Urinary Phthalate Metabolite Concentrations and Breast Cancer Incidence and Survival following Breast Cancer: The Long Island Breast Cancer Study Project

Humberto Parada Jr.,¹ Marilie D. Gammon,² Jia Chen,³ Antonia M. Calafat,⁴ Alfred I. Neugut,⁵ Regina M. Santella,⁶ Mary S. Wolff,³ and Susan L. Teitelbaum³

¹Division of Epidemiology and Biostatistics, Graduate School of Public Health, San Diego State University, San Diego, California, USA

²Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

³Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA

⁵Department of Medicine, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA

⁶Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA

BACKGROUND: Phthalates, known endocrine disruptors, may play a role in breast carcinogenesis. Few studies have examined phthalates in relation to breast cancer (BC), and, to our knowledge, none have considered survival following BC.

OBJECTIVES: We examined 11 urinary phthalate metabolites, individually and as molar sum groupings, in association with BC incidence and subsequent survival.

METHODS: Our study includes 710 women diagnosed with first primary BC in 1996–1997 and 598 women without BC from Long Island, New York. Within 3 mo of diagnosis, participants provided spot urine samples. Nine phthalate metabolites were measured in all women; two [monocarboxyoctyl phthalate (MCOP) and monocarboxy-isononyl phthalate (MCNP)] were measured in 320 women with and 205 without BC. Women with BC were followed since diagnosis using the National Death Index; during follow-up (median = 17.6 y), we identified 271 deaths (98 BC related). We examined creatinine-corrected metabolite concentrations in association with: BC, using logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) and all-cause/BC-specific mortality, using Cox regression to estimate hazard ratios (HRs) and 95% CIs. We also examined effect modification by body mass index (BMI) and estrogen receptor (ER) status.

Results: The highest (vs. lowest) quintiles of mono(3-carboxypropyl) phthalate (MCPP), monobenzyl phthalate (MBzP), MCNP, and MCOP were associated with BC ORs ranging from 0.71–0.73. The highest (vs. lowest) quintiles of mono(2-ethylhexyl) phthalate (MEHP) and MCOP were associated with BC-specific mortality HRs of 0.54 (95% CI: 0.28, 1.04) and 0.55 (95% CI: 0.23, 1.35), respectively. For BC-specific mortality, interactions were significant between BMI and mono(2-ethyl-5-oxyhexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHP), and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), with positive associations among women with BMI <25 and inverse associations among women with BMI $\geq 25.0 \text{ kg/m}^2$.

CONCLUSIONS: Consistent with laboratory evidence, we observed inverse associations between urinary concentrations of several phthalate metabolites and BC and subsequent survival; however, these results should be interpreted with caution given that biospecimen collection among women with BC occurred after diagnosis, which may be of particular concern for our case–control findings. https://doi.org/10.1289/EHP2083

Introduction

Phthalic acid diesters, commonly known as phthalates, are manmade chemicals used in a variety of industrial applications. Highmolecular-weight phthalates (HMWPs), including di(2-ethylhexyl) phthalate (DEHP), are used primarily as plasticizers to increase the flexibility of vinyl plastic, which is used in many consumer products, such as pharmaceuticals, medical devices, and food packaging (Schettler 2006). Low-molecular-weight phthalates (LMWPs), on the other hand, including diethyl phthalate (DEP) and dibutyl

Supplemental Material is available online (https://doi.org/10.1289/EHP2083).

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC). Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the U.S. Department of Health and Human Services.

The authors declare they have no actual or potential competing financial interests.

Received 20 April 2017; Revised 27 February 2018; Accepted 28 February 2018; Published 26 April 2018.

phthalate, are used primarily as solvents in personal care products, such as cosmetics and shampoos (Meeker et al. 2009). Because phthalates are not covalently bound to the plastic matrix, they can leach out, resulting in environmental contamination and human exposure (Bosnir et al. 2003; Rudel et al. 2003; Schettler 2006).

