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BACKGROUND: Despite the importance of understanding the connection between air pollution exposure and diabetes, studies investigating links
between air pollution and glucose metabolism in nondiabetic adults are limited.
OBJECTIVE:We aimed to estimate the association of medium-term air pollution exposures with blood glucose and glycated hemoglobin A1c (HbA1c)
among nondiabetics.
METHODS: This study included observations from nondiabetic participants (nobs = 7,108) of the population-based Heinz Nixdorf Recall study at baseline
(2000–2003) and follow-up examination (2006–2008). Daily fine particulate matter (aerodynamic diameter≤2:5 lm, PM2:5; aerodynamic diameter
≤10 lm, PM10), accumulation mode particle number (PNAM), and nitrogen dioxide (NO2) exposures were estimated at participants’ residences using the
spatiotemporal European Air Pollution Dispersion (EURAD) chemistry transport model. We evaluated the associations between medium-term air pollu-
tion exposures (28- and 91-d means) and glucose metabolism measures using mixed linear regression and adjusting for season, meteorology, and personal
characteristics. A range of other exposure windows (1-, 2-, 3-, 7-, 14-, 45-, 60-, 75-, 105-, 120-, and 182-dmeans) were also evaluated to identify potentially
relevant biological windows.
RESULTS: We observed positive associations between PM2:5 and PNAM exposures and blood glucose levels [e.g., 28-d PM2:5: 0:91 mg=dL (95% CI:
0.38, 1.44) per 5:7lg=m3]. PM2:5, PM10, and PNAM exposures were positively associated with HbA1c [e.g., 91-d PM2:5: 0:07 p:p: (95% CI: 0.04,
0.10) per 4:0 lg=m3]. Mean exposures during longer exposure windows (75- to 105-d) were most strongly associated with HbA1c, whereas 7- to 45-d
exposures were most strongly associated with blood glucose. NO2 exposure was not associated with blood glucose or with HbA1c.
CONCLUSIONS: Medium-term PM and PNAM exposures were positively associated with glucose measures in nondiabetic adults. These findings indi-
cate that reducing ambient air pollution levels may decrease the risk of diabetes. https://doi.org/10.1289/EHP2561

Introduction
Exposure to particulate matter (PM) in ambient air is a major envi-
ronmental health risk, accounting for an estimated 3.1 million
deaths and 3.1% of global disability-adjusted life years lost world-
wide in 2010 (Lim et al. 2010). Short- and long-term exposure to
these inhalable particles can aggravate respiratory and cardiovas-
cular conditions, increase hospital admissions, and result inmortal-
ity from cardiovascular and respiratory diseases as well as from
lung cancer (WHO 2006). Emerging evidence suggests that expo-
sure to PM may also increase the risk of type 2 diabetes mellitus
(T2DM) in the general population (Balti et al. 2014). Although spe-
cific pathophysiological mechanisms that might contribute to asso-
ciations between PM and T2DM are unclear at present, one
plausible hypothesis is that inhalation of particulate matter causes
oxidative stress in the lungs that can lead to systemic inflammation,

inflammation of adipose tissue, and insulin resistance. Together,
these intermediate outcomes may contribute to a diabetogenic me-
tabolism and eventually lead to the onset of T2DM (Franklin et al.
2015; Rajagopalan andBrook 2012).

In an effort to clarify these pathways, several epidemiological
studies have exploredwhether higher air pollution exposure is associ-
ated with elevated blood glucose levels, a potential sign of increased
insulin resistance. Short-term (days to weeks; Peng et al. 2016),
medium-term (weeks to months; Peng et al. 2016; Sade et al. 2015,
2016), and long-term (≥1 year; Cai et al. 2017; Chuang et al. 2011;
Liu et al. 2016;Ward-Caviness et al. 2015;Wolf et al. 2016) exposure
studies have shown positive associations between a variety of air pol-
lution measures and blood glucose levels. Nevertheless, study find-
ings have been inconsistent for specific pollutants [e.g., particulate
matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2)], and the
latency period required for a cause–effect relationship has received
little attention.

Because blood glucosemeasures are subject to high intraperso-
nal variability, glycated hemoglobin A1c (HbA1c), a biomarker
that reflects average blood glucose levels over the previous 6–8
wk, is a useful instrument for assessing glucose levels and potential
insulin resistance. At present, the epidemiological studies that have
evaluated associations between long-term outdoor air pollution
exposures (PM, NO2, SO2) and HbA1c level show mixed results
(Chuang et al. 2011; Honda et al. 2017; Liu et al. 2016; Tamayo
et al. 2014, 2016; Wolf et al. 2016). The few studies investigating
medium-term exposure periods, which may be the more relevant
period for HbA1c levels, have also yielded mixed results (Sade
et al. 2015, 2016).

Additionally, few studies have examined these associations in
persons without diabetes (Brook et al. 2013; Chen et al. 2016;
Honda et al. 2017; Kim and Hong 2012; Peng et al. 2016; Wolf
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et al. 2016), an important study group for bettering our under-
standing of how air pollution exposure may play a role in the
early development of diabetes. We examined whether exposure
to medium-term (28-, 91-d mean) air pollution [particulate matter
with aerodynamic diameter ≤2:5 lm (PM2:5), particulate matter
with aerodynamic diameter ≤10 lm (PM10), NO2, and accumula-
tion mode particle number (PNAM)] is associated with blood glu-
cose and HbA1c levels in nondiabetic participants of the German
population-based prospective Heinz Nixdorf Recall (HNR) study
using data from two examination times. Because blood glucose
levels vary more with daily changes than HbA1c levels do, we
hypothesized that 28-d mean exposure windows would be more
strongly associated with blood glucose measures, whereas 91-d
mean exposure windows would be more strongly associated with
HbA1c levels.

