27 mg L™1) on July 22"d and
at EFLS (55.33 mg L™1) on June 10t". The composition of phytoplankton at the phylum level
was dominated by Cyanobacteria (67%), following with Dinophyta (18.63%), Chlorophyta
(9.45%), Bacillariophyta (2.94%), Cryptophyta (1.00%) and Euglenophyta (0.92%). There
were population successions in all the surface waters (Figure 3). For example,
Bacillariophyta and Chlorophyta were the two dominant phyla, which comprised up to 90%
of the total phytoplankton biomasses at the four surface water sites in early and/or mid-May.
Subsequently, Bacillariophyta was replaced by Dinophyta as the dominant phyla from late
May through early and/or mid-June. Thereafter, cyanobacterial biomasses reached the range
of 35% to 95% and became the dominant phyla from late June through September.
Cyanobacterial biomasses, which ranged from 0.01 to 114.89 mg L= with mean of 22.88
mg L1, steadily increased from May to late June, remained at constant high levels from
early to late July, and then slowly decreased from August through November (Figure 3).

Among the cyanobacterial communities, Microcystis, Dolichospermum and other
filamentous Cyanobacteria presented in Harsha Lake across the entire sampling period and
they were dominant in the surface water from June to September. For overall surface
samples, during bloom (June 24t to August 19", the order of relative abundance was as
follows: Microcystis (60%) > Dolichospermum and other filamentous group (40%). There
were significant community successions: the filamentous group dominated in late May to
early June and September, while the Microcystis played a major role during bloom from late
June through early July. The peak biomass of Microcystis (21.10 mg L™1) at site EFLS in
July 15t was only almost half, one third or one quarter of the biomass at sites BUOY, EMB
and CGB, respectively (Figure 4).

3.2. Associations of the Biomass with Nutrients and Microcystin

The general trends of the biomass of phytoplankton, Cyanobacteria and Microcystis are
positively correlated to nutrients, especially to TN and TNH4 with P(R?) < 0.05 (Table 5,
Figure 4). There were similar variation patterns of TN, TNH4 and TP in the four sites and
along the variations of the biomasses. The levels of TN and TNH4 reached to two peaks in
mid-June and early July, respectively (Table 2), of which the first peaks co-occurred with the
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phytoplankton biomasses in CGB, EFLS and EMB, while the second peaks were in
agreement with the peaks of the biomasses of the three categories in the four sites. The
biomasses of the three categories decreased along with the lower levels of nutrient after the
second peaks. It seemed that the variations of TP and the biomasses levels were more
associated after mid-June (Figure 4). The total ELISA measurement for microcystin
positively correlated with Cyanobacteria (R? = 0.66, P < 0.0001), Microcystis (R? = 0.64, P
< 0.0001) and phytoplankton (R% = 0.59, P < 0.0001) (Table 5), indicating that majority of
the microcystin were produced by Microcystis and there were some other MC-producers co-
occurred in Harsha Lake (Figure 5).

3.3. Toxic Species Identified Using PCR and Sanger Chemistry Sequencing

As shown from the microscopy data, Cyanobacteria taxa that are known to potentially form
HAB were observed. To confirm their presence and to further identify toxin producers of
microcystin, cylindrospermopsin, saxitoxins and nodularins, the sequences of both mcyA
(CD1) and mcyE (HEP) were analyzed. Two genera (Microcystis and Planktothrix) were
identified and successfully distinguished based on the sequence similarity to reference
sequences with an agreement of phylogenetic clusters. The two groups of mcyA sequences
(119 for Microcystis with 97% consensus, and 109 for Planktothrix with 99% consensus)
were 99% similarity to M. aeruginosaand 100% to £ rubescens, respectively (Figure 6(a)).
Similarly, a total of 312 mcyE sequences, which were similar to M. aeruginosa (99%, n =
210) and P, rubescens (99%, n = 89) (Figure 6(b)), were also generated. The results indicated
that the two major populations were potential microcystin producers and they were detected
by either one of the two assays targeting to two separate genes, but the sequences using HEP
assay showed more diverse due to the longer lengths and more coverages of heterogeneous
sequences than those amplified using CD1 assay. Analyses were performed for the potential
producers of other toxins such as cylindrospermopsin using the cyr (toxin) and rpoC (total)
assays, saxitoxins using the sx¢A assay and nodularins using the nadaand nts assays, of
which, the assays: rpoC and nada are the non-toxin gene targets, and their amplified
sequences included both toxin or non-toxin producers. PCR amplifications for the
phylogenetic analysis of the sx¢A sequences (n = 84 sequences from 8 libraries), most
sequences (99%) showed 98% identity to Dolichospermum circinalis and Aphanizomenon
sp., respectively (Figure 7). For the gene sequences of the rpoC, stxA and nts were positive,
but not for those of the cyrand nada, indicating potential producers of saxitoxin but not of the
other toxins. The results confirmed the presence of non-toxic Cy/indrospermopsis and
Nostoc. Phylogenetic analysis on rpoC sequences (n = 47 sequences from 8 libraries)
showed most (64%) to be 98% - 100% similar to C. raciborskii. All the sequences (93%
similarity) could be grouped into two clades (Figure 8) with similarity to isolated sequences
from various water of China, such as Xihu Lake, Qiandun Lake and Qingdao pond [19].

