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Abstract

Aramid Fibre Reinforced Plastic composites are difficult to be drilled due to

anisotropic material properties. Currently, soft computing techniques are used as

alternatives to conventional mathematical models, which is robust and can deal

with inaccuracy and uncertainty. In this paper, drilling of Aramid Fibre

Reinforced Plastics (AFRPs) was carried out using Taguchi L54 experimental

layout. Drilling tool used in this experiment was solid carbide. The purpose of

this study was to find optimum combination of drilling parameters to obtain

minimum thrust and torque force to reduce the delamination. Also, this paper

proposed a prediction model of Multilayer Perception Neural Network optimized

by Genetic Algorithm (MLPNN-GA). Moreover, RSM technique was used to

evaluate the influence of process parameters (spindle speed, feed rate, drill point
.e00703
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angle and drill diameter on thrust force and torque. The prediction capability of both

RSM and MLPNN-GA was compared with Response optimizer for thrust force and

torque. The investigation demonstrated that drill point angle is the primary factor

affecting thrust force and drill diameter influences the torque force on the drill

bit. Overall, this study recommends the use of high speed and low feed

combination and drill point angles of 90�e118� to reduce the delamination of

the materials in the drilling of AFRP composites.

Keywords: Materials science, Mechanical engineering

1. Introduction

The materials used in construction, aerospace, automotive industries, etc. need to

have high specific stiffness, high damping, high strength, high thermal resistance

and low thermal expansion. Further, these materials should be corrosion & wear

resistant and dimensionally stable. Composites such as Aramid Fibre Reinforced

Plastics/Polymers (AFRP) exhibit such distinct properties and hence find broad ap-

plications in cryogenics, sports equipment, ropes & cables, ballistic applications,

building construction, breaks, armor, aerospace, etc. Composite materials are two

or more chemically different constituents combined synergistically and macroscop-

ically to yield a useful material that is different in physical form and chemical

composition of the parent materials. The purpose of having two or more constituents

is to get rid of the inferior properties of the constituents and to gain benefits of the

superior features of all the constituents. However, due to the presence of the two or

more different phases AFRP composites pose various kinds of machining problems.

Thus, the machining mechanism of composite materials is different from that of the

homogeneous conventional materials [1, 2, 3, 4].

The distinctive difficulties like delamination, fibre pull out, melting of the matrix,

adhesion of materials to drill etc., are found while drilling of AFRP composites.

These failures adversely affect the quality of the AFRP composites. Lamination,

resin type, fibres, reinforcing materials all these factors also significantly modify

the properties of AFRP composites. Therefore, it is necessary to control the factors

affecting the drilling of AFRP composites [4, 5, 6, 7, 8]. Various researchers used

different and innovative ways to control the factors affecting the drilling of

composites.

Bishop and Gindy, 1990 [4] performed an investigation on drilling of ballistic Kev-

lar composites and concluded that drill point angle influenced thrust force and was

maximum at 180�. The removal of drill web achieved a further reduction in angle

and increase in the rake angle reduced the torque, varying point angle had a lesser

effect on torque. Di Ilio et al., 1991 [6] concluded that interfaces between the
on.2018.e00703
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laminate and inhomogeneity inside single lamina were responsible for oscillations of

thrust force in the drilling of aramid composites. High friction forces influenced tor-

que force at the lands of a twist drill. Horrigan, 1998 [7] conducted a study on hole

drilling in Kevlar composites. The study showed that under the cryogenic condition,

modified drill bit produced a greater thrust force than the usual drill bit at ambient

temperature. Larger the thrust force, higher the delamination and by use of backing

plate the delamination reduced. A laser drilling of aramid and glass/epoxy compos-

ites were performed on printed wiring boards by Hirogaki et al., 2001 [8]. Liu et al.,

2012 [9] conducted a review of composite laminates. They revealed that vibration-

assisted twist drilling and high-speed drilling reduced the delamination induced dril-

ling more than conventional method. Among various drill bits, twist drill bit was the

most studied drill bit. They also inferred that during low feed rate, delamination

occurred. In practical situations, peel up delamination was less severe than

push-out delamination and even the thrust force was in direct relationship with

delamination. Feito et al., 2016 [10] studied the influence of tool wear and special

cutting geometry when drilling the woven CFRP composites. They concluded that

low feed rate and high cutting speed reduced the drilling induced delamination.

Feed rate is the most influential factor for both thrust force and delamination.

Karpat et al., 2012 [11] performed experiments on drilling of thick fabric woven

CFRP laminates using double point angle drills. The study showed that increasing

feed rate and rotational speed protected the diamond coated carbidedrill bit and

also improved the hole quality. It was noted that properties of CFRP material, the

rigidity of machine tools and drilling geometry also play an essential role. Palaniku-

mar, 2011 [12] experimented GFRP composites using Spur and Brad drill and estab-

lished that low feed rate and high spindle speed are necessary to reduce delamination

and also it had an effect on grey relational grade. It was observed that feed rate is the

most influential factor. Sunny et al., 2014 [13] carried out experiments on GFRP

composites by Taguchi Method L25 using three different tools viz., twist drill,

end mill and Kevlar drill. The study revealed that feed rate is the most influential

parameter and high spindle speed and low feed rate decreased the delamination.

In the case of kevlar drill, observed delamination was less. Krishnaraj et al., 2012

[14] experimented with the high-speed drilling of CFRP laminates. They inferred

that feed rate had a more significant influence on the diameter of the hole, push

out delamination and thrust force. The circularity of the hole was affected by spindle

speed and feed rate. The spindle speed did not have much influence on peel-up

delamination. Mohan et al., 2005 [15] carried out experiments with glassefibre

polyester reinforced composites and noted that minimum thrust force could be ob-

tained by lower feed rate, less specimen thickness and drill diameter, and higher

speed. Also, minimum torque force could be obtained by higher speed, medium

feed, low specimen thickness and high drill diameter. Tsao and Hocheng, 2004

[16] performed Taguchi analysis on various drill bits of composite material and
on.2018.e00703
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found that feed rate and drill diameter made the most significant contribution. Twist

drill caused more delamination than candlestick drill and saw drill. Tsao and Chiu,

2011 [17] carried out experiments on the drilling of CRFP composite laminate using

compound core-special drills. Feed rate, cutting speed and inner drill type were the

most affecting factors; feed rate and high negative cutting velocity produced a low

thrust force in drilling the composite material. Khashaba et al., 2010 [18] conducted

an experiment on machinability analysis in drilling the woven GFR/epoxy compos-

ites and noted that as the feed rate and drill diameter increased, thrust force also

increased. The increase in cutting speed also increased the surface roughness. Raja-

murugan et al., 2013 [19] conducted experiments on glass fibre reinforced polyester

composites and revealed that rise in drill diameter increased the delamination factor.

Also, increase in fibre orientation factor increased the delamination. Zarif et al., 2013

[20] experimented with glass/epoxy laminates. They revealed that feed rate and drill

point angle had a significant effect on delamination factor. Kilickap, 2010 [21] con-

ducted experiments on GFRP composite at drill point angles of 118� and 135� and
concluded that feed rate is a most important factor and drill point angle at 118� pro-
duced less damage and delamination. Karnik et al., 2008 [22] conducted a study on

high-speed drilling of CRFP using artificial neural network model and concluded

that increase in cutting speed and decrease in feed rate reduced the drilling induced

delamination. Kumar and Ganta, 2013 [23] experimented with the drilling of GFRP

composite using Taguchi method. Their study indicated that low thrust force could

be obtained by lower speed, medium feed rate, chisel edge (0.8 mm) and point angle

of 90�. Whereas optimum torque can be achieved by lower speed, high feed rate, 1.6

mm chisel edge and point angle of 95�. Gaitonde et al., 2008 [24] showed that apart

from spindle speed, drill point angle and low feed minimized the delamination in

drilling of CFRP composites. Wang et al., 2013 [25] experimented tool wear of

coated drills in drilling the CFRP composites and found that all drill types showed

an ordinary wear of edge rounding wear. Tsao et al., 2012 [26] showed delamination

during drilling of the composite and proposed a model delamination reduction by

backup force. The results revealed that delamination could be reduced significantly

with a low-level backup force and diamond coated drill significantly decreased edge

rounding wear. Also, critical thrust force [27] and critical feed predictions models

[28] on composites were developed and numerical predictions were derived on

CFRP composites [29].