In the body, phthalates rapidly hydrolyze to their corresponding phthalate metabolites (Silva et al. 2003). Metabolites are excreted unchanged or can be further metabolized or conjugated to increase water solubility and facilitate their urinary excretion (Silva et al. 2003). Quantification of phthalate metabolites in urine is the most common and reliable method for assessing phthalates exposure in epidemiological studies (Calafat et al. 2015). Several phthalate metabolites are readily detected in the urine of people in the United States (CDC 2017).

Despite their relatively short biological half-lives, which range from hours to days (Koch et al. 2006), phthalates are hypothesized to have a wide range of adverse health effects due to their potential as endocrine-disrupting chemicals, acting as hormone agonists and antagonists (Okamoto et al. 2011) and as possible carcinogens (ATSDR 2002). Phthalate exposure has been associated with reproductive and developmental outcomes in both animals and humans (Meeker et al. 2009) and with hepatic tumors in F344 rats and B6C3F1 mice chronically administered DEHP, with the lowest-observed-effect level of DEHP carcinogenicity in the rat reported at 0.6% of percentage in feed, and the no-observed-effect level reported at 0.1% of percentage in feed (Ito and Nakajima 2008). Population-based studies examining phthalates in relation to breast cancer (BC) incidence, a hormone-dependent cancer and thus potentially sensitive to environmental xenoestrogens (Brody

⁴Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Address correspondence to H. Parada Jr., San Diego State University, Graduate School of Public Health, Division of Epidemiology and Biostatistics, 5500 Campanile Dr., Hardy Tower Room 168, San Diego, CA 92182, USA. Telephone: (619) 594-0980. Email: hparada@mail.sdsu.edu

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehponline@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

and Rudel 2003), are limited. A study of Mexican women found positive associations between urinary concentrations of monoethyl phthalate (MEP) and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) and inverse associations between monobenzyl phthalate (MBzP) and mono(3-carboxypropyl) phthalate (MCPP) and BC risk (López-Carrillo et al. 2010). More recently, a small study among Alaska-Native women reported a positive association between mono(2-ethylhexyl) phthalate (MEHP) urinary concentrations and BC risk (Holmes et al. 2014). To our knowledge, no studies have examined phthalates in relation to survival following BC.

In the study reported here, we examined the urinary concentrations of 11 phthalate metabolites, measured in a subsample of women who participated in a population-based study, in association with BC and subsequent survival. We also considered associations with LMWP and HMWP metabolites and the sum of four DEHP metabolites. In secondary analyses, we examined effect measure modification by body mass index (BMI) (<25.0, \geq 25.0 kg/m²) and BC subtype as defined by estrogen receptor (ER) status (ER + and ER –). We hypothesized that higher phthalate metabolite concentrations, in particular those from phthalates which display estrogenic activity in vitro or in animal studies [e.g., MEP, metabolite of DEP (Kumar et al. 2014); and MBzP, metabolite of benzyl butyl phthalate (BBP) (Chen et al. 2014; Kang and Lee 2005)], would be positively associated with BC and subsequent BC-specific mortality. By contrast, we hypothesized that metabolites of antiandrogenic phthalates [e.g., mono-isobutyl phthalate (MiBP) and MCPP, metabolites of di-isobutyl phthalate (DiBP) and of several HMWPs (e.g., MCPP)], and the DEHP metabolites MEHP, mono(2-ethyl-5oxyhexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), MECPP (Borch et al. 2006), and monocarboxyoctyl phthalate (MCOP), metabolite of di-isononyl phthalate (Howdeshell et al. 2008; Lee and Koo 2007), would be inversely associated with BC and subsequent BC-specific mortality.

Methods

This study uses resources from the Long Island Breast Cancer Study Project (LIBCSP), a population-based study initiated as a case–control study and then continued as a follow-up study. Details of the LIBCSP, including the case–control (Gammon et al. 2002) and follow-up (Parada et al. 2016) study designs, have been previously reported. The LIBCSP study protocol was approved by the Institutional Review Boards of all participating institutions, and written informed consent was obtained from participants prior to data collection.