4. Discussion

The phytoplankton phyla composition observed in this study was also found in other
investigated Ohio lakes such as lake Erie [20] and other smaller lakes [6] [21]. The
dominance of Cyanobacteria, which was also observed in a number of Ohio lakes [6], could
be typical for summer algal blooms. However, how a nontoxic-algal-bloom community
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shifted to a toxic algal bloom could be a key point for signaling cyanobacterial blooms, and
has not been further investigated in the previous studies. The patterns of species succession
at the four surface water sites were similar, starting from Bacillariophyta and/or
Chlorophyta, following with Dinophyta in late spring and early summer, heavily blooming
with Cyanobacteria from mid-June to mid-August, and then subsiding with the reoccurrence
of Chlorophyta and/or Dinophyta. Therefore, the abundant presence of Cyanobacteria with
relatively few Bacillariophyta and/or Chlorophyta was indicative to algal blooms. High
occurrences of most cyanobacterial species are potentially harmful. Beaulieu et al. reviewed
the data from 1147 lakes in the USA, and found that the bloom-forming cyanobacterial
biomass average ranged from 0 to 200.26 mg L1 with a mean of 1.51 mg L™ [14]. In
Harsha Lake, cyanobacterial species, which were mainly those dominant Microcystis,
Dolichospermum and Planktothrix, were proved to be potentially harmful in term of the
presence of toxic genes. Considering the fact that Cyanobacteria were the absolute dominant
group and their biomasses ranged from 1.21 to 114.89 mg L™1, we concluded that HAB
occurred from June to September in this Lake. Previous studies have reported that the
Cyanobacteria found in this study were microcystin producers [22], so they could become a
potential water-quality issue, especially for drinking water. However, in contrast with our
results in 2015, previous investigations in 2013 and 2014 [6] for the same lake showed
substantial differences in the community composition. During 2013, Dolichospermum was
dominant in May, whereas in 2014 and 2015 Dolichospermum was present but never
dominant. Likewise, during 2014 and 2015, the filamentous group of cyanobacterial was
dominant in May and/or early June but did not represent a substantial portion of the
cyanobacterial community in 2013. The Microcystis, which dominated the phytoplankton
communities in the past 3 summers, showed the typical eutrophic situation for a shallow lake
water [21]. As indicated from previous studies, the environmental conditions that support
phytoplankton biomass, create genera dominance or trigger Cyanaobacteria groups shifts may
vary not only from lake to lake, or from season to season [23], but even from location to
location in the same lake. Harsha Lake is a typical small water body vulnerable to HABs
[24]. Our results demonstrated that surface water was well-mixed among the three sites
(BUQY, CGB and EMB), because only the differences of biomasses between BUOY and
EFLS, and CGB and EFLS were statistically significant using multiple comparisons. The
well-mixed surface water explained that there were similar compositions and population
succession patterns among the surface sampling sites (BUOY, CGB and EMB). For example,
the site CGB (northeast side) had the highest biomass of phytoplankton (especially,
Microcystis), followed by the site EMB (southwest side) and site BUOY (northwest side),
while the site EFLS (northwest side) had lowest biomass of total phytoplankton and
Microcystis. It is reasonable that the higher biomasses occurred in the beach areas (CGB and
EMB), because dense algal biomass were frequently observed in the shallow water along
each beach.