Methods

Study Design
This studywas conducted using data from the baseline (2000–2003)
and first follow-up (2006–2008) examinations of the HNR study, an
ongoing prospective population-based cohort study located in three
adjacent cities (Bochum, Essen, and Mülheim) within the highly
urbanized German Ruhr area. The study design has been described
in detail elsewhere (Schmermund et al. 2002; Stang et al. 2005).
Briefly, potential participants between the ages of 45 and 75 were
identified through random sampling of local residency lists and
were recruited via letter or telephone. Subjects were not eligible for
study inclusion if they were institutionalized, had died or moved
away at time of recruitment, had an incorrect or nonexistent address,
did not speak a sufficient level of German, could not be interviewed
because of severe illness, or were pregnant. In all, 4,814 participants
were enrolled into the HNR study between December 2000 and
August 2003 (recruitment efficacy proportion: 55.8%; Stang et al.
2005), and 4,157 participants returned for a follow-up examination
between 2006 and 2008. Assessment at both examinations included
a self-administered questionnaire, face-to-face interviews, clinical
examinations, and comprehensive laboratory tests following stand-
ard protocols. The study was approved by the institutional ethics
committees of the University of Duisburg–Essen and the University
Hospital of Essen and adhered to strict internal and external quality
assurance protocols. All participants gave informed consent.

Environmental Exposures
Air pollution. In this study, we used the validated, time-dependent,
three-dimensional European Air Pollution Dispersion (EURAD)
chemistry transport model (Büns et al. 2012; Hass et al. 1993;
Memmesheimer et al. 2004) to estimate daily mass concentrations
of PM2:5, PM10, NO2, and PNAM (particle number with aerodynamic
diameter between 0:1–1:0 lm; Nonnemacher et al. 2014). The
EURAD model is a multilayer, multigrid model system that
simulates the transport, chemical transformation, and deposition
of tropospheric constituents (Büns et al. 2012). It employs four
sequential nesting grid sizes (125 km, 25 km, 5 km, 1 km)
for assigning exposure to Europe, central Europe, North Rhine–
Westphalia in Germany, and the Ruhr area (Duisburg–Mülheim–
Essen–Bochum), respectively (Büns et al. 2012; Memmesheimer
et al. 2004). Specific information concerning the input data for the
EURAD model have been published previously (Memmesheimer
et al. 2004). The EURAD model produces hourly estimates for
each grid square for a set of chemical compounds and a set of
volatile organic compounds. Additionally, an assimilation process
for PM10 and NO2 concentrations integrating measurement
information from routine state-operated monitoring was conducted

(measurement data on PM2:5 and PNAM for this study region and
period were only available from individual measurement cam-
paigns and therefore were not used for the assimilation process).
PNAM estimates from the EURADmodel have been validated against
measurements obtained between January 2011 and December 2014
by the Institute of Energy and Environmental Technology (IUTA) at
its measuring station inMülheim–Styrum using a TSI 3926 scanning
mobility particle sizer spectrometer (size range: 0:014–0:750 lm;
TSI Inc.; for more details, see Birmili et al. 2016). For the accumula-
tion mode (0:1–1:0 lm), Pearson correlation coefficients between
the model estimates and measured averages were calculated by sea-
son (spring: 1 March–31 May; summer: 1 June–31 August; fall: 1
September–30 November; winter: 1 December–29 February) and
ranged between 0.51 and 0.61, with the highest correlation occurring
duringwinter and fall seasons (H. Jakobs, unpublished data, 2016).

The HNR study area covers approximately 600 km2 in the Ruhr
area of Germany. Each participant in the HNR was assigned daily
mean PM2:5, PM10, NO2, and PNAM concentrations from the 1 km2

grid cell corresponding to his/her given residential address
(ArcView, version 9.2, ESRI; Hennig et al. 2016; Nonnemacher
et al. 2014). Residential mean exposure values were calculated for
each participant for the 28- and 91-d before each examination.
Additional means for 1-, 2-, 3-, 7-, 14-, 45-, 60-, 75-, 105-, 120-,
and 182-d exposure windows were calculated for use in exploring
the temporal shape of the association of interest. Interquartile
range (IQR) values were calculated for each exposure using all
observations across both examinations.

Meteorological variables.Meteorological data for humidity and
temperature were calculated as averages for the same 28- and 91-d
time periods before examination using theMesoscaleMeteorological
Model component of the EURAD model (Memmesheimer et al.
2004). In the modeling process, meteorological exposures were esti-
mated for each 1 km2 grid using centralized data from the German
weather service (Deutscher Wetterdienst) center in Essen, Germany.
Means for 1-, 2-, 3-, 7-, 14-, 45-, 60-, 75-, 105-, 120-, and 182-dmete-
orologicalwindowswere also calculated.

Noise measures. Long-term road noise was modeled for the
year 2007 at façade points according to European Union Directive
2002/49/EC (European Commission 2002) and was calculated as
the weighted 24-h mean (Lden). Residential exposures were then
assigned to participants using themaximum noise value at themost
exposed façade point for the building of residence or, if building-
specific information was lacking, the maximum value in a 10-m
buffer around each participant’s address. Noise was included as a
categorical variable with the following groups: <45, 45–50, 50–
55, 55–60, 60–65, 65–70, 70–75, and≥75 dBðAÞ.