The analysis of blinded specimens by the Centers for Disease Control and Prevention (CDC) laboratory was determined not to constitute engagement in human subjects research.

Study Population

Adult women with a first diagnosis with *in situ* or invasive BC during August 1, 1996 and July 31, 1997 were identified using a rapid reporting system established for the LIBCSP. BC diagnoses were confirmed by each patient's physician and by medical record review; ~82% (n=1,508) of eligible women with BC completed the main questionnaire. Women without BC were residents of the same two Long Island counties who were frequency matched to the expected distribution of women with BC in 5-y age groups in 1996–1997. Women without BC 65 y of age and older were identified by Health Care Finance Administration (HCFA) rosters, and those under 65 y of age were identified by random digit dialing. HCFA selection occurred twice during the 12-mo identification period that

coincided with the 12 mo of patient ascertainment. Random digit dialing selection began July 1, 1996 and continued in eight waves over the following 12 mo. Approximately 63% (n = 1,556) of eligible women without BC completed the main questionnaire. Participants of the LIBCSP ranged in age from 20-98 and were predominantly white (93%) and postmenopausal (67%) (Gammon et al. 2002). Due to the high costs of conducting laboratory assays and the varying availability of funding, we selected samples in two batches for quantification of urinary phthalate metabolite concentrations. The first batch analyzed in 2007 and included a random sample of 400 women with BC and 400 women without BC from among those with available urine. The second batch was analyzed in 2010 and included 493 women with BC who had an available tumor specimen and had not been previously selected, and 250 women without BC who were randomly selected whose urine had not previously been analyzed. We excluded from all analyses 235 women with missing creatinine (n = 224) or with dilute urine (creatinine <10 mg/dL) (n = 10), and one that could not be analyzed due to insufficient urine volume, resulting in an analytic sample of 710 women with *in situ* disease (n = 112) or invasive BC (n = 598) and 598 women without BC in the case-control design and 710 women with BC in the follow-up design.

Data Collection

Women with BC were enrolled into the LIBCSP, on average within 3 mo of diagnosis (25th percentile = 1.2 mo, 75th percentile = 4.0 mo). At the time of enrollment, all participants completed a comprehensive 100-min interviewer-administered questionnaire. At the time of the interview, 93% of women with BC and 83% of women without BC also donated 25 mL spot urine for laboratory analyses. The ancillary case–control study reported here includes 710 women with BC and 598 women without BC for whom urinary concentrations of 11 phthalate metabolites and creatinine were available; the ancillary follow-up is restricted to the 710 women with BC.

For the follow-up, we determined vital status from diagnosis in 1996–1997 until December 31, 2014, using the National Death Index. *International Statistical Classification of Diseases* codes 9/10 174.9 and C-50.9 listed on the death certificate were used to identify BC-related deaths.

Quantification of Urinary Phthalate Metabolite Concentrations

All urine samples were collected from study participants between 1996 and 1997. Donated urine samples were immediately placed in a cooler with an ice pack and shipped overnight to Columbia University where the samples were processed and stored. The samples were aliquoted and frozen at -80°C within 24 h of collection. Samples selected for urinary biomarker analysis were subsequently shipped overnight on dry ice to the National Center for Environmental Health at the CDC. These shipments occurred in 2007 and 2010. Upon arrival at the CDC, the samples were processed, aliquoted, and stored at or below -20° C until analysis to measure concentrations of creatinine and, using online solid-phase extraction followed by high-performance liquid chromatographyelectrospray ionization-isotope-dilution tandem mass spectrometry, of nine phthalate metabolites in both batches: MEP, mono-Nbutyl phthalate (MnBP), MiBP, MCPP, MBzP, MEHP, MEOHP, MEHHP, and MECPP; and three additional metabolites in the second batch: MCOP, monocarboxy-isononyl phthalate (MCNP), and cyclohexane-1,2-dicarboxylic acid mono(hydroxy-isononyl) ester (MHINCH). This resulted in missing MCOP and MCNP data for 390 women with BC and 393 women without BC. MHINCH, the