From the above literatures it can be inferred that Taguchi method and multi-variable

regression models were conventionally used by researchers to perform the analysis

of experiments. As computerized models were tolerant of uncertainty, imprecision,

approximation and also evolving in nature, they replaced mathematical and analyt-

ical models. These are known as soft computing techniques, example: Neural Net-

works, Genetic algorithm, Fuzzy logic, etc. Tsao, 2008 [30] showed that Radial

Bias Function Network (RBFN) predicted thrust force values much better than
on.2018.e00703
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multi-variable linear regression model. Significant developments of intelligent sys-

tems have been inspired by the neural network which is a function of neurons and

dendrites in the brain of a human being. Artificial Neural Network (ANN) can be

used to solve problems related to pattern recognition, optimization, clustering, pre-

dictions, etc. [31]. ANNs find their application in the fields like finding tunnel set-

tlements and openings in the underground, excavations, liquefaction, analyzing

properties of soil and their behavior etc. [32]. ANNs are data-driven methods, which

can approximate complex non-linear relationships using non-linear mapping by pro-

cessing data without the prior knowledge of the model structure. They can handle

incomplete and unclear data and can learn from examples and tolerate faults in

the data. ANN receives a new piece of information; interconnections are adjusted

to avoid losing the old data [33, 34, 35]. Dini, 2007 [36] used the feed-forward neural

network to predict delamination in drilling of GFRP composite, and the results were

excellent regarding the performance. Enemuoh et al., 2001 [37] developed the tech-

nique for drilling of carbon fibre reinforced thermosets using the nonlinear sequen-

tial quadratic-programming algorithm to analyze the drilling parameters. They also

inferred that high spindle speed and low feed rate produced delamination free drill

and good surface finish. The study indicated that for epoxy composites, the best drill

point angle is 118�.

ANN method often falls into the trap of local convergence, and genetic algorithm

(GA) gives the global searching ability by finalizing the first weight and bias of

the ANN. This global searching ability of GA improves the accuracy of ANN and

converges more quickly [38]. Saravanana M., et al., 2012 [39] carried out multi-

objective optimization of drilling parameters using GA. The variation of parameters

was approached by both GA and finite element method and concluded that GA

approach was much better than the finite element method. Krishnaraj et al., 2012

[40] used GA (multi-objective optimization) to find optimum cutting conditions

for defect-free drilling.

It is clear from the literature reviews that studies related to drilling of the composites

with artificial neural network (ANNs) and genetic algorithm will give better predic-

tion than the other available regression models. In addition, the literature reviews

highlighted that most of the research work was carried on CFRP and GFRP compos-

ites, and there is no considerable work reported on the AFRP composites. Similarly,

integration of GA and MLPNN was not discussed widely in the literatures. Hence, in

the present work, an attempt was made to find optimum values of thrust and torque

force for drilling of AFRP composites using MLPNN-GA approach. Also, an

attempt had been made to analyze the process parameters of AFRP composites

namely drill diameter, drill point angle, feed rate and spindle speed using Taguchi

analysis. The drill bit angles of 90� and 118� and drill diameters of 6 mm, 8 mm,

and 10 mm were selected in the present work. The feed rates of 50, 75, 100 mm/min

and spindles speeds of 600, 900, 1200 rpm were employed in this work. The drilling
on.2018.e00703
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process parameters (point angle, drill diameter, speed, and feed) were optimized using

ANOVA, RSM, and GA-MLPNN tominimize thrust and torque force to obtain higher

quality drilled holes with minimum delamination of composites.
2. Materials & methods

Aramid Fibre Reinforced Plastic (AFRP) specimen was prepared using the Hand-

Layup method. The mould was of medium size and coated with anti-adhesive to pre-

vent the specimen from sticking to the mould. Gel coating was applied to form the

primary surface layer. Grinders were used at the top and bottom of mould plate to get

the excellent surface finish. Bi-directional aramid woven fibres were cut as per the

mould size and placed on the surface of the mould. The total thickness of the sheet

was 1.2 mm. Matrix epoxy resin Lapox B-11 mixed thoroughly with hardener

AP5140, was poured onto to the surface of woven fabric which was already placed

in the mould. Epoxy was uniformly spread using the brush. The second layer of the

woven fabric mat of same thickness was placed in the middle of the mould; mild

pressure was applied to remove the trapped air as well as excess epoxy. Again,

the resin and hardener were employed, one more layer of aramid fabric was placed

at the top. The same process was repeated for other layers also. The top mould plate

was kept and the pressure was applied to the specimen and cured for 48 hours at

atmospheric conditions. Later, the mould was opened and AFRP was taken out of

the mould. The developed composite dimensions chosen for the study were

300 mm � 300 mm � 5 mm, as shown in Fig. 1.
2.1. Details of the workpiece

In the present study, a 5 mm thickness Aramid Fibre Reinforced Plastic (AFRP)

composite was prepared by hand lay-up method. The matrix epoxy resin lapox

B-11, and hardener AP5140 properties are shown in Tables 1 and 2. Similarly,

the properties of reinforcement material e bi-directional aramid woven fabric are

displayed in Table 3.
Fig. 1. Laminate layout.
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Table 1. Properties of epoxy resin.

Property Unit Test method Value

Appearance - Visual Clear viscous liquid

Color APHA ASTM D 1209 D 5386 Max. 100

Epoxy value Eq./kg ASTM D 1652 5.25e5.45

Viscosity at 25 �C mPa-s ASTM D 2196 10000e12000

Hydrolysable chlorine % ASTM D 1726 Max. 0.1

Table 2. Properties of hardener.

Property Value

Appearance (Visual) Clear pale colored viscous liquid

Odor Amine

Color (Gardner, ASTM D 1544) 10 max

Viscosity at 40 �C DIN 53015 (ISO 12058) 3000e6000 mPa-s

Density at 25 �C (ASTM D 1457) 0.95e0.97 kg/l

Non-volatiles Solvent free

Amine numbers (ISO 9702) 370e400 mg KOH/g

Amine hydrogen equivalent wt. 95

Table 3. Properties of reinforcement.

“Customary” (inch-pound) units

Specific
density
lb/in3

Tenacity
103 psi

Modulus
106 psi

Break
elongation

Specific
tensile
strength
106 in.

CTE
10L6/�F

Decomposition temperature

(�F) (�C)

0.052 424 10.2 3.6 8.15 �2.2 800e900 (427e482)

0.052 435 16.3 2.4 8.37 �2.7 800e900 (427e482)
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2.2. Machining set-up

The machining setup used for drilling of AFRP is Triton VMC three-axis milling

machine and is suitable for machining the wax, plastics, acrylics, copper, aluminum,

composites, and steel as shown in Fig. 2. It has inbuilt PC controller, and solid car-

bide drill bits of 6 mm, 8 mm, 10 mm diameter were used to perform the drilling

trials. The specification of solid carbide drill bit is shown in Fig. 3b and Table 4.

Thrust force and torque developed during drilling operations were measured using

KISTLER dynamometer as shown in Fig. 3a. Charge amplifier produces a voltage

output proportional to the force input, and the generated voltage is measured using

Data Acquisition PC.
on.2018.e00703
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Fig. 2. Triton VMC (Vertical milling centre).

Fig. 3. (a) KISTLER dynamometer. (b) Solid carbide drill bit.

Table 4. Solid carbide drill bit specifications.

Drill
point
angle

Diameter Shank dia. OAL Flute length Cutting depth Flutes Shank Coating

d1 d2 l1 l2 tMax

(mm) (mm) (mm) (mm) (mm)

90 degrees 6.000 6.000 66.00 16.00 7.00 2 Straight Bright
8.000 8.000 79.00 21.00 9.00 2 Straight Bright
10.000 10.000 89.00 25.00 10.00 2 Straight Bright

118 degrees 6.000 6.000 83.00 51.00 - Spiral - Bright
8.000 8.000 92.00 60.00 - Spiral - Bright
10.000 10.000 114.00 73.00 - Spiral -

8 https://doi.org/10.1016/j.heliyon.2018.e00703
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Table 5. Factor information.

Factor Type Level Values

DA (Drill Point Angle) Fixed 2 90�, 118�.

DD (Drill Diameter) Fixed 3 6 mm, 8 mm, 10 mm.

SPEED (Spindle Speed) Fixed 3 600 rpm, 900 rpm, 1200 rpm.

FEED (Feed Rate) Fixed 3 50 mm/min, 75 mm/min, 100 mm/min.
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3. Methodology

3.1. Taguchi method

AFRP values were analyzed with the Taguchi method, and this method allows to

perform a pair of combinations of tests. In this study, drill point angle, drill diameter,

spindle speed and feed rate were selected. The drill parameters and levels are shown

in Table 5. The experiments were conducted according to Taguchi’s L54 Orthogonal

Array, shown in Table 6. The drill diameter, speed, and feed have three levels, and

drill point angle had two levels. In this work, Taguchi’s L54 (2
1*33) orthogonal array

was considered, as the L8 (2
1*33) array was insufficient to handle the data. In the cur-

rent study, fifty-four sets of experiments were conducted using standard design ma-

trix of factorial design. Drill parameters concerning thrust and torque forces were

measured using S-N ratio. There are three types of Taguchi’s S-N ratio variations

as given below. In the present work, Smaller is better was chosen as the variation.