Traffic indicators. Proximity (in meters) of a participant’s resi-
dence to a major road, as defined by a traffic count of >26,000
vehicles=d, was calculated using official digitized maps with a
precision of at least 0:5 m. The reference line was the median
strip between oncoming traffic lanes.

Blood Glucose and HbA1c Measures
Blood glucose levels (mg/dL) were measured at each examination
with participants being advised to fast before the visit. Information
on time since last meal (hours) was also collected to facilitate clas-
sification of each test as random or fasting. Serum samples were
centrifuged immediately after being obtained and were analyzed
enzymatically by the hexokinase method (Burrin and Price, 1985).
HbA1c levels (percentage points, p.p.) were also measured at each
examination using an automated nephelometer (BN-II; Dade
Behring, Inc.). All analyses were performed in the central labora-
tory of the University Hospital of Essen following a standard
procedure.
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Definition of Covariates
Individual socioeconomic status (SES) was defined as years of edu-
cation in four categories (≤10, 11–13, 14–17, and ≥18 years)
according to the International Standard Classification of Education
(UNESCO 1997). Neighborhood unemployment rates (as percen-
tages) were obtained from local census authorities for each adminis-
trative neighborhood (median size: 11,263 inhabitants) for the years
of the baseline examination (2000–2003; Dragano et al. 2009).
Smoking status was defined as current, former (>1 year since quit-
ting), or never smoker. Cumulative smoking exposure was assessed
for former and current smokers using pack-years and accounting for
periods of nonsmoking. Exposure to environmental tobacco smoke
(ETS; yes/no) was defined as regular passive exposure to smoke at
home, work, or other location. Physical activity (yes/no) was
assessed as participation in regular sporting activities at least once a
week for a minimum of 30 min. Alcohol consumption was obtained
through a dietary questionnaire (0, 1–3, 4–6, >6 drinks per week).
Anthropometric measurements (height, weight) were measured at
examinations according to standard protocols, and bodymass index
(BMI; kg=m2) was calculated. Nutrition status was assessed using a
dietary pattern index created by incorporating consumption fre-
quency of 13 food items and diet quality classifications used in pre-
vious studies (Winkler and Döring 1995, 1998). Possible scores
ranged from 0 to 26, with 26 representing an ideal diet, and were
categorized into quartiles (<10, 11–12, 13–15, >15). Diabetes mel-
litus status (yes/no) was classified as positive if the participant
reported a physician diagnosis or was taking an antihyperglycemic
drug. No differentiation was made by diabetes type (1 or 2). For
medication use, participants were asked to bring all medication
taken in the last seven days to each examination, where confirmed
use was assigned using the WHOAnatomical Therapeutic Chemical
classification system (ATC; Collaborating Centre for Drug Statistics
Methology, 2014). Statin use (yes/no) was thus assigned. Seasonality
at the time of blood drawwas modeled using Fourier series terms cos
(2p× doy=365:25) and sin(2p× doy=365:25), where doy represents
day of year (Peng et al. 2016). Updated information on all baseline
characteristics was obtained at the follow-up study visit, with the
exception of neighborhood unemployment rate and cumulative
smoking exposure.

Study Population
A total of 8,971 observations were collected over the two examina-
tions of the HNR study. Observationswere excluded from the anal-
ysis if the participant had a diagnosis of diabetes or was taking
antihyperglycemic medication at the time of the examination
(nobs = 973). Participant observations from the baseline examina-
tion were not excluded if participants first reported a diabetes diag-
nosis or antihyperglycemic medication at follow-up. Additionally,
890 observations were excluded owing to missing variable infor-
mation at baseline (nobs = 560) or at the follow-up examination
(nobs = 330). Of these, air pollution exposure (nobs = 152), HbA1c
measure (nobs = 141), information on statin use (nobs = 314), alco-
hol consumption (nobs = 195), and nutrition index (nobs = 139)
were most commonly missing. After exclusions, the main analyses
for blood glucose and HbA1c included 7,108 total observations
from 4,176 participants.

Statistical Analyses
We evaluated the association between air pollution exposures
(PM2:5, PM10, NO2, PNAM) and blood sugar measures (blood
glucose, HbA1c) using a linear mixed-effects regression model
with a random participant intercept to account for the correlation
between individuals at baseline and at the follow-up examination.
Separate 28- and 91-d mean exposure models were run for each

air pollutant. Model estimates were calculated per IQR increase
of exposure and are presented as mean exposure point estimates
with 95% confidence intervals (CIs). Because significant nonli-
nearity was present for age, temperature, and humidity, these varia-
bles were modeled using restricted cubic splines with four knots. The
normality of themodel residualswas checked in a pre-analysis.

Three models (Models 1–3) of increasing covariate adjustment
were conducted for each air pollutant exposure. Updated covariate
information was used for all follow-up observations, with the excep-
tion of neighborhood unemployment and cumulative smoking (in-
formation only available at baseline). In Model 1, we adjusted for
temperature, humidity, and examination. In Model 2, we addition-
ally adjusted for age, season, nutrition index, smoking status, and
BMI. For blood glucose analyses, time since last meal was also
included. Covariates included for adjustment in Model 2 were iden-
tified using a directed acyclic graph (DAG; see Figure S1; Textor
et al. 2011). To assess whether residual confounding was present,
we further adjusted in Model 3 (the main model) for sex, education
level, and additional lifestyle factors, including physical activity,
alcohol consumption, statin use, ETS exposure, cumulative smoking
exposure, and neighborhood unemployment. Covariates included in
Model 3 were selected based on inclusion in prior studies (Peng
et al. 2016; Wolf et al. 2016).