Table 1. Distribution of study participant characteristics among the Long Island Breast Cancer Study Project (LIBCSP) women with available values of	urinary
concentrations of phthalate metabolites and the full sample.	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Women without breast cancer		
Age at reference (y)407 (27.0%)197 (32.9%)499 (32. $50-64$ 259 (36.5%)582 (38.6%)250 (41.8%)617 (39. ≥ 65 256 (36.1%)519 (34.4%)151 (25.3%)440 (28.Income </th <th>= 1,556)</th>	= 1,556)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
50-64259 (36.5%)582 (38.6%)250 (41.8%)617 (39.≥65256 (36.1%)519 (34.4%)151 (25.3%)440 (28.Income295 (19. \langle \$24,999154 (21.7%)286 (19.0%)104 (17.4%)295 (19. \rangle \$25,000-\$49,999227 (32.1%)488 (32.4%)172 (28.8%)475 (30. \geq \$50,000327 (46.2%)730 (48.5%)321 (53.8%)784 (50.Missing2412Education2412College261 (36.8%)551 (36.7%)263 (44.1%)651 (41.Postcollege108 (15.2%)230 (15.3%)94 (15.7%)225 (14.Missing1614Menopausal status1614Premenopausal225 (32.5%)472 (31.9%)211 (37.2%)503 (33.Postmenopausal468 (67.5%)1,006 (68.1%)357 (62.8%)990 (66.Missing173030631HRT use V V V V V V Never505 (71.2%)1,096 (72.9%)439 (73.4%)1,159 (74.Ever204 (28.8%)408 (27.1%)159 (26.6%)396 (25.	1%)		
200 200 319 319 131 $(22.5.%)$ 440 $(22.5.%)$ Income(\$24,999) 154 $(21.7%)$ 286 $(19.0%)$ 104 $(17.4%)$ 295 $(19.9%)$ \$25,000-\$49,999 227 $(32.1%)$ 488 $(32.4%)$ 172 $(28.8%)$ 475 $(30.2%)$ ≥\$50,000 327 $(46.2%)$ 730 $(48.5%)$ 321 $(53.8%)$ 784 $(50.3,8%)$ Missing2412Education $(48.0%)$ 721 $(48.0%)$ 240 $(40.2%)$ 676 $(43.2,7%)$ College261 $(36.8%)$ 551 $(36.7%)$ 263 $(44.1%)$ 651 $(41.4%)$ Postcollege108 $(15.2%)$ 230 $(15.3%)$ 94 $(15.7%)$ 225 $(14.1%)$ $(14.1%)$ 225 $(14.1%)$ $(15.2%)$ 230 $(15.3%)$ 94 $(15.7%)$ 225 $(14.1%)$ $(14.1%)$ $(15.2%)$ 230 $(15.3%)$ 94 $(15.7%)$ 225 $(14.1%)$ $(15.2%)$ $(15.2%)$ 230 $(15.3%)$ 94 $(15.7%)$ 225 $(14.1%)$ $(15.2%)$ $(25.3%)$ <td>1%) 2%)</td>	1%) 2%)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5%)		