(i) Larger is better: It is used when a more substantial value is desired as indicated

in equation (1).

S=N ratioðhÞ ¼ �10 log10
1
n

Xn

i¼0

1
y2i

ð1Þ

where n is the number of replications and yi is observed response value.

(ii) Nominal is the best: It is used when variation about the nominal or target value

is minimum as shown in equations (2) and (3).
S=N ratioðhÞ ¼ 10 log10
m2

s2
ð2Þ

S=N ratioðhÞ ¼ �10 log10s
2 ð3Þ

where m is the mean and s is the variance.

(iii) Smaller is better: It is used when the smaller value is desired. The “smaller is

the better” means minimizing the response and the target value is non-negative

with zero [15].
on.2018.e00703
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Table 6. Taguchi’s L54 (2
1*33) orthogonal array.

Test no. DA DD SPEED FEED Test no. DA DD SPEED FEED

1 90 6 600 50 28 118 6 600 50

2 90 6 600 75 29 118 6 600 75

3 90 6 600 100 30 118 6 600 100

4 90 6 900 50 31 118 6 900 50

5 90 6 900 75 32 118 6 900 75

6 90 6 900 100 33 118 6 900 100

7 90 6 1200 50 34 118 6 1200 50

8 90 6 1200 75 35 118 6 1200 75

9 90 6 1200 100 36 118 6 1200 100

10 90 8 600 50 37 118 8 600 50

11 90 8 600 75 38 118 8 600 75

12 90 8 600 100 39 118 8 600 100

13 90 8 900 50 40 118 8 900 50

14 90 8 900 75 41 118 8 900 75

15 90 8 900 100 42 118 8 900 100

16 90 8 1200 50 43 118 8 1200 50

17 90 8 1200 75 44 118 8 1200 75

18 90 8 1200 100 45 118 8 1200 100

19 90 10 600 50 46 118 10 600 50

20 90 10 600 75 47 118 10 600 75

21 90 10 600 100 48 118 10 600 100

22 90 10 900 50 49 118 10 900 50

23 90 10 900 75 50 118 10 900 75

24 90 10 900 100 51 118 10 900 100

25 90 10 1200 50 52 118 10 1200 50

26 90 10 1200 75 53 118 10 1200 75

27 90 10 1200 100 54 118 10 1200 100
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S=N ratioðhÞ ¼ �10 log10
1
n

Xn

i¼0

y2i ð4Þ

3.2. Analysis of variance (ANOVA)

ANalysis Of VAriance (ANOVA) is used to find the significance of each value in

AFRP composites study. The variance seen in variables is partitioned into different

parts or components based on the deviation and hence the name ANalysis of VAri-

ance (ANOVA). ANOVA compares different factor levels with response to access

the importance of one or more factors. General linear model (GLM) approach was
on.2018.e00703
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used in this experiment, and it uses least square regression method to describe the

statistical relationship between one or more factors and the response variable. In

this work, P-values were associated with Fischer’s F-test. The model is said to be

adequate when F-ratio value is more than the standard tabulated F-ratio value at a

confidence interval of 95%.
3.3. Response surface method (RSM)

In this work, Response Surface Method (RSM) was used to compute 3D surface and

contour plots of AFRP drill parameter variations. RSM is a collection of statistical

and mathematical procedures for figuring out the relationship between the responses

to given problems and several factors affecting the problem. Proper planning of ex-

periments was necessary to construct the mathematical model based on experimental

data. For this reason, a second-degree non-linear polynomial regression was used to

describe the relationship between drilling process parameters of AFRP and thrust

and torque force, as shown in equation (5). This equation is the representation of

the regression line in algebraic format. In the current study, Central Composite

Design (CCD) approach was used for RSM. The chosen values before the experi-

ment: number of cube points was 32; center points in the cube was 8; axial points

was 10; center points in axial was 4 and the value of alpha for RSM was 2.366.

The commercially available MINITAB software was used for the RSM study. By

default, Minitab uses coded units to perform the RSM operation. Then these coded

coefficients were converted to un-coded coefficients by Minitab software. Equation

(5) is the obtained regression equation in un-coded units.

Td ¼ bo þ b1 DA þ b2 DD þ b3 SPEED þ b4 FEED þ b11 DA*DA þ b22

DD*DD þ b33 SPEED*SPEED þ b44 FEED*FEED þ b12 DA*DD þ b13 DA*

FEED þ b14 DA*FEED þ b23 DD*SPEED þ b24 DD*FEED þ b34

SPEED*FEED (5)

where, Td is the thrust or torque force, bo is the constant, b1.b44 is the regression co-
efficients of the model to be determined. DA, DD., SPEED*FEED are the values of
the term.
3.4. Modeling of genetic algorithm and neural network

The diversity of data can enhance the learning and generalization ability of neural

network which can be obtained with a reduction in the similarity of data. Therefore,

the data was normalized within the range [0, 1] for both input and output data using

equation (6).

xn ¼ ymax � ymin
xmax � xmin

ðx� xminÞ þ ymin ð6Þ
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where, xn is the normalized value of variable x; xmax and xmin are the maximum and

minimum of x, respectively; ymax and ymin are the maximum and minimum of the

normalized targets, respectively.
3.4.1. Multilayer perceptron neural network (MLPNN)

This technique was used to predict the thrust and torque force in the drilling of AFRP

composites. MLPNN consists of four neurons in the input layer corresponding to

four input process parameters (SPEED: spindle speed, FEED: feed rate, DA: point

angle and DD: drill diameter). The output layer consists of a single neuron which

is either thrust force or torque force as output process parameters. A single hidden

layer with Nh (number of hidden neurons) was used in this work as shown in

Fig. 4. These also hold weights and biases in the hidden layer (Wij, bij) and an output

layer (Wjk, bjk). Sigmoidal activation function was selected as activation function for

both inputs and outputs. For training purpose, back-propagation (BP) algorithm was

used in MLPNN. In this study, gradient descent with momentum and adaptive

learning rate back propagation (gdx) was used due to its ability to update weights

and biases. Also, other factors like learning rate (g) and momentum rate (m) were

chosen as shown in Fig. 5. The Performance of MLPNN was validated through

MSE (Mean Square Error) as given in equation (7). The learning rate parameter

was used during the adjustment of weights and biases to control the speed of learning

algorithm and activation functions (hyperbolic tangent sigmoid and log-sigmoid).

Similarly, the momentum rate and number of hidden neurons also greatly affect

the outcome of MLPNN. In this work, MATLAB e NNTOOL was used to perform

the neural network analysis. The selection process of number of data points for

training, testing and validation will be carried out automatically in NNTOOL. How-

ever, the factors like learning rate, epochs and time could be controlled in the study.
Fig. 4. Structure of MLPNN.
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Fig. 5. MLPNN parameters.
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MSE ¼ sumðy� targetsÞ2
lengthðyÞ ð7Þ

where y is the net of input values and targets expected output value.

The structure of MLPNN is shown in Fig. 4.
3.4.2. MLPNN optimized by genetic algorithm (MLPNN-GA)

Conventional BP algorithm has a significant drawback that it is to be trapped in local

minima.Critical features ofGAare global searching and evolution of parameters. Nat-

ural selection theory and evolutionary biology (survival of the fittest) theories were

used to the global level solution. The global level solution passes through a selection

of individuals, crossover, and mutation. Network training was used for evolution of

MLPNN initial weights and biases. Exchange of weights and biases was used to

communicate between GA and MLPNN. A random group of weights and biases

[W,b] primarily initiated byMLPNN program is shown in Fig. 4 which forms the first

population for GA. The current population is generated based on an arbitrary number

of generations. The fitness function is the difference between the predicted output

value and the actual output value. If the overall mean square error of GA is less

than 0.005 only, then parameters are accepted. Equation (8) was used to calculate

weights and bias.

Nw ¼ (Inþ1) * Nhþ (Nhþ1) * Op (8)

where Nw is an array of weight and bias, In is the number of neurons in input layer, Nh is
the number of neurons in hidden layer and Op is the number of neurons in output layer.

For the GA operation population size of 20, and mutation and crossover, the rate of

0.2 and 0.6 were selected. This optimum weight and bias were embedded into 4-5-1

existing MLPNN as new weight and bias. Optimum values of thrust and torque
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Fig. 6. Structure of MLPNN-GA.
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values were chosen by training the MLPNN network. MLPNN-GA process is shown

in Fig. 6 and optimization flowchart is shown in Fig. 7.

3.5. Response optimizer (RO)

Response optimizer is one of the tools of RSM. In this work, RO was used to find the

optimum parameters for the thrust and torque force. It is an advanced tool to opti-

mize the set of response variables by a combination of input variables. It quantifies

the relationship between the controllable input parameters and the obtained response

surfaces. It calculates the optimal solution, produces an optimization plot and per-

forms the sensitivity analysis.
4. Results and discussion

This section is divided into four subsections: (1) Hypothesis, (2) Analysis of RSM,

MLPNN-GA, and ANOVA predictive mode, (3) Effect of process parameters on

thrust and torque force, and (4) Selection of optimum parameters.