To explore whether associations between air pollution expo-
sure and glucose metabolism varied according to exposure time
window, we ran the main model analysis using a range of exposure
windows before examination (1-, 2-, 3-, 7-, 14-, 28-, 45-, 60-, 75-,
91-, 105-, 120-, and 182-d means) for each pollutant. We chose the
28- and 91-d exposures a priori for the main analyses and treated
the additional time points as an exploratory analysis.

Sensitivity Analyses
For PNAM, we repeated analyses using multipollutant models
adjusted for PM2:5, PM10, or NO2 (as continuous variables) to
determine whether associations with this exposure metric were in-
dependent of associations with more traditional air pollution
markers. Spearman correlation coefficients were calculated between
all air pollutant exposures (28- and 91-dmeans).

Analyses were also conducted to investigate whether different
associations were apparent in observations designated as predia-
betic (nobs = 4,114) based on a fasting blood glucose level between
100 mg=dL and 125 mg=dL or an HbA1c level between 5.7% and
6.5% (AmericanDiabetes Association 2016) comparedwith obser-
vations having no indication of prediabetes. We also looked at
whether associations differed by working status (<15 hours=week
vs. ≥15 hours=week), because persons who worked less had a
greater likelihood of spending their time at home and thus theoreti-
callymore accurate exposure assignments.

To evaluate the robustness of our results to the inclusion of
traffic noise exposure, we added noise (Lden) and proximity to
major roads to the main model individually as well as jointly. We
also repeated analyses after excluding participants with a high
blood glucose test (fasting blood glucose ≥126 mg=dL or non-
fasting blood glucose ≥200 mg=dL) as well as participants who
had a diagnosis of diabetes or who were using antihyperglycemic
medication at the time of examination. The blood glucose analy-
ses were also run after excluding participants who were not fast-
ing at the time of blood draw (nobs = 2,139; time since last meal
<8 hours) to limit any effects due to incomplete fasting or to dif-
ferences in fasting between examinations of the same individual.

Effect Modification
We evaluated potential effect modification by sex (male, female),
smoking status (current/former/never), examination (baseline/follow-
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up), age (<65=≥ 65 y), season (spring/summer/fall/winter), and reg-
ular physical activity (yes/no) through addition of a multiplicative
interaction term between air pollution exposure (28- and 91-d means;
continuous) and the covariate of interest into themain analysismodel.
Interactions were considered significant if the corresponding likeli-
hood ratio test yielded a p-value<0:05.

All statistical analyses were conducted in R version 3.3.0
(R Core Team).

Results

Demographic Characteristics
A total of 7,108 blood glucose and HbA1c measurements were
collected from 4,176 participants in the HNR study without dia-
betes and with complete covariate data (Table 1). Among fasting
participants, mean blood glucose levels [ ± standard deviation
ðSDÞ] were 107:97± 17:4 mg=dL and 107:6±15:8 mg=dL at
baseline and at the follow-up examination, respectively. Glucose
levels were similar for observations from nonfasting participants
(104:6± 17:0 mg=dL at baseline and 103:9±14:5 mg=dL at
follow-up), possibly explained by the fact that although these par-
ticipants did not fast the complete 8 h, the mean fasting time was
still approximately 4.5 h. Mean HbA1c levels ( ± SD) at baseline
and at follow-up were 5:40±0:64 p:p: and 5:52± 0:52 p:p:,
respectively. Compared with information reported by participants
at the baseline examination (nobs = 3,857), participants at the
follow-up examination (nobs = 3,251) reported higher consump-
tion of alcoholic drinks per week and lower exposure to ETS and
were more likely to be former smokers and to report statin use.
For all air pollutants, mean exposure levels decreased between
visits (e.g., from 17.4 to 15:9lg=m3 for 28-d PM2:5; Table 2).
PNAM exposure levels were moderately correlated with other air
pollutants (q=0:53, 0.51, and 0.33 for 28-d PM2:5, PM10, and
NO2, respectively; see Table S1).

Participants excluded because ofmissing data (covariate, expo-
sure, and/or outcome) at the baseline examination weremore likely
to have attended their examination in the winter, to report exposure
to ETS, to have ≤10 years of education, and to report being physi-
cally inactive than participants with complete data from the base-
line examination (see Table S2). Participants excluded because of
missing data at the follow-up examination were more likely to
have attended their examination in the spring and to be former
smokers than participants with complete data at follow-up.

Main Analysis: Air Pollution and Glucose Metabolism
InModel 1, PM2:5 (28- and 91-d), PM10 (28-d), and PNAM (28- and
91-d) exposures were positively associated with blood glucose
(Table 3). Similarly, PM2:5, PM10, and PNAM exposures (28 d and
91 d) were positively associated with HbA1c. Further adjustment
for additional covariates identified using a DAG (Model 2) slightly
reduced the point estimates for blood glucose but yielded similar
estimates for HbA1c.

In Model 3, IQR increases in 28-d mean exposure to PM2:5,
PM10, and PNAM were positively associated with blood glucose
levels (Table 3). Significant positive associations were also seen
for 91-d mean exposure to PM2:5. For NO2, neither 28- nor 91-d
exposure levels were clearly associated with blood glucose lev-
els. After evaluation of the association between a range of short-
and medium-term exposures and blood glucose, we observed the
strongest positive associations with 28-, 45-, and 60-d exposure
windows for PM and PNAM (Figure 1). Associations between
NO2 and blood glucose levels were close to the null for most ex-
posure windows, although nonsignificant negative associations
were estimated for the longest time windows (75- to 182-d).