\$25,000-\$49,999227 (32.1%)488 (32.4%)172 (28.8%)475 (30.≥\$50,000327 (46.2%)730 (48.5%)321 (53.8%)784 (50.Missing2412Education <hs graduate<="" hs="" td="">340 (48.0%)721 (48.0%)240 (40.2%)676 (43.College261 (36.8%)551 (36.7%)263 (44.1%)651 (41.Postcollege108 (15.2%)230 (15.3%)94 (15.7%)225 (14.Missing1614Menopausal statusPremenopausal225 (32.5%)472 (31.9%)211 (37.2%)503 (33.Postmenopausal17303063HRT useNever505 (71.2%)1,096 (72.9%)439 (73.4%)1,159 (74.Ever204 (28.8%)408 (27.1%)159 (26.6%)396 (25.</hs>	0%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5%)		
Education			
< HS /HS graduate $340 (48.0\%)$ $721 (48.0\%)$ $240 (40.2\%)$ $676 (42.$ College $261 (36.8\%)$ $551 (36.7\%)$ $263 (44.1\%)$ $651 (41.$ Postcollege $108 (15.2\%)$ $230 (15.3\%)$ $94 (15.7\%)$ $225 (14.$ Missing1614Premenopausal $225 (32.5\%)$ $472 (31.9\%)$ $211 (37.2\%)$ $503 (33.$ Postmenopausal $468 (67.5\%)$ $1,006 (68.1\%)$ $357 (62.8\%)$ $990 (66.$ Missing17 30 30 63 HRT use $1096 (72.9\%)$ $439 (73.4\%)$ $1,159 (74.5\%)$ Never $505 (71.2\%)$ $1,096 (72.9\%)$ $439 (73.4\%)$ $1,159 (74.5\%)$ Ever $204 (28.8\%)$ $408 (27.1\%)$ $159 (26.6\%)$ $396 (25.5\%)$	(1)		
Postcollege 108 (15.2%) 230 (15.3%) 94 (15.7%) 225 (14. Missing 1 6 1 4 Menopausal status Premenopausal 225 (32.5%) 472 (31.9%) 211 (37.2%) 503 (33. Postmenopausal 225 (32.5%) 472 (31.9%) 211 (37.2%) 503 (33. Postmenopausal 468 (67.5%) 1,006 (68.1%) 357 (62.8%) 990 (66. Missing 17 30 30 63 HRT use 1 498 (27.1%) 159 (26.6%) 396 (25.	3%) 0%)		
Interface	5%)		
Menopusal status 225 (32.5%) 472 (31.9%) 211 (37.2%) 503 (33. Postmenopausal 468 (67.5%) 1,006 (68.1%) 357 (62.8%) 990 (66. Missing 17 30 30 63 HRT use Vever 505 (71.2%) 1,096 (72.9%) 439 (73.4%) 1,159 (74. Ever 204 (28.8%) 408 (27.1%) 159 (26.6%) 396 (25.	570)		
Premenopausal 225 (32.5%) 472 (31.9%) 211 (37.2%) 503 (33. Postmenopausal 468 (67.5%) 1,006 (68.1%) 357 (62.8%) 990 (66. Missing 17 30 30 63 HRT use 7 30 30 63 Vever 505 (71.2%) 1,096 (72.9%) 439 (73.4%) 1,159 (74 Ever 204 (28.8%) 408 (27.1%) 159 (26.6%) 396 (25.			
Postmenopausal 468 (67.5%) 1,006 (68.1%) 357 (62.8%) 990 (66. Missing 17 30 30 63 HRT use	7%)		
Missing 17 30 30 63 HRT use	3%)		
HKT useNever505 (71.2%)1,096 (72.9%)439 (73.4%)1,159 (74Ever204 (28.8%)408 (27.1%)159 (26.6%)396 (25.			
Never $303 (11.2\%)$ $1,090 (12.9\%)$ $439 (13.4\%)$ $1,139 (14)$ Ever $204 (28.8\%)$ $408 (27.1\%)$ $159 (26.6\%)$ $396 (25.5\%)$	501)		