4.1. Hypothesis

The following assumptions were made for analyzing the thrust and torque models:

� The loading of the tool is uniformly distributed and not present at the centre of

tool;

� The laminate does not bend during drilling under the thrust or torque generated

by the tool; and

� Peel up delamination was considered negligible as compared to push out

delamination.
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Fig. 7. Flowchart for optimization.
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4.2. Thrust force

The thrust force was measured experimentally and predicted by RSM and MLPNN-

GA during the drilling of AFRP composites, as shown in Table 7. In this study, solid

carbide drill bit was used.
4.2.1. Analysis of predictive models

4.2.1.1. Analysis of ANOVA

The goodness of the fit ANOVA had been performed and the results of ANOVA are

shown in Table 8. The P-values less than 0.05 indicated that the model was quite

adequate at 95% confidence limit. In addition, the goodness of the fit had been tested

by the correlation coefficient, R2. The predicted R2 value of 97.93% is in good
on.2018.e00703
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Table 7. Experimental and predicted results of thrust force during drilling of AFRP composites.

Test no. THRUST Test no. THRUST

aExp. RSM bMLPNN cMLPNN-GA aExp. RSM bMLPNN cMLPNN-GA

1 98.32 98.928 97.243 100.923 28 122.31 123.919 123.134 123.684

2 100.61 100.957 101.342 99.266 29 126.76 126.465 124.327 127.138

3 101.45 102.027 103.221 101.022 30 129.44 128.052 130.579 129.421

4 87.59 88.097 88.812 87.398 31 120.04 113.186 118.254 119.791

5 91.75 91.387 91.403 90.839 32 113.78 116.993 115.610 113.003

6 94.49 93.717 92.720 95.676 33 118.49 119.840 119.090 118.881

7 74.68 77.716 75.322 73.542 34 102.06 102.903 103.902 102.767

8 86.03 82.267 87.625 87.355 35 104.72 107.971 106.192 103.059

9 86.77 85.858 86.420 85.635 36 113.07 112.079 111.119 113.280

10 112.44 111.498 110.532 110.238 37 137.37 137.617 138.193 138.358

11 114.43 112.412 113.309 113.022 38 137.72 139.048 136.763 138.132

12 111.52 112.366 110.238 112.079 39 138.87 139.519 138.391 137.206

13 98.57 100.590 99.601 99.841 40 128.59 126.807 127.924 127.773

14 102.92 102.765 103.758 101.261 41 130.06 129.499 131.014 129.658

15 102.40 103.980 101.005 103.813 42 132.54 131.230 130.605 133.815

16 91.84 90.132 92.142 91.104 43 114.84 116.447 113.065 114.945

17 93.50 93.568 93.351 91.738 44 121.71 120.399 123.520 119.578

(continued on next page)
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Table 7. (Continued )
Test no. THRUST Test no. THRUST

aExp. RSM bMLPNN cMLPNN-GA aExp. RSM bMLPNN cMLPNN-GA

18 94.26 96.043 94.461 95.735 45 123.73 123.392 124.220 124.637

19 107.55 108.265 108.091 108.971 46 134.29 135.512 132.781 135.257

20 108.32 108.064 106.635 108.270 47 135.65 135.827 134.133 135.376

21 109.03 106.902 107.503 110.901 48 136.48 135.183 134.187 136.417

22 98.45 97.280 100.034 98.967 49 125.43 124.624 126.897 125.127

23 96.28 98.339 97.320 96.315 50 126.62 126.201 127.011 126.337

24 97.64 98.439 98.912 98.944 51 124.15 126.817 125.773 124.389

25 87.94 86.745 88.154 87.903 52 112.14 114.187 113.264 113.290

26 88.72 89.065 89.987 88.188 53 118.67 117.024 117.442 119.439

27 90.33 90.425 91.468 90.443 54 120.11 118.901 123.001 121.024

Error (Avg.) 1.23% 1.100% 0.83%

a Experimental.
b Average values for 54 trials of MLPNN-initial weights and bias.
c Average values for 54 trials of MLPNN after optimizing the initial weights and bias using MLPNN-GA model.
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Table 8. Analysis of Variance (ANOVA) for thrust force.

Source DF Seq SS Adj SS Adj MS F-value P-value % Contribution

Model 13 14370.9 14370.9 1105.45 268.53 0.000 98.87%

Linear 4 13536.2 13536.2 3384.05 822.04 0.000 93.12%

DA 1 9648.3 9648.3 9648.33 2343.73 0.000 66.38%

DD 1 587.6 587.6 587.58 142.73 0.000 4.04%

SPEED 1 3162.9 3162.9 3162.94 768.33 0.000 21.76%

FEED 1 137.4 137.4 137.36 33.37 0.000 0.94%

Square 3 752.6 752.6 250.87 60.94 0.000 5.18%

DD*DD 1 749.2 749.2 749.24 182.00 0.000 5.15%

SPEED*SPEED 1 0.6 0.6 0.61 0.15 0.703 0.00%

FEED*FEED 1 2.8 2.8 2.76 0.67 0.417 0.02%

2-Way interaction 6 82.1 82.1 13.68 3.32 0.009 0.56%

DA*DD 1 11.4 11.4 11.45 2.78 0.103 0.08%

DA*SPEED 1 0.1 0.1 0.09 0.02 0.886 0.00%

DA*FEED 1 2.4 2.4 2.40 0.58 0.449 0.02%

DD*SPEED 1 0.1 0.1 0.14 0.03 0.853 0.00%

DD*FEED 1 29.9 29.9 29.86 7.25 0.010 0.21%

SPEED*FEED 1 38.2 38.2 38.15 9.27 0.004 0.26%

Error 40 164.7 164.7 4.12 1.13%

Total 53 14535.6 100.00%

Model summary of ANOVA S R-sq R-sq(adj) R-sq(pred)
2.02896 98.87% 98.50% 97.93%

R-sq ¼ R2; Percentage variation with respect to the response. Higher the R2 value, better is the model
fitness.
R-sq(adj) ¼ adjusted R2; Percentage variation with respect to the response. Value is adjusted relative to
number of predictors and observations in the model. It helps in choosing the correct model by number of
predictors.
R-sq(pred) ¼ predicted R2; It determines how well the model predicts when observation is removed.
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agreement with an adjusted R2 value of 98.50%. So, it confirmed that the model

could be accepted; and the values DA, DD, speed, and feed were directly related

to thrust force. However, DA and speed were the most significant factors affecting

the thrust force. Moreover, residual analysis was performed to check the accuracy

of the model. The normal probability plot of the residuals of thrust force is shown

in Figs. 8 and 9 illustrates that the errors were normally distributed and follow a

straight line which supported the least square fit. The value of R2 is found to be

98.87% indicating an excellent goodness of the fit and clarified that excellent varia-

tion in the output between response and targets.

Equation (9) describes the calculated thrust force from regression coefficients of

Equation (5).
on.2018.e00703
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Fig. 8. Normal probability plot of residuals.
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THRUST ¼ �85.1 þ 0.728 DA þ 33.32 DD � 0.0485 SPEED þ 0.144 FEED �
1.975 DD*DD þ 0.000002 SPEED*SPEED � 0.000768 FEED*FEED þ 0.0201

DA*DD þ 0.000012 DA*SPEED þ 0.000738 DA*FEED � 0.000128

DD*SPEED � 0.02231 DD*FEED þ 0.000168 SPEED*FEED (9)

4.2.1.2. Analysis of MLPNN-GA

Fig. 10 shows linear regression between training, validation, and testing of MLPNN-

GA model after optimizing the initial weight and bias of MLPNN model. From

Fig. 10, it is confirmed that target line ratio of MLPNN-GA model oscillated slightly

demonstrating that the predicted value differed from experimentally measured value.

Moreover, the predicted values were nearer to one which signified that there is an

excellent linear relationship between the output value and experimentally deter-

mined value. The optimal MLPNN-GA configuration obtained is 4-5-1 (five neurons

in Nh) with learning rate and momentum rate values of 0.7534 and 0.0025 respec-

tively. Final values of MLPNN training record are shown in Table 9.