Generally, temperature is considered to be a key factor in triggering phytoplankton
successions [25]. A number of previous studies showed that cyanobacteria adapt to grow
better in higher temperature and eutrophic environments, thus in this shallow inland lake,
when temperatures increased to >25°C, the Cyanobacteria succeeded from other algae and
their biomass significantly increased (Figure 2). The photo-system and buoyancy regulation
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characteristics of Microcystis allows them to photo-adapt to the extreme light conditions in
summer and become the absolute dominant genus in subtropical lakes [26]. For
cyanobacterial dominance, nutrients played an important role. In a study on Taihu lake, Paerl
et al. (2011) indicated that both excessive nitrogen (N) and phosphorus (P) loads might be
responsible for the proliferation of non-nitrogen (N5)-fixing Cyanobacteria (e.g.,
Microcystis) to dominate blooms [27]. Jensen et al. (1994) suggested that continuous inputs
of nutrients and carbon from the sediment and external sources in hypertrophic shallow lakes
increased the dominance of Cyanobacteria and other algae [28]. Similar to those studied in
China Taihu and Danish lake, which are hyper-eutrophic shallow lake with bloom-forming
Microcystis and heterocystous, filamentous genera capable of N fixation (Dolichospermum,
Aphanizomenon), Harsha Lake could also be heavily affected by nutrient sources of internal
sediments and external watersheds. A previous analysis of cyanobacterial dominance in 143
shallow lakes along a latitudinal transect ranging from subarctic Europe to southern South
America [29], indicated that the relative abundance (percent biovolume) of Cyanobacteria
steeply increased with temperature and high nutrient load, suggesting there is synergistic
effects of nutrients and temperatures.

Compared to other algal blooms in this lake observed by Francy (2015a), the bloom in 2015
was very stable and no abrupt decay was observed. One main reason for this may have been
that there were no rapid growth bursts which in turn may be attributable to more overcast
and cooler weather conditions that summer. An examination of the weather during the
sampling season indicated that there were only 9 out of 20 days that were clear among the
sampling dates, and only 5 clear weather days in the two-days before each sampling date.
The temperatures during the sampling dates ranged from 12.8 to 30.0 with average 23.3°C,
which were also much lower than those for the same durations in 2013 and 2014. Previous
analyses of the effects of meteorological condition have suggested that accumulated active
temperatures and sunshine duration exert important influences on cyanobacterial blooms
[30]. They found that accumulated active temperature (=18°C) above 370°C-day for three
ten-day and sunshine duration more than 208 hours in Taihu Lake with eutrophication would
be ready to Cyanobacterial bloom. In Harsha lake of this study, which was also a shallow
lake with eutrophication, when the HAB occurred from June to September, the accumulated
active temperature (=18°C) was above 370 (°C-day = 18°C) for three ten-day and sunshine
duration was more than 208 hours. Other conditions like relative humidity and wind speed
might have had an inconspicuous association with cyanobacterial blooms as observed by
Zhang et al. [30].