100 (27.1%) = 100 (27.1%) =	.3%) 5%)		
Missing 1 4 0 1	570)		
Age at menarche (years)			
≤12 310 (44.0%) 658 (44.0%) 274 (46.1%) 677 (43.	8%)		
>12 394 (56.0%) 837 (56.0%) 321 (53.9%) 870 (56.	2%)		
Missing 6 13 3 9			
Oral contraceptive use 400 (57.2%) 940 (57.2%) 204 (50.0%) 940 (54.2%)	001		
Never 406 (5).5% 848 (56.5%) 304 (50.8%) 840 (54.8%) Ever 202 (42.7%) 657 (42.7%) 204 (40.2%) 715 (46.6%)	J%) 0%)		
Evel $305(42.7\%)$ $057(45.7\%)$ $294(49.2\%)$ $715(40.$	J%)		
Parity/Jactation history			
Nulliparous 91 (12.8%) 198 (13.1%) 70 (11.7%) 171 (11.	0%)		
Parous/never lactated 375 (52.8%) 830 (55.0%) 302 (50.5%) 832 (53.	5%)		
Parous/ever lactated 244 (34.4%) 480 (31.8%) 226 (37.8%) 553 (35.	5%)		
Age at first birth (y)			
<20 61 (9.9%) 122 (9.3%) 47 (8.9%) 142 (10.	3%)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0%) 0%)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J70)		
Family history of breast cancer			
None 563 (82.1%) 1,166 (79.8%) 498 (84.7%) 1,321 (87	.0%)		
First degree123 (17.9%)295 (20.2%)90 (15.3%)197 (13.	0%)		
Missing 24 47 10 38			
BMI at reference (kg/m^2)	1.01)		
<25.0 315 $(44.5%)$ 085 $(43.6%)$ 309 $(52.2%)$ $/50$ $(49.5%)25.0$ 20.0 270 $(31.1%)$ 476 $(31.0%)$ 160 $(27.0%)$ 455 $(20.5%)$	1%) 8%)		
2300 $173(244%)$ $332(223%)$ $123(20%)$ $323(21)$	3%) 1%)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,0)		
BMI at age 20 (kg/m^2)			
<25.0 652 (93.0%) 1,377 (93.0%) 534 (90.2%) 1,397 (91	.2%)		
$\geq 25.0 \qquad \qquad 49 \ (7.0\%) \qquad \qquad 103 \ (7.0\%) \qquad \qquad 58 \ (9.8\%) \qquad \qquad 135 \ (8.8\%) \qquad \qquad 135 \ (8.8\%)$	\$%)		
Missing 9 28 6 24			
Alcohol intake	107)		
Nevel $250(50.1\%)$ $580(59.0\%)$ $220(50.6\%)$ $395(50.5\%)$ Ever $454(63.0\%)$ $070(61.0\%)$ $378(63.2\%)$ $063(61.5\%)$	1%) 0%)		
State	770)		
In situ 112 (15.8%) 235 (15.6%) — — —			
Invasive 598 (84.2%) 1,273 (84.4%) — — —			
Nodal involvement			
No 85 (22.0%) 213 (25.5%) — — —			
Yes $302 (/8.0\%)$ $622 (74.5\%)$ — — —			
WISSINg 525 6/3 — D <thd< thd=""> <thd< thd=""> <thd< th=""> <thd< td=""><td></td></thd<></thd<></thd<></thd<>			
$<2 \mathrm{cm}$ 278 (73 5%) 622 (75 5%) — —			
>2 cm $100 (26.5%)$ $202 (24.5%)$			
Missing 332 684 — —			