Fig. 9. Plot of residuals against fitted values.
4.2.1.3. Comparison of RSM, MLPNN and MLPNN-GA models

Table 7 and Fig. 11 exhibited the values and plots of experimentally measured thrust

force and predicted from RSM, MLPNN, and MLPNN-GA. From Table 7 and
on.2018.e00703
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Fig. 11, it is observed that MLPNN-GA model exhibited lower variations than the

MLPNN model and MLPNN model was bound to local minima [37]. From

Fig. 11, it is confirmed that RSM and MLPNN-GA predicted values were closely

related to experimentally measured thrust force. Before optimization of initial

weights and bias, an average error of 1.1% was noticed with MLPNN. However,

when weights and biases were optimized using MLPNN-GA model, the average er-

ror was reduced to 0.83% and the number of times required to train MLPNN-GA also

reduced. The study showed that MLPNN-GA has less average error than that of

RSM. Though, RSM and MLPNN-GA models achieved an average error of less

than 4%, and both the models could be used for predicting thrust force during drilling

of AFRP composites. From the Table 7, we can realize that average error of RSM

was greater than MLPNN and GA-MLPNN techniques. The reason could be due

to RSM is a straightforward approach and there no place for tuning the values.

On the other hand, in MLPNN-GA the fine-tuning of the weight and bias of MLPNN

could be done; and new weight and bias can be re-uploaded to the existing neural

network to get the final accurate and precision values. From Fig. 10 its confirmed

that MLPNN-GA model has superior performance and computation time taken by

MLPNN-GA was 20 times more than that of RSM.

4.2.2. Effect of process parameters on thrust force

Thrust force in the drilling of AFRP composites had been analyzed through RSM by

generating 3D response surface plots and counterplots. Fig. 12a and b exhibits the

Fig. 10. Linear regressions of predictions and targets of MLPNN-GA thrust force.
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Table 9. MLPNN training record for thrust force.

Parameter Value

trainFcn ‘traingdx’

trainParam [1 � 1 nnetParam]

performFcn ‘mse’

performParam [1 � 1 struct]

derivFcn ‘defaultderiv’

divideFcn ‘dividerand’

divideMode ‘sample’

divideParam [1 � 1 struct]

trainInd [1 � 38 double]

valInd [2 3 12 18 33 36 44 53]

testInd [11 13 27 29 31 41 43 48]

stop ‘Maximum epoch reached.’

num_epochs 5000

trainMask {[1 � 54 double]}

valMask {[1 � 54 double]}

testMask {[1 � 54 double]}

best_epoch 18

goal 0

states {‘epoch’ ‘time’ ‘perf’ ‘vperf’ ‘tperf’ ‘gradient’ ‘val_fail’ ‘lr’}

epoch [1 � 5001 double]

time [1 � 5001 double]

perf [1 � 5001 double]

vperf [1 � 5001 double]

tperf [1 � 5001 double]

gradient [1 � 5001 double]

val_fail [1 � 5001 double]

lr [1 � 5001 double]

best_perf 5.5930

best_vperf 0.3192

best_tperf 4.0740
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influence of drill point angle and drill diameter on thrust force when speed and feed

was held constant at 1200 rpm and 50 mm/min respectively. Fig. 13a and b exhibits

the effect of drill point angle and drill diameter on thrust force when speed and feed

was held constant at 600 rpm and 100 mm/min respectively. From Figs. 12a and 13a,

observed that drill point angle and drill diameter were sensitive to thrust force and

non-linear to the given speed and feed. Similarly, at higher speed and lower feed

the induced thrust force was less than that of the lower speed and higher feed, see

Figs. 12b and 13b. The study showed that irrespective of the drill point angle and
on.2018.e00703
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Fig. 11. Comparison of experiment and predicted results for thrust force.

Fig. 12. Effect of drill point angle and drill diameter on thrust force for a speed ¼ 1200 rpm and feed ¼
50 mm/min.

Fig. 13. Effect of drill point angle and drill diameter on thrust force for a speed ¼ 600 rpm and feed ¼
100 mm/min.
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drill diameter, higher speed and lower feed was necessary to obtain less thrust force;

which justified the importance of high-speed in drilling [10, 15]. Fig. 14a and b ex-

hibited the interaction of SPEED and FEED on thrust force when drill point angle

and drill diameter held constant at 90� and 6 mm respectively. Similarly, interaction

due to SPEED and FEED on thrust force, when drill point angle and feed was held

constant at 118� and 10 mm respectively is highlighted in Fig. 15a and b. From Figs.

14a and 15a confirmed that speed and feed vary linearly with the chosen drill point

angle and drill diameter; and from Figs. 14b and 15b observed that maintaining
on.2018.e00703
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Fig. 14. Effect of speed and feed on thrust force for a point angle ¼ 90� and drill diameter ¼ 6 mm.

Fig. 15. Effect of speed and feed on thrust force for a point angle ¼ 118� and drill diameter ¼ 10 mm.
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lower drill point angle and drill diameter resulted in less thrust force. Thus, overall

study results indicated that minimum thrust force resulted from the combination of

lower values of drill point angle, drill diameter, feed, and higher amounts of speed.

Also, from response surface analysis, it is confirmed that low values of drill point

angle and drill diameter is advantageous in the drilling of AFRP composites to

reduce the damage. However, rise in cutting speed resulted in temperature increase

due to friction between the board and the cutting edge, which led to softening of the

matrix. This resulted in decrease of cut fibres and less deformed matrix, hence lower

damage to the surface. When the drill point angle is reduced, the cross-sectional area

of un-deformed chip decreased which resulted in cutting edge angle reduction.

Hence, the thrust force is reduced as shown in Figs. 16 and 17. Moreover when

the drill diameter was increased, the contact area of the hole also augmented which

resulted in increased thrust force. Similarly, the feed rate is in direct relationship with

the area of cut; as the feed increased the area of cut increased which demanded more

thrust force and caused damage to the workpiece.
4.2.3. Selection of optimum parameters

The obtained thrust force results were transformed into S-N ratio using Equation (9).

Table 10 and Fig. 18 represent response table for S-N ratio and plot of S-N ratio

respectively. Delta values measure the size of the effect by taking the difference
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Fig. 16. Drill point angle 90�.

Fig. 17. Drill point angle 118�.
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Table 10. Response table for signal to noise ratios.

Level DA DD SPEED FEED

1 �39.72 �40.25 �41.53 �40.60

2 �41.85 �41.21 �40.79 �40.82

3 �40.90 �40.03 �40.93

Delta 2.12 0.96 1.50 0.33

Rank 1 3 2 4

Fig. 18. Thrust force: plot of S-N ratio.
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between the highest and least characteristic average for a factor. From Table 10 and

Fig. 18, it is confirmed that drill point angle is the most significant factor affecting the

thrust force followed by spindle speed, drill diameter and feed.
4.2.4. Optimization of thrust force

RSM and MLPNN-GA were used to optimize the torque force. From Figs. 19 and 20

confirmed that optimal values of thrust force were close to each other with a devia-

tion of less than 1% error. Thus, from the study it is confirmed that both RSM and

MLPNN-GA could be used for modeling the thrust force. According to Figs. 19 and

20 the DA value of 90�, DD of 6 mm, the speed of 1200 rpm and feed of 50 mm/min

is the best combination to obtain the minimum thrust force.
4.3. Torque

Table 11 represents the experimentally measured toque force using solid carbide

drill bit and predicted from RSM and MLPNN-GA.
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Fig. 19. RSM: optimization plot of thrust force.

Fig. 20. MLPNN-GA: optimization plot of thrust force.

26 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00703
4.3.1. Analysis of RSM, MLPNN-GA and ANOVA predictive
models

4.3.1.1. Analysis of RSM

The goodness of the fit ANOVA had been performed, and the results of ANOVA are

shown in Table 12. The P-values less than 0.05 indicated that the model is quite

adequate at 95% confidence limit. Further, the goodness of the fit had been tested

by the correlation coefficient, R2. The predicted R2 value of 91.33% is in good agree-

ment with adjusted R2 value of 93.57% and confirmed that the model could be

accepted. The studies proved that DA and speed were the most significant factors
on.2018.e00703
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Table 11. Experimental and predicted results of torque force during drilling of

AFRP composite.

Test
no.

TORQUE Test
no.