For HbA1c, significant positive associations were observed for
28-d and 91-d mean exposure to PM2:5, PM10, and PNAM using
Model 3 (Table 3), with stronger point estimates being observed
for 91-d than 28-d mean exposures. For NO2, neither 28- nor 91-d
exposure levels were associated with HbA1c. Using the range of
exposure windows, we observed the strongest positive associations
with slightly longer exposure windows for PM2:5, PM10, and
PNAM (Figure 2) than for glucose. Associations between NO2 and
HbA1c levels were null for all exposure windows.

Sensitivity Analyses
In the multipollutant models, the association between PNAM and
blood glucose was attenuated when PM2:5 was included in the model
but remained after adjustment for PM10 andNO2 (see Figure S2). All

Table 1. Demographic characteristics of the Heinz Nixdorf Recall study par-
ticipant observations included in this study, stratified by examination time
(baseline: 2000–2003; follow-up: 2006–2008).

Variable
Baseline (n=3,857)
Mean±SD or n (%)

Follow-up (n=3,251)
Mean±SD or n (%)

Age (y) 59:4± 7:8 64:0± 7:7
HbA1c (percentage points) 5:4± 0:6 5:5± 0:5
Blood glucose (mg/dL) 106:7± 17:3 106:8± 15:6
Time since last meal (h) 10:1± 4:7 12:0± 4:5
Fasting Status (yes) 2,442 (63.3) 2,527 (77.8)
BMI (kg=m2) 27:7± 4:5 27:9± 4:7
Neighborhood unemployment
(%)

12:4± 3:4 –

Cumulative smoking
(pack-years)a

27:9± 27:7 –

Sex (male) 1,879 (48.7) 1,551 (47.7)
Regular physical activity (yes) 2,149 (55.7) 1,911 (58.8)
Statin use (yes) 378 (9.8) 551 (16.9)
ETS exposure (yes) 1,378 (35.7) 807 (24.8)
Season at blood draw
Spring 1,032 (26.8) 897 (27.6)
Summer 1,098 (28.5) 731 (22.5)
Fall 917 (23.8) 797 (24.5)
Winter 810 (21.0) 826 (25.4)

Smoking status
Never smoker 1,634 (42.4) 1,409 (43.3)
Former smoker 1,321 (34.2) 1,266 (38.9)
Current smoker 902 (23.4) 576 (17.7)

Education level
≤10 years 397 (10.3) 304 (9.4)
11–13 years 2,154 (55.8) 1,830 (56.3)
14–17 years 883 (22.9) 730 (22.5)
≥18 years 423 (11.0) 387 (11.9)

Nutrition index
<10 650 (16.9) 462 (14.2)
11–12 1,281 (33.2) 1,073 (33.0)
13–15 880 (22.8) 737 (22.7)
>15 1,046 (27.1) 979 (30.9)

Alcoholic drinks per week
0 1,877 (48.7) 1,170 (36.0)
1–3 693 (18.0) 670 (20.6)
4–6 378 (9.8) 248 (7.6)
>6 909 (23.6) 1,163 (35.8)

Noise density (dB)
<45 633 (16.5) 547 (17.0)
45–50 873 (22.8) 767 (23.8)
50–55 783 (20.4) 641 (19.9)
55–60 490 (12.8) 419 (13.0)
60–65 431 (11.3) 345 (10.7)
65–70 424 (11.1) 349 (10.8)
70–75 164 (4.3) 133 (4.1)
>75 31 (0.8) 18 (0.6)

Missing 28 (0.7) 32 (1.0)

Note: –, no information was collected at that particular examination point; BMI, body
mass index; ETS, environmental tobacco smoke; HbA1c, glycated hemoglobin A1c;
SD, standard deviation.
aAmong current or former smokers only.
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associations between PNAM and HbA1c were robust to adjustment
for PM2:5, PM10, andNO2 exposure (see Figure S2).

When considering nondiabetic and prediabetic participants,
associations for both blood glucose and HbA1c were attenuated
among prediabetic participants (nobs = 3,881), but they remained
in the same direction as those in the main analysis (see Figures
S3 and S4). Estimates did not differ greatly by working status
(nobs = 4,624 working part-time or less), when additional obser-
vations were excluded based on a broader definition of diabetes
(nobs = 423 additionally excluded), or when analyses were limited
to only fasting participants (nobs = 4,969). Model estimates were
also very robust to single and simultaneous addition of proximity
of the participant’s residence to a major road and chronic noise
exposure (nobs = 7,048).

Effect Modification
For blood glucose, we observed evidence of effect modification
by examination for PNAM (28-, 91-d) with associations that were
positive for the baseline examination but close to the null at the
follow-up (p-values<0:01; see Figures S5 and S6). We also

observed significant effect modification by season for PM2:5 (91-d;
p-value= 0:01), NO2 (91-d; p-value= 0:02), and PNAM (28-d;
p-value<0:01), with no clear seasonal pattern across pollutants. In
analyses of HbA1c, we observed evidence of effect modification
by season for all air pollutants, with stronger associations between
air pollutants and HbA1c during the spring season (see Figures S7
and S8). Effect modification by examination was also present for
91-d PM2:5, PM10, and PNAM, with stronger associations apparent at
the baseline examination [e.g., 0.09 (95% CI: 0.06, 0.13) vs. 0.06
(95%CI: 0.03, 0.09)] for PM2:5).Additionally, stronger associations
were seen among former smokers than among current smokers and
nonsmokers for PM10 (28- and 91-d p-values: 0.04 and 0.02,
respectively) and PNAM (91-d; p-value= 0:02). Although not stat-
istically significant, the same pattern was also observed for PM2:5
andNO2.