Note: LIBCSP women without breast cancer were age-matched to women diagnosed with breast cancer between 1 August 1996 and 31 July 1997. —, no information was collected at that particular examination point; BMI, body mass index; ER, estrogen receptor; HRT, hormone replacement therapy; HS, high school.

Table 1. (Continued.)

	Women with be	reast cancer	Women without breast cancer		
Characteristic	Phthalates sample $(n = 710)$	Full sample $(n = 1,508)$	Phthalates sample $(n = 598)$	Full sample $(n = 1,556)$	
ER status					
ER –	115 (23.9%)	264 (26.7%)			
ER +	367 (76.1%)	726 (73.3%)			
Missing	228	518			
Radiation therapy					
No	191 (38.3%)	401 (39.1%)			
Yes	308 (61.7%)	625 (60.9%)			
Missing	211	482			
Chemotherapy					
No	297 (59.8%)	599 (58.6%)			
Yes	200 (40.2%)	423 (41.4%)			
Missing	213	486			
Hormone therapy					
No	188 (38.1%)	393 (38.9%)			
Yes	305 (61.9%)	616 (61.1%)			
Missing	217	499	_	_	

primary metabolite of the nonphthalate plasticizer 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH), was not detected in any samples and, as a result, was not considered further. That MHINCH was undetectable was not surprising given that LIBCSP samples were collected prior to the commercial introduction of DINCH in the United States in 2002 (BASF 2015). Limits of detection (LODs) ranged from $0.2 - 0.6 \,\mu g/L$. The laboratory was blinded to any information about the study participants, and in addition to the internal CDC quality control procedures, we incorporated masked quality control specimens (3% and 2% in batches 1 and 2, respectively; total n = 34) from a single urine pool in all analysis batches. The coefficients of variation [standard deviation (SD)/mean concentration] for the individual analytes were similar across batches, ranging between 2.5% and 7.2% (median = 4.8%). Ten metabolites were detected among 90% of all women, while one, MEHP, was detected in 78% of women (Table S1). Values below the LOD were imputed as the LOD divided by the square root of 2 (Hornung and Reed 1990). To correct for urine dilution, concentrations (μ g/L) were divided by creatinine for final units of micrograms per gram ($\mu g/g$) creatinine.

Covariates

As potential confounders, we selected covariates associated with BC incidence or survival as determined from the literature (McPherson et al. 2000; Soerjomataram et al. 2008). Covariates included demographic characteristics [age (continuous), income (<\$24,999, \$25,000–\$49,999, ≥\$50,000), education (<high school/ high school graduate, college, postcollege)], reproductive factors [menopausal status (pre- or postmenopausal, derived from data on last menstrual period, oophorectomies/hysterectomies, and other surgical information); pregnancy status; lactation status; hormone replacement therapy (HRT) use (Gammon et al. 2002); age at menarche (≤ 12 or >12 y); parity and lactation history (nulliparous, parous/never lactated, parous/ever lactated); age at first birth (<20, $20-30, \geq 30$ y)]; family history of BC (none or at least one firstdegree relative), exogenous hormone use [oral contraceptive use (never or ever), hormone replacement therapy use (never or ever)]; and lifestyle/behavioral factors [BMI at reference and at age 20 $(\langle 25.0, 25.0 - 29.9, \geq 30.0 \text{ kg/m}^2)$, alcohol intake (never or ever consuming beer/wine/liquor at least once a month for 6 mo or longer)]. ER status was determined by medical record review.

Statistical Analysis

We categorized creatinine-corrected concentrations into quintiles based on the distributions in the women without BC (Table S2). The correlation between phthalate metabolite concentrations and known BC risk and prognostic factors is uncertain. Thus, we first examined among women without BC Pearson correlations $(r_{\rm P})$ between creatinine-corrected urinary phthalate metabolite concentrations and continuous covariates and chi-square tests between quintiles of creatinine-corrected urinary phthalate metabolite concentrations and categorical covariates. Covariates statistically significantly associated with phthalate metabolite concentrations (p < 0.05) were selected as potential confounders of the associations between metabolite concentrations and BC incidence and survival. Furthermore, using generalized linear models, among women with BC, we regressed each of the phthalate metabolites on age and chemotherapy treatment prior to urine sample collection to determine the potential effects of chemotherapy on phthalate metabolite concentrations. We also examined age-adjusted phthalate metabolite concentrations by disease and treatment characteristics using generalized linear models regressing each of the phthalate metabolites on each covariate and age to determine whether phthalate metabolite concentrations were associated with more aggressive disease.

We combined metabolites into molar sums that represent similar sources and similar biological activity, LMWP metabolites [Σ LMWPs, the creatinine-corrected molar sum of MEP, MnBP, and MiBP (expressed as MEP, molecular weight 194)], HMWP metabolites [Σ HMWPs, the creatinine-corrected molar sum of MBzP, MEHP, MEOHP, MEHHP, MECPP, excluding MCOP and MCNP (expressed as MEHP, molecular weight 278)], and the sum of four DEHP metabolites [Σ DEHP, the creatinine-corrected molar sum of DEHP metabolites: MEHP, MEOHP, MEHHP, MECPP (expressed as MEHP, molecular weight 278)] (Teitelbaum et al. 2012).