Phylogenetic analysis in this study showed the presence of the producers of microcystin (M.
aeruginosa, Planktothrix) and saxitoxin (Dolichospermum and Aphanizomenon) based on
the sequences of toxin genes. Microscopic observations indicated that they were the
members of the dominant genera of Cyanobacteria. The analytic data measured using
ELISA showed the presence of microcystin was the majority of cyanotoxin measurements.
Thus the data obtained using different approaches to reveal HAB species were consistent. In
order to compare possible geographical genotypes of M. aeruginosa found between this
study and others, the mcyA sequences retrieved from various geographical locations
including Ohio and adjacent waters using CD1 assay were compared. The Harsha Lake
sequences were 99-100% identical to M. aeruginosa and were also 99% - 100% similar to
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those from Lower Laurentian Great Lakes [20], Lake Erie [31], Lake Ontario [32] and even
Klamath River and San Francisco Bay delta [33]. Similar to the Harsha Lake sequences that
were 99% - 100% identical to P, rubescens 218, sequences from Grand lake St. Marys (OH)
[34] and Lake Erie [31] were also 99-100% identical to this species. The phylogenetic
similarity of potentially toxic species M. aeruginosa among Harsha Lake and other adjacent
waters, such as Lake St. Clair, Lake Erie and Lake Ontario, indicates its broad presence. It
should be noticed that the fragment of mcyA gene may not reflect high diversity of the
amplicons as observed in previous study [20], due to the little variable region of mcyA assay
included in its short sequence (230 bp). Davis et al. (2014) found that there was little
diversity between mcyA amplicons (these sequences showed genetic homogeneity) collected
from each site in Lake St. Clair with all of the amplicons clustering with previously reported
M. aeruginosa mcyA sequences. Therefore, the assay of mcyE was also used. Although
there were still two groups (Microcystis, Planktothrix) retrieved, more diverse Microcystis
sequences were found. Microcystins are commonly produced by Cyanobacteria in the genera
Microcystis, Planktothrix, and Dolichospermum (Dolichospermum) [22]. These three genera
are dominant in most Ohio lakes according to previous data [6]. Positive correlations
between Microcystis biomass and microcystin were also observed in Great Lakes [35]. The
findings of the saxitoxin (sx?) gene in Harsha Lake samples indicated the potential
production of this neurotoxin of A. circinalis and Aphanizomenon sp. As for
Cylindrospermopsis, the sequences observed in this study were similar to the isolate
sequences from Chinese waters like Xihu Lake, Qiandun Lake and Qingdao pond, which
mostly revealed no presence of toxic genes (cyrA and cyrl) [19]. However, rpoC based
genotypes might not necessarily indicate whether Cy/lindrospermopsis showed cyrgene
positive, considering rpoC gene presented in both toxic and nontoxic species, while the cyr
gene was found to sporadically distribute in cyanobacterial strains and environmental
samples [19]. Currently HAB monitoring using microscopy for phytoplankton and analytical
analysis for cyanotoxin is recommended by local agencies such as OH EPA in their State of
Ohio Harmful Algal Bloom Response Strategy For Recreational Waters [7]. In order to
make accurate risk assessment and monitoring of cyanotoxin, molecular approaches to
determine toxic species are needed. The results of this study have provided insight into the
community successions, the relationships between Cyanobacteria and the other
phytoplankton and presence of toxic Cyanobacteria. The continuing studies on Harsha Lake
will further provide the analysis of association of Cyanobacteria blooms with environmental
factors and the development of molecular monitoring tools for the toxic species.
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Figure 1.

Harsha Lake map and sampling sites.
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Weekly distributions of total phytoplankton biomass at the four sites.
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Figure 4.

Associations of the biomass of phytoplankton, cyanobacteria and Microcystis with total

nitrogen (TN) and total phosphorus (TP).
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Figure 5.

Associations of the biomass of phytoplankton, cyanobacteria and Microcystis with total MC

measured using ELISA.
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Figure 6.
Unrooted neighbor-joining tree of mcyA (a) and mcyE (b) gene amplified for microcystin

producer sequences obtained from clone libraries of the Harsha Lake water. Sequences were
aligned, and bootstrap consensus trees (1000 replicate) were created with MEGAG (1%
divergence). Bootstrap values are shown at the nodes.
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Figure 7.
Unrooted neighbor-joining tree of sxtA gene amplified for Dolichospermum sequences

obtained from clone libraries of the Harsha Lake water. Sequences were aligned, and a
bootstrap consensus trees (1000 replicate) were created with MEGAG (1% divergence).
Bootstrap values are shown at the nodes.
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— Clade 1

- Clade 2

Unrooted neighbor-joining tree of rpoB gene amplified for Cylindrospermopsis raciborskii
sequences obtained from clone libraries of the Harsha Lake water. Sequences were aligned,
and a bootstrap consensus trees (1000 replicate) were created with MEGAG6 (1%

divergence). Bootstrap values are shown at the nodes.
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Monthly differences of phytoplanktonic biomass (mg L™1) using t tests significant at the 0.05 level indicated

*kk

by

Month comparisons

Between means

Simultaneous 95% confidence limits

Significant at the 0.05 level

8-7
6-7
5-7
9-7
6-8
5-8
9-8
5-6
9-6
9-5

22.02
22.10
28.19
38.79
0.08
6.17
16.77
6.09
16.69
10.61

8.17
9.15
15.47
26.80
-14.60
-8.31
2.93
-7.54
3.74
-2.11

35.86
35.05
40.90
50.78
14.77
20.65
30.62
19.71
29.64
23.32
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Fkk

Fkk
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