Discussion
In the present study, we showed that higher levels of residential
medium-term exposure to PM2:5, PM10, and PNAM were posi-
tively associated with blood glucose levels and HbA1c among

Table 2. Summary statistics for residential 28- and 91-day mean exposure levels at the baseline (2000–2003) and follow-up (2006–2008) examinations from
the EURAD model.

Exposure
Baseline (n=3,857) Follow-up (n=3,251)

IQRMean±SD Range Mean±SD Range

28-Day Exposures
PM2:5 (lg=m3) 17:4± 3:8 10.3–31.2 15:9± 5:0 7.5–33.7 5.7
PM10 (lg=m3) 20:9± 4:9 11.1–44.3 19:3± 6:0 8.7–40.6 7.4
NO2 (lg=m3) 39:9± 12:0 18.9–104.2 37:8± 10:9 15.6–80.5 15.7
PNAM (n/mL) 3,710:2± 1,908:3 888.4–15,540.0 3,011:2± 1,530:1 691.5–9,961.0 2,142.3
Temperature (�C) 10:5± 6:6 −1:9–24:3 10:7± 5:8 0.8–24.7 11.5
Humidity (%) 6:6± 2:2 2.9–11.1 6:5± 1:9 3.6–10.9 3.8
91-Day Exposures
PM2:5 (lg=m3) 17:6± 2:7 12.3–27.3 15:9± 3:0 9.6–25.2 4.0
PM10 (lg=m3) 21:1± 4:0 13.2–36.3 19:5± 4:3 10.6–34.9 5.5
NO2 (lg=m3) 40:6± 10:7 20.7–76.7 38:0± 9:0 18.1–65.9 15.0
PNAM (n/mL) 3,744:9± 1,343:6 1,662.0–9,775.0 3,018:9± 842:8 1,457.0–6,781.0 1,352.7
Temperature (�C) 10:0± 5:9 0.1–20.1 10:7± 5:2 3.5–20.5 10.6
Humidity (%) 6:4± 1:9 3.7–10.0 6:5± 1:7 4.3–10.0 3.5

Note: EURAD, European Air Pollution Dispersion; IQR, interquartile range; NO2, nitrogen dioxide; PM2:5, particulate matter with aerodynamic diameter ≤2:5 lm; PM10, particulate
matter with aerodynamic diameter ≤10 lm; PNAM, accumulation mode particle number; SD, standard deviation.

Table 3. Estimated association (95% confidence interval) between interquartile range increase in 28- and 91-day mean air pollution and HbA1c and blood glu-
cose (nobs = 7,108).

Exposure
Blood glucose (mg/dL)a HbA1c (percentage points)

28-Day estimate (95% CI) 91-Day estimate (95% CI) 28-Day estimate (95% CI) 91-Day estimate (95% CI)

PM2:5
Model 1b 1.04 (0.50, 1.58) 0.84 (0.15, 1.52) 0.03 (0.02, 0.05) 0.04 (0.01, 0.06)
Model 2c 0.97 (0.44, 1.50) 0.78 (0.01, 1.55) 0.03 (0.01, 0.05) 0.07 (0.04, 0.10)
Model 3 (Main)d 0.91 (0.38, 1.44) 0.81 (0.05, 1.58) 0.03 (0.01, 0.05) 0.07 (0.04, 0.10)
PM10
Model 1b 0.77 (0.21, 1.34) 0.37 (−0:24, 0.98) 0.04 (0.02, 0.06) 0.03 (0.00, 0.05)
Model 2c 0.70 (0.15, 1.26) 0.21 (−0:44, 0.86) 0.04 (0.02, 0.06) 0.04 (0.02, 0.06)
Model 3 (Main)d 0.59 (0.04, 1.14) 0.10 (−0:54, 0.75) 0.04 (0.02, 0.06) 0.04 (0.02, 0.06)
NO2
Model 1b 0.45 (−0:28, 1.18) 0.19 (−0:80, 1.17) 0.02 (−0:01, 0.04) −0:02 (−0:05, 0.02)
Model 2c 0.48 (−0:31, 1.13) −0:23 (−1:29, 0.83) 0.01 (−0:01, 0.04) 0.00 (−0:03, 0.04)
Model 3 (Main)d 0.27 (−0:45, 0.99) −0:41 (−1:46, 0.65) 0.01 (−0:02, 0.04) 0.00 (−0:04, 0.04)
PNAM
Model 1b 0.74 (0.17, 1.31) 0.86 (0.29, 1.44) 0.04 (0.02, 0.06) 0.09 (0.07, 0.11)
Model 2c 0.75 (0.17, 1.32) 0.75 (0.19, 1.32) 0.03 (0.01, 0.06) 0.09 (0.07, 0.11)
Model 3 (Main)d 0.64 (0.07, 1.21) 0.67 (0.10, 1.24) 0.03 (0.01, 0.05) 0.09 (0.07, 0.11)