TORQUE

Exp. RSM MLPNN MLPNN-GA Exp. RSM MLPNN MLPNN-GA

1 20.82 19.989 20.664 20.141 28 18.33 17.983 17.297 18.038

2 20.64 20.114 20.331 19.691 29 16.66 18.039 16.277 17.133

3 20.24 19.488 20.229 20.905 30 16.16 17.344 16.007 16.392

4 17.41 18.295 17.013 17.429 31 17.02 17.161 17.061 17.040

5 18.20 18.701 18.321 19.126 32 17.80 17.498 16.566 17.408

6 18.03 18.354 18.961 18.643 33 17.83 17.082 17.340 18.046

7 15.99 15.805 15.397 15.570 34 15.59 15.542 15.912 16.010

8 16.79 16.490 16.219 16.993 35 16.51 16.159 16.022 16.605

9 16.91 16.424 16.187 17.086 36 15.57 16.023 16.211 15.570

10 22.09 20.005 23.129 21.907 37 17.30 17.644 17.757 17.047

11 20.01 20.282 20.315 20.239 38 17.75 17.852 18.882 17.628

12 20.33 19.807 21.091 20.079 39 18.22 17.309 19.008 17.884

13 16.19 18.685 16.802 15.679 40 18.02 17.197 18.305 17.047

14 17.55 19.243 17.493 17.869 41 17.90 17.685 18.533 17.964

15 18.39 19.048 19.331 19.133 42 17.68 17.421 16.723 18.113

16 16.56 16.569 17.222 16.584 43 16.19 15.952 16.099 17.048

17 17.41 17.406 16.129 17.708 44 17.26 16.720 17.434 17.219

18 17.28 17.491 17.595 17.899 45 16.93 16.736 17.883 16.500

19 25.39 26.578 25.934 25.853 46 23.62 23.863 23.447 23.752

20 26.14 27.007 26.127 26.211 47 24.80 24.223 24.002 24.923

21 25.75 26.684 25.574 25.577 48 23.80 23.831 23.893 25.111

22 26.68 25.633 28.113 26.472 49 23.89 23.790 23.400 23.203

23 27.80 26.342 27.404 27.556 50 24.86 24.430 25.601 24.553

24 27.45 26.299 28.371 26.076 51 24.49 24.318 24.254 24.709

25 24.43 23.891 25.421 24.354 52 21.99 22.919 22.633 22.697

26 25.72 24.880 26.822 26.330 53 23.12 23.839 23.766 22.931

27 24.44 25.117 25.413 24.942 54 23.29 24.007 22.040 22.995

Error
(Avg.)

3.09% 2.950% 1.960%
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affecting torque. Residual analysis was performed to check the accuracy of the

model. The normal probability plot of the residuals of torque is shown in Figs. 21

and 22. The study results illustrated that errors were normally distributed and follow

a straight-line path. The value of R2 is found to be 95.14% and proper variation be-

tween the response and targets. Equation (10) explains the calculated thrust force

from regression coefficients obtained from Equation (5).
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Table 12. Analysis of variance (ANOVA) for torque.

Source DF Seq SS Adj SS Adj MS F-value P-value % Contribution

Model 13 693.957 693.957 53.381 95.14% 95.14% 95.14%

Linear 4 547.534 547.534 136.884 75.07% 75.07% 75.07%

DA 1 32.760 32.760 32.760 4.49% 4.49% 4.49%

DD 1 477.860 477.860 477.860 65.52%- 65.52% 65.52%

SPEED 1 36.140 36.140 36.140 4.95% 4.95% 4.95%

FEED 1 0.774 0.774 0.774 0.11% 0.11% 0.11%

Square 3 132.618 132.618 44.206 18.18% 18.18% 18.18%

DD*DD 1 129.013 129.013 129.01 17.69% 17.69% 17.69%

SPEED*SPEED 1 1.907 1.907 1.907 0.26% 0.26% 0.26%

FEED*FEED 1 1.698 1.698 1.698 0.23% 0.23% 0.23%

2-Way interaction 6 13.805 13.80 2.30 1.89% 1.89% 1.89%

DA*DD 1 1.131 1.131 1.131 0.16% 0.16% 0.16%

DA*SPEED 1 6.838 6.838 6.838 0.94% 0.94% 0.94%

DA*FEED 1 0.043 0.043 0.043 0.01% 0.01% 0.01%

DD*SPEED 1 3.360 3.360 3.360 0.46% 0.46% 0.46%

DD*FEED 1 0.552 0.552 0.552 0.08% 0.08% 0.08%

SPEED*FEED 1 1.882 1.882 1.882 0.26% 0.26% 0.26%

Error 40 35.412 35.412 0.885 4.86% 4.86% 4.86%

Total 53 729.369 100.00% 100.00% 100.00%

Model summary of ANOVA S R-sq R-sq (adj) R-sq (pred)
0.940904 95.14% 93.57% 91.33%
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TORQUE ¼ 70.24e0.0910 DA � 11.42 DD � 0.01395 SPEED þ 0.0485 FEED

þ 0.8197 DD*DD � 0.000004 SPEED*SPEED � 0.000602 FEED*FEED �
0.00633 DA*DD þ 0.000104 DA*SPEED � 0.000098 DA*FEED þ 0.000624

DD*SPEED þ 0.00303 DD*FEED þ 0.000037 SPEED*FEED (10)

4.3.1.2. Analysis of MLPNN-GA

The linear regression between training, validation, and testing of MLPNN-GA

model is shown in Fig. 23. From Fig. 23 it is confirmed that the target line ratio

of MLPNN-GA model oscillated slightly; indicating that the predicted value

differed from the experimentally measured value. The predicted values were nearer

to one which means that there is a good linear relationship between the output value

and experimentally measured value. The obtained optimal MLPNN-GA configura-

tion is 4-5-1 (five neurons in Nh) with learning rate and momentum rate as 0.8512
on.2018.e00703
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Fig. 21. Normal probability plot of residuals.

Fig. 22. Residuals versus fitted values.
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and 0.0027 respectively. Final values of MLPNN training record are shown in

Table 13.
4.3.1.3. Comparison of RSM, MLPNN-GA and ANOVA predictive
models

Table 11 and Fig. 24 shows the comparison of experimentally measured torque force

and values predicted by RSM, MLPNN, and MLPNN-GA respectively. It was

observed that MLPNN-GA model exhibited lower variations than the MLPNN

model. From Fig. 24, observed that RSM and MLPNN-GA predicted values were

closely related to experimentally measured torque force. Furthermore, from

Table 11 confirmed that an average error of 2.95% with MLPNN was observed

before optimization of initial weights and bias. When weights and biases were opti-

mized using MLPNN-GA model, the average error was reduced to 1.60% and the

number of times required training the MLPNN-GA also significantly reduced. The

study results indicated that both RSM and MLPNN-GA models achieved an average

error less than 4%, and both the models could be used for predicting the torque while

drilling of AFRP composites. From Fig. 23 it can be confirmed that MLPNN-GA

model has excellent performance and computation time taken by MLPNN-GA is

25 times more than that of RSM.
on.2018.e00703
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Fig. 23. Linear regressions of predictions and targets of MLPNN-GA.
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4.3.2. Influence of process parameters on torque

Torque in the drilling of AFRP composites had been analyzed through RSM pre-

dicted model by generating 3D response surface plots and counterplots. Fig. 25a

and b exhibits the effect of drill point angle and drill diameter on torque with speed

and feed held constant at 1200 rpm and 50 mm/min respectively. Fig. 26a and b ex-

hibits effect of drill point angle and drill diameter on torque with speed and feed held

constant at 600 rpm and 100 mm/min respectively. From Figs. 25a and 26a,

perceived that drill point angle and drill diameter were sensitive to torque force

and linear to the given speed and feed. From the study, it was confirmed that torque

is much lesser at drill diameter of 7 mm. Figs. 25b and 26b confirmed that the

induced torque was lower at higher speed and lower feed. This indicated that irre-

spective of drill point angle and drill diameter, higher speed and lower feed is neces-

sary to obtain lower torque. Fig. 27a and b emphasized the effect of SPEED and

FEED on torque with drill point angle and drill diameter held constant at 90� and

10 mm respectively. Similarly, Fig. 28a and b highlighted the effect of SPEED

and FEED on torque with drill point angle and feed held constant at 118� and

7 mm respectively. From Figs. 27a and 28a, confirmed that speed and feed vary

non-linearly with drill point angle and drill diameter. Also, from Figs. 27b and

28b observed that maintaining a higher drill point angle and lower drill diameter re-

sulted in less torque. Thus, from the study it is confirmed that minimum torque re-

sulted from combination of lower values of drill diameter and feed, and higher
on.2018.e00703
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Table 13. MLPNN training record for torque force.

Parameter Value

trainFcn ‘traingdx’

trainParam [1 � 1 nnetParam]

performFcn ‘mse’

performParam [1 � 1 struct]

derivFcn ‘defaultderiv’

divideFcn ‘dividerand’

divideMode ‘sample’

divideParam [1 � 1 struct]

trainInd [1 � 38 double]

valInd [3 6 8 12 27 47 48 50]

testInd [4 15 18 20 30 41 43 51]

stop ‘Maximum epoch reached.’

num_epochs 5000

trainMask {[1 � 54 double]}

valMask {[1 � 54 double]}

testMask {[1 � 54 double]}

best_epoch 96

goal 0

states {‘epoch’ ‘time’ ‘perf’ ‘vperf’ ‘tperf’ ‘gradient’ ‘val_fail’ ‘lr’}

epoch [1 � 5001 double]

time [1 � 5001 double]

perf [1 � 5001 double]

vperf [1 � 5001 double]

tperf [1 � 5001 double]

gradient [1 � 5001 double]

val_fail [1 � 5001 double]

lr [1 � 5001 double]

best_perf 0.3858

best_vperf 1.4342

best_tperf 0.6894
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values of speed and drill point angle, which is necessary in the drilling of AFRP

composites. As the cutting speed increased there is an increase in temperature due

to friction between the board and the cutting edge. This led to softening of the matrix

which resulted in less amount of material gets attached to the drill bit and less dete-

rioration of the drilling surface. Also, at larger drill point angle, the tool has small lip

length which created the less torque. Similarly, the contact area of the hole enlarged

with increase in the drill diameter, which resulted rise in the torque. Furthermore, the

feed rate is in direct relationship with specific cutting energy. The area of specific
on.2018.e00703
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Fig. 24. Comparison plots of experimental and predicted results.