Note: All models were linear mixed-effects regression models with random participant intercepts. Interquartile range values are provided in Table 2. CI, confidence interval; HbA1c,
glycated hemoglobin A1c; NO2, nitrogen dioxide; PM2:5, particulate matter with aerodynamic diameter ≤2:5 lm; PM10, particulate matter with aerodynamic diameter ≤10 lm;
PNAM, accumulation mode particle number concentration.
aAll blood glucose models were additionally adjusted for time since last meal (hours).
bAdjusted for humidity, temperature, and examination.
cModel 1+ age, smoking status, nutrition index, season, and BMI.
dModel 2+ physical activity, alcohol consumption, statin use, and exposure to environmental tobacco smoke at eachvisit; and pack-years of smoking and neighborhood unemployment at baseline.
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Figure 1. Associations between an interquartile range (IQR) increase in mean air pollution exposure and blood glucose level (mg/dL) using a range of short-
and medium-term exposure windows before blood draw. Linear mixed-effects regression models with random participant intercepts were run using the main
model (covariates provided in Table 3) and are shown stratified by air pollutant (NO2, nitrogen dioxide; PM2:5, particulate matter with aerodynamic diameter
≤2:5 lm; PM10, particulate matter with aerodynamic diameter ≤10 lm; PNAM, accumulation mode particle number concentration). Error bars represent the
95% confidence interval for each point estimate. IQR values are provided in Table 2.
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Figure 2. Associations between an interquartile range (IQR) increase in mean air pollution exposure and glycated hemoglobin A1c (HbA1c; percentage points)
using a range of short- and medium-term exposure windows before blood draw. Linear mixed-effects models with random participant intercepts were run using
the main model (covariates provided in Table 3) and are shown stratified by air pollutant (NO2, nitrogen dioxide; PM2:5, particulate matter with aerodynamic
diameter ≤2:5 lm; PM10, particulate matter with aerodynamic diameter ≤10 lm; PNAM, accumulation mode particle number concentration). Error bars repre-
sent the 95% confidence interval for each point estimate. IQR values are provided in Table 2.
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nondiabetic adults. These associations were robust to extensive
adjustment for lifestyle factors, personal characteristics, traffic
noise, and meteorological covariates. Importantly, we were able
to observe a consistent temporal pattern of associations between
air pollution exposure and glucose metabolism measures across a
range of short- and medium-term exposure windows. The slightly
different patterns observed for blood glucose and HbA1c are bio-
logically plausible because more recent exposures were most
strongly associated with blood glucose, whereas longer exposure
windows were most strongly associated with HbA1c levels. To
our knowledge, this is the first study to also examine the effects
of particle number concentration (accumulation mode), a submi-
cron particle metric of growing interest in the health community,
on blood glucose levels and HbA1c using a spatiotemporal expo-
sure model.

Biological Mechanisms
As described in previous reviews (Liu et al. 2013; Rajagopalan
and Brook 2012; Rao et al. 2015), several pathophysiologic path-
ways may explain the associations between air pollution expo-
sures and glucose metabolism. Inhalation of air pollution has
been shown to induce low-grade oxidative stress and inflamma-
tion in the lungs (Rajagopalan and Brook 2012), and these effects
do not remain localized in the lung but can lead to systemic oxi-
dative stress and inflammation, including in the adipose tissue
(Rao et al. 2015; Sun et al. 2005, 2009). Systemic and adipose
tissue inflammation have been observed to lead to impaired insu-
lin signaling in the pathways that moderate glucose metabolism
(Haberzettl et al. 2016; Rao et al. 2015).

Evidence from several epidemiologic studies supports this
connection between air pollution and glucose metabolism given
that researchers have observed associations between short- and
medium-term air pollution exposure and increased inflammation
(Rajagopalan and Brook 2012) as well as worsening insulin re-
sistance (Brook et al. 2013; Chen et al. 2016; Kelishadi et al.
2009; Kim and Hong 2012). Similarly, ongoing research suggests
that medium-term exposures to air pollution during pregnancy
may be related to abnormal glucose regulation (Fleisch et al.
2014; Lu et al. 2017; Robledo et al. 2015) and incidence of gesta-
tional diabetes mellitus among pregnant women (Hu et al. 2015).
The results from the present study provide additional evidence that
short- and medium-term air pollution exposures may represent
biologically relevant exposure windows for influencing glucose
metabolism measures. These associations with glucose metabo-
lism may help explain emerging epidemiologic data that there is
an association between long-term air pollution exposure and inci-
dence of diabetes mellitus (Balti et al. 2014).

Comparison with Prior Studies
The observed association between medium-term exposure to PM
and PNAM and blood glucose concentration has been previously
shown for PMmeasures (Kim andHong 2012; Peng et al. 2016). In
a recent study among nondiabetic participants in the Normative
Aging Study using a hybrid spatiotemporal predictionmodel, Peng
et al. (2016) observed a significant positive association between
28-d PM2:5 exposure and fasting blood glucose (0:89 mg=dL per
3:12lg=m3 increase). Chen et al. (2016) also observed associa-
tions between centrally measured short-term PM2:5 exposures and
fasting blood glucose among a cohort of Mexican Americans with
high risk of diabetes (e.g., 0:70 mg=dL per 5lg=m3 7-d mean
PM2:5). In contrast to several previous studies (Chen et al. 2016;
Chuang et al. 2011; Honda et al. 2017; Kim and Hong 2012; Sade
et al. 2015; Wolf et al. 2016), we did not observe an association

betweenNO2 exposure and blood glucose level, for whichwe have
no clear explanation.