Fig. 25. Effect of drill point angle anddrill diameter on torque for a speed¼ 1200 rpmand feed¼ 50mm/min.

Fig. 26. Effect of drill point angle anddrill diameter on torque for a speed¼ 600 rpmand feed¼ 100mm/min.

Fig. 27. Effect of speed and feed on torque for a point angle ¼ 90� and drill diameter ¼ 10 mm.
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Fig. 28. Effect of speed and feed on torque for a point angle ¼ 118� and drill diameter ¼ 7 mm.
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cutting energy also increased with enhanced feed, which demanded high torque and

more damage to AFRP composites.
4.3.3. Selection of optimum parameters

The obtained torque results were transformed into S-N ratio using Equation (10).

Table 14 and Fig. 29 represent the response table for S-N ratio and plot of S-N ratio
Table 14. Response table for signal to noise ratios.

Level DA DD SPEED FEED

1 �26.26 �24.87 �26.35 �25.82

2 �25.62 �25.05 �26.04 �26.05

3 �27.90 �25.44 �25.95

Delta 0.64 3.03 0.91 0.23

Rank 3 1 2 4

Fig. 29. Torque force: plot of S-N ratio.
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Fig. 30. RSM: optimization plot of torque.
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respectively. From the Table 12 delta values and Fig. 29, it is clear that drill diam-

eter, drill point angle are the most significant factors affecting the torque. These re-

sults were in line with surface and counterplots of torque.
4.3.4. Optimization of torque force

RSM and MLPNN-GA were used to optimize the torque force and plots were gener-

ated using ’MINITAB0 software. Figs. 30 and 31 plots showed the optimum combi-

nations of the factors were required to achieve the minimum torque force. It can be

seen that optimal values of torque were close to each other with a deviation of less
Fig. 31. MLPNN-GA: optimization plot of torque.
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than 1%. The study results demarcated that both RSM and MLPNN-GA could be

used for modeling of torque force. According to Figs. 30 and 31, DA value of

118�, DD of 7 mm, Speed of 1200 rpm and feed of 50 mm/min are the best combi-

nation to obtain the minimum torque.
5. Conclusions

An investigative analysis of the influence of process parameters on thrust force and

torque in the drilling of Aramid Fibre Reinforced Plastic (AFRP) composites had

been carried out in this paper and the following are the outcomes of the work:

1. The thrust force and torque were studied with respect to cutting speed, feed rate,

drill point angle and drill diameter by developing RSM and MLPNN-GA

models. The developed MLPNN-GA model provided higher accuracy than

RSM. The predicted values of thrust force and torque of RSM and MLPNN-

GA models closely matched with the experimental values which signified the

accuracy of the developed model.

2. The values of optimum thrust force and torque were obtained by response opti-

mizer of RSM and MLPNN-GA. They were close to each other with a deviation

of less than 1% error. This showed that MLPNN-GA model could be used effec-

tively to predict drilling parameters in AFRP composites.

3. The study indicated that parameters required to obtain the minimum thrust force

are 90�drill point angle, 6 mm drill diameter, 1200 rpm spindle speed and 50

mm/min feed rate. Similarly, parameters to obtain the minimum torque force

are 118� drill point angle, 6.9 w 7 mm drill diameter, 1200 rpm spindle speed

and 50 mm/min feed rate.

4. This study recommends the use of high speed and low feed combination and

drill point angles of 90�e118� to reduce the delamination of the materials in

the drilling of AFRP composites. Also, normal probability plots of the residuals

follow a straight-line pattern indicating that this work would be useful for indus-

tries during the selection of process parameters for drilling of AFRP composites.
Declarations

Author contribution statement

Anarghya A., Harshith D.N., Nitish Rao: Analyzed and interpreted the data; Contrib-

uted reagents, materials, analysis tools or data; Wrote the paper.

Nagaraj S. Nayak: Conceived and designed the experiments; Analyzed and inter-

preted the data; Contributed reagents, materials, analysis tools or data.
on.2018.e00703

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00703
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00703
Gurumurthy B.M., Abhishek V.N., Ishwar Gouda S. Patil: Performed the experi-

ments; Analyzed and interpreted the data; Contributed reagents, materials, analysis

tools or data; Wrote the paper.
Funding statement

This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.
Competing interest statement

The authors declare no conflict of interest.
Additional information

No additional information is available for this paper.
References

[1] C. Soutis, Fibre reinforced composites in aircraft construction, Prog. Aerosp.

Sci. 41 (2005) 143e151.

[2] T.J. Singh, S. Samanta, Characterization of Kevlar fibre and its composites: a

review, Mater. Today Proc. 2 (2015) 1381e1387.

[3] J.K. Fink, 13 Aramids, 2014, pp. 301e320.

[4] G.R. Bishop, N.N.Z. Gindy, An investigation into the drilling of ballistic Kev-

lar composites, Compos. Manuf. 1 (1990) 155e159.

[5] L. Zheng, H. Zhou, C. Gao, J. Yuan, Hole drilling in ceramics/Kevlar fibre

reinforced plastics double-plate composite armor using diamond core drill,

Mater. Des. 40 (2012) 461e466.

[6] A. Di Ilio, V. Tagliaferri, F. Veniali, Cutting mechanisms in drilling of aramid

composites, Int. J. Mach. Tools Manuf. 31 (1991) 155e165.

[7] D. Bhattacharyya, D.P.W. Horrigan, A study of hole drilling, Compos. Sci.

Technol. 58 (1998) 267e283.

[8] T. Hirogaki, E. Aoyama, H. Inoue, K. Ogawa, S. Maeda, T. Katayama, Laser

drilling of blind via holes in aramid and glass/epoxy composites for multi-

layer printed wiring boards, Compos. Part A Appl. Sci. Manuf. 32 (2001)

963e968.

[9] D. Liu, Y. Tang, W.L. Cong, A review of mechanical drilling for composite

laminates, Compos. Struct. 94 (2012) 1265e1279.
on.2018.e00703

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(17)31277-X/sref1
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref1
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref1
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref2
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref2
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref2
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref3
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref3
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref4
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref4
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref4
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref5
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref5
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref5
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref5
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref6
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref6
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref6
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref7
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref7
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref7
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref8
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref8
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref8
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref8
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref8
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref9
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref9
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref9
https://doi.org/10.1016/j.heliyon.2018.e00703
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00703
[10] N. Feito, J. Diaz-�Alvarez, J. L�opez-Puente, M.H. Miguelez, Numerical anal-

ysis of the influence of tool wear and special cutting geometry when drilling

woven CFRPs, Compos. Struct. 138 (2016) 285e294.

[11] Y. Karpat, B. Deger, O. Bahtiyar, Drilling thick fabric woven CFRP laminates

with double point angle drills, J. Mater. Process. Technol. 212 (2012)

2117e2127.

[12] K. Palanikumar, Experimental investigation and optimisation in drilling of

GFRP composites, Meas. J. Int. Meas. Confed. 44 (2011) 2138e2148.

[13] T. sunny, J. Babu, J. Philip, Experimental studies on effect of process param-

eters on delamination in drilling GFRP composites using Taguchi method,

Proc. Mater. Sci. 6 (2014) 1131e1142.

[14] V. Krishnaraj, A. Prabukarthi, A. Ramanathan, N. Elanghovan, M.S. Kumar,

R. Zitoune, J.P. Davim, Composites: part B optimization of machining param-

eters at high speed drilling of carbon fibre reinforced plastic (CFRP) laminates,

Compos. Part B 43 (2012) 1791e1799.

[15] N.S. Mohan, A. Ramachandra, S.M. Kulkarni, Influence of process parameters

on cutting force and torque during drilling of glass-fibre polyester reinforced

composites, Compos. Struct. 71 (2005) 407e413.

[16] C.C. Tsao, H. Hocheng, Taguchi analysis of delamination associated with

various drill bits in drilling of composite material, Int. J. Mach. Tools Manuf.

44 (2004) 1085e1090.

[17] C.C. Tsao, Y.C. Chiu, Evaluation of drilling parameters on thrust force in dril-

ling carbon fibre reinforced plastic (CFRP) composite laminates using com-

pound core-special drills, Int. J. Mach. Tools Manuf. 51 (2011) 740e744.

[18] U.A. Khashaba, A.I. Selmy, A.A. Megahed, Composites: part A machinability

analysis in drilling woven GFR/epoxy composites: part I e effect of machining

parameters, Compos. Part A Appl. Sci. Manuf. 41 (2010) 391e400.

[19] T.V. Rajamurugan, K. Shanmugam, K. Palanikumar, Analysis of delamination

in drilling glass fibre reinforced polyester composites, Mater. Des. 45 (2013)

80e87.

[20] N. Zarif, H. Heidary, G. Minak, M. Ahmadi, Effect of the drilling process on

the compression behavior of glass/epoxy laminates, Compos. Struct. 98 (2013)

59e68.

[21] E. Kilickap, Optimization of cutting parameters on delamination based on Ta-

guchi method during drilling of GFRP composite, Expert Syst. Appl. 37

(2010) 6116e6122.
on.2018.e00703

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(17)31277-X/sref10
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref10
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref10
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref10
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref10
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref10
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref11
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref11
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref11
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref11
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref12
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref12
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref12
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref13
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref13
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref13
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref13
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref14
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref14
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref14
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref14
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref14
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref15
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref15
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref15
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref15
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref16
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref16
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref16
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref16
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref17
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref17
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref17
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref17
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref18
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref18
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref18
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref18
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref18
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref19
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref19
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref19
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref19
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref20
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref20
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref20
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref20
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref21
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref21
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref21
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref21
https://doi.org/10.1016/j.heliyon.2018.e00703
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00703
[22] S.R. Karnik, V.N. Gaitonde, J.C. Rubio, A.E. Correia, A.M. Abr~ao,

J.P. Davim, Delamination analysis in high speed drilling of carbon fibre rein-

forced plastics (CFRP) using artificial neural network model, Mater. Des. 29

(2008) 1768e1776.

[23] V. Kumar, V. Ganta, Optimization of process parameters in drilling of GFRP

composite using Taguchi method, Integr. Med. Res. 3 (2013) 35e41.

[24] V.N. Gaitonde, S.R. Karnik, J.C. Rubio, A.E. Correia, A.M. Abr~ao,

J.P. Davim, Analysis of parametric influence on delamination in high-speed

drilling of carbon fibre reinforced plastic composites, J. Mater. Process. Tech-

nol. 203 (2008) 431e438.

[25] X. Wang, P.Y. Kwon, C. Sturtevant, D.D.W. Kim, J. Lantrip, Tool wear of

coated drills in drilling CFRP, J. Manuf. Process. 15 (2013) 87e95.

[26] C.C. Tsao, H. Hocheng, Y.C. Chen, Delamination reduction in drilling com-

posite materials by active backup force, CIRP Ann. Manuf. Technol. 61

(2012) 91e94.

[27] N. Zarif Karimi, H. Heidary, G. Minak, Critical thrust and feed prediction

models in drilling of composite laminates, Compos. Struct. 148 (2016) 19e26.

[28] P. Rahme, Y. Landon, F. Lachaud, R. Piquet, P. Lagarrigue, Delamination-

free drilling of thick composite materials, Compos. Part A Appl. Sci. Manuf.

72 (2015) 148e159.

[29] N. Feito, J. L�opez-puente, C. Santiuste, M.H. Migu�elez, Numerical prediction

of delamination in CFRP drilling, Compos. Struct. 108 (2014) 677e683.

[30] C.C. Tsao, Experimental study of drilling composite materials with step-core

drill, Mater. Des. 29 (2008) 1740e1744.

[31] A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks: a tutorial,

Comput. Long Beach Calif. 29 (1996) 31e44.

[32] M. a Shahin, M.B. Jaksa, H.R. Maier, Artificial neural network applications in

geotechnical engineering, Aust. Geomech. 36 (2001) 49e62.

[33] S. Haykin, N. Networks, A.C. Foundation, Exploring the diversity of artificial

neural network architectures, J. Math. Psychol. 292 (1997) 287e292.

[34] B.Yegnanarayana,ArtificialNeuralNetworks, Prentice-Hall of India, 1999. https://

books.google.co.in/books/about/ARTIFICIAL_NEURAL_NETWORKS.html?

id¼RTtvUVU_xL4C. (Accessed 18 September 2017).

[35] D.B. Fogel, Review of computational intelligence: imitating life [Book re-

views], Proc. IEEE 83 (1995) 1588e1592.
on.2018.e00703

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(17)31277-X/sref22
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref22
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref22
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref22
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref22
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref22
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref23
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref23
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref23
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref24
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref24
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref24
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref24
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref24
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref24
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref25
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref25
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref25
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref26
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref26
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref26
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref26
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref27
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref27
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref27
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref28
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref28
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref28
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref28
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref29
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref29
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref29
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref29
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref29
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref30
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref30
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref30
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref31
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref31
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref31
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref32
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref32
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref32
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref33
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref33
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref33
https://books.google.co.in/books/about/ARTIFICIAL_NEURAL_NETWORKS.html?id=RTtvUVU_xL4C
https://books.google.co.in/books/about/ARTIFICIAL_NEURAL_NETWORKS.html?id=RTtvUVU_xL4C
https://books.google.co.in/books/about/ARTIFICIAL_NEURAL_NETWORKS.html?id=RTtvUVU_xL4C
https://books.google.co.in/books/about/ARTIFICIAL_NEURAL_NETWORKS.html?id=RTtvUVU_xL4C
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref35
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref35
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref35
https://doi.org/10.1016/j.heliyon.2018.e00703
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00703
[36] G. Dini, Online prediction of delamination in drilling of GFRP by using a neu-

ral network approach, Mach. Sci. Technol. (2007).

[37] E.U. Enemuoh, A.S. El-gizawy, A.C. Okafor, An approach for development

of damage-free drilling of carbon fibre reinforced thermosets, Int. J. Mach.

Tools Manuf. 41 (2001) 1795e1814.

[38] F. Yan, Z. Lin, New strategy for anchorage reliability assessment of GFRP

bars to concrete using hybrid artificial neural network with genetic algorithm,

Compos. Part B 92 (2016) 420e433.

[39] R.R.M. Saravanana, D. Ramalingamb, G. Manikandanc, Multi objective opti-

mization of drilling parameters using genetic algorithm, Proc. Eng. 38 (2012)

197e207.

[40] V. Krishnaraj, A. Prabukarthi, A. Ramanathan, N. Elanghovan, M.S. Kumar,

R. Zitoune, J.P. Davim, Optimization of machining parameters at high speed

drilling of carbon fibre reinforced plastic (CFRP) laminates, Compos. Part B

Eng. 43 (2012) 1791e1799.
on.2018.e00703

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(17)31277-X/sref36
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref36
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref37
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref37
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref37
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref37
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref38
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref38
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref38
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref38
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref39
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref39
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref39
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref39
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref40
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref40
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref40
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref40
http://refhub.elsevier.com/S2405-8440(17)31277-X/sref40
https://doi.org/10.1016/j.heliyon.2018.e00703
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Thrust and torque force analysis in the drilling of aramid fibre-reinforced composite laminates using RSM and MLPNN-GA
	1. Introduction
	2. Materials & methods
	2.1. Details of the workpiece
	2.2. Machining set-up

	3. Methodology
	3.1. Taguchi method
	3.2. Analysis of variance (ANOVA)
	3.3. Response surface method (RSM)
	3.4. Modeling of genetic algorithm and neural network
	3.4.1. Multilayer perceptron neural network (MLPNN)
	3.4.2. MLPNN optimized by genetic algorithm (MLPNN-GA)

	3.5. Response optimizer (RO)

	4. Results and discussion
	4.1. Hypothesis
	4.2. Thrust force
	4.2.1. Analysis of predictive models
	4.2.1.1. Analysis of ANOVA
	4.2.1.2. Analysis of MLPNN-GA
	4.2.1.3. Comparison of RSM, MLPNN and MLPNN-GA models

	4.2.2. Effect of process parameters on thrust force
	4.2.3. Selection of optimum parameters
	4.2.4. Optimization of thrust force

	4.3. Torque
	4.3.1. Analysis of RSM, MLPNN-GA and ANOVA predictive models
	4.3.1.1. Analysis of RSM
	4.3.1.2. Analysis of MLPNN-GA
	4.3.1.3. Comparison of RSM, MLPNN-GA and ANOVA predictive models

	4.3.2. Influence of process parameters on torque
	4.3.3. Selection of optimum parameters
	4.3.4. Optimization of torque force


	5. Conclusions
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	References