We specifically investigated nondiabetic participants, an im-
portant group for evaluating how air pollution exposure may
influence early disease mechanisms that lead to a diabetogenic
metabolism and eventually to T2DM in the general population.
Three other studies including persons of mixed diabetes status
have reported positive associations between air pollution expo-
sures and blood glucose levels (Sade et al. 2015, 2016; Ward-
Caviness et al. 2015). However, effects of diet, physical activity,
and medication on blood glucose levels in participants with dia-
betes may overshadow relatively small effects of air pollution,
suggesting that these effects might be easier to detect among met-
abolically healthy persons with intact glucose metabolism.

An important and novel finding of our study is that we found a
positive association betweenmedium-term PM and PNAM exposure
and HbA1c levels in persons with no known metabolic disorder.
Thisfinding is of pathophysiological importance because it suggests
that air pollution exposure may lead to a diabetogenic metabolism,
manifesting itself as increased glucose levels over periods of several
weeks tomonths. Of the two prior studies among nondiabetic partic-
ipants, one reported no associations with PM2:5, NO2, or a variety of
other exposure metrics (Wolf et al. 2016), whereas the second
reported an association with NO2 but not with PM2:5 (Honda et al.
2017). Although all three studies were conducted in Western popu-
lations, the divergence in the results may be due to the difference in
exposure windows used. With our spatiotemporal exposure
model, we were able to choose biologically motivated medium-
term (28- and 91-d mean) exposures before the blood draw for
our analysis, whereas Wolf et al. (2016) utilized a temporally
static long-term mean, and Honda et al. (2017) used 1- to 5-y
moving average exposure windows. From a biological stand-
point, medium-term exposures (averaged over weeks to months)
would be more likely to be associated with HbA1c than expo-
sures averaged over longer periods of time given that HbA1c lev-
els in individual red blood cells increase with age, and the
lifespan of a typical red blood cell is approximately 115 d
(Franco 2012).

In recent years, experimental and epidemiologic evidence has
emerged suggesting that submicron and ultrafine (UFP; aerody-
namic diameter <0:1 lm) particles may have significant adverse
health effects owing to their large surface area–to–mass ratio, their
ability to generate reactive oxygen species, and their small size,
which enables them to penetrate deeply into the respiratory system
(Li et al. 2016). Nevertheless, epidemiologic studies linking expo-
sure to submicron particles or UFPs with health effects are limited
because they are not routinely measured by monitoring networks,
and their heterogeneous distribution in the atmospheremakes them
challenging to model and measure. To our knowledge, only three
studies have investigated whether UFP exposure is associated with
diabetes-related outcomes. One small study, conducted among 58
Danish households of unknown diabetes status, observed that 48-h
exposure to indoor UFPs was associated with HbA1c levels, but it
did not observe any connection between 48-h outdoor UFP expo-
sure (assigned from a central monitoring station) and HbA1c
(Karottki et al. 2014). In a study of near-highway households, no
association was observed between annual UFP exposure and prev-
alent diabetes (Li et al. 2017). In contrast, a recent Canadian cohort
study by Bai et al. (2018) observed a positive association between
annual ambient UFP exposure and risk of diabetes. In the present
study, we considered the accumulation mode rather than ultrafine
particles specifically and found positive associations between both
short-term (28-d) and medium-term (91-d) outdoor PNAM expo-
sure and two measures of glucose metabolism that merit further
investigation.
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Clinical Importance
Although the increases in blood glucose and HbA1c levels
observed in the present study (e.g., increase in HbA1c of 0.15 p.
p. per 10 lg=m3 PM2:5) are small, and the exposure range in the
Ruhr area of Germany (e.g., 91-d mean PM2:5 IQR: 4:0 lg=m3)
is low, air pollution exposure is ubiquitous and unavoidable for
all members of the population. Even small increases in blood glu-
cose and HbA1c levels may increase the risk of cardiometabolic
disease (Zhang et al. 2010) as well as of cardiovascular events
and mortality (Cohen et al. 2009; Schöttker et al. 2016). Thus,
even these small increases per unit of air pollution exposure may
have relevant and wide-reaching impacts on health worldwide.

Strengths and Limitations
This study has several strengths. The HNR study is a well-
characterized, population-based cohort with extensive covariate
data, which allowed us to adjust for potential confounders as well as
for the co-occurring exposure of long-term traffic noise. Additionally,
the use of a spatiotemporal model allowed us to estimate a range of
short- andmedium-term exposures. The consistency and the temporal
pattern across short- to medium-term exposure windows also support
the hypothesis that a true association exists between air pollution ex-
posure and glucosemetabolismmeasures among nondiabetic adults.

Nevertheless, there are several limitations of this study. Because
the EURAD model estimates urban background exposures on a
1 km2 grid and not directly at participants’ residences, some expo-
sure misclassification, particularly in traffic-related air pollution,
likely exists. We expect this misclassification to be nondifferential
and thus, in principle, to bias our results towards the null. Addition-
ally, it is possible that a background air pollution estimate for the
1 km2 around a residencemay not represent a good estimate of over-
all exposure because people typically do not spend the entirety of
their time at home. Assimilated estimates of PM2:5 and PNAM are
un-available in this study area owing to a small number of measure-
ments; thus, error in these exposure estimates is likely greater than
for PM10 andNO2.

Conclusion
Medium-term exposure to PM and PNAM was positively associ-
ated with blood glucose and HbA1c levels, consistent with an
adverse effect on glucose regulation in nondiabetic adults.
Further studies investigating PM components and source-specific
particulate matter as well as possible mediation pathways are
needed to better understand the mechanisms by which air pollu-
tion exposure influences blood glucose and HbA1c levels in met-
abolically healthy persons.
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