Case–control analyses. For the primary case–control analyses, we used multivariable unconditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between quintiles of creatinine-corrected concentrations of the 11 phthalate metabolites, individually and as groupings, and BC. All models included age, and in multivariable models, we additionally adjusted for any known BC risk factors that were statistically significantly correlated (p < 0.05) with any of the phthalate metabolites. We also examined log-linear trends using ln-transformed creatinine-corrected metabolite concentrations. In secondary analyses, using tertiles of phthalate metabolite concentrations, we examined effect measure modification by BMI (<25.0 kg/m² vs. ≥ 25.0 kg/m²) by stratifying the logistic regression models and by including continuous BMI by continuous ln-transformed creatinine-corrected phthalate metabolite

Table 2. Associations between urinary phthalate metabolite concentrations ($\mu g/g$ creatinine) and risk of incident breast cancer among Long Island Bre
Cancer Study Project (LIBCSP) women ($n = 710$ women with breast cancer (BC) and 598 women without breast cancer (no BC).

Analyte ($yl_{y}e$ creatinine) ^a Median in women with no BC $\overline{BCno BC}$ \overline{OR} (95% CI) $\overline{BCno BC}$ \overline{OR} (95% CI) Intal observations — 710598 — 622558 — MEP 1.1-60.7 40.2 174/119 1.00 166/115 1.00 60.7-118 87.0 143/120 0.76 (0.55, 1.10) 155/112 0.79 (0.57, 1.12) 118-207 15.8 120/120 0.67 (0.47, 0.95) 118/10 0.75 (0.53, 1.07) 207-342 314 132/120 0.75 (0.35, 1.05) 122/11 0.25 (0.5, 0.27) MBP — — 0.20 (0.55, 1.04) — 0.674 (0.56, 1.02) MBP — 100 166/112 1.00 0.55 (0.6, 0.93) 122/113 0.79 (0.59, 0.64) (0.54, 0.53) 2350.6 32.3 117/120 0.56 (0.6, 0.93) 122/113 0.79 (0.59, 1.64) 0.55 (0.6, 0.93) 123/114 0.55 (0.6, 0.93) 123/114 0.55 (0.16, 0.93) 123/114 0.55 (0.6, 0.93) 123/114 0.55 (0.6, 0.93) 123/114 0.55 (0.16, 0.93)<			Ag	e adjusted	Multivariable adjusted ^a		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Analyte $(\mu g/g \text{ creatinine})^b$	Median in women with no BC	BC/no BC	OR (95% CI)	BC/no BC	OR (95% CI)	
$\begin{split} & \text{MEP} & & \text{ID} & \text{ID}$	Total observations		710/598		682/558	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MEP						
	11.3-60.7	40.2	174/119	1.00	166/115	1.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	60.7–118	87.0	143/120	0.78 (0.56, 1.10)	135/112	0.79 (0.57, 1.12)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118-207	158	120/120	0.67 (0.47, 0.95)	118/109	0.73 (0.51, 1.04)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	207-492	314	132/120	0.75 (0.53, 1.05)	126/115	0.75 (0.53, 1.07)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	492-34,127	958	141/119	0.81 (0.58, 1.14)	137/107	0.89 (0.62, 1.26)	
$\begin{split} & \text{MeBP} \\ & 0.658-19.3 & 14.0 & 170/119 & 1.0 & 166/112 & 1.00 \\ 19.3-29.0 & 24.1 & 125/120 & 0.87 (0.61, 1.20) & 123/113 & 0.70 (0.49, 1.00) \\ 23.9-67.9 & 52.3 & 117/120 & 0.85 (0.61, 1.20) & 143/112 & 0.85 (0.64, 0.93) \\ cf.9-586 & 104 & 143/119 & 0.82 (0.59, 1.16) & 135/111 & 0.79 (0.56, 1.53) \\ La (MBP) & - & - & 0.91 (0.80, 1.04) & - & 0.91 (0.97, 0.56) \\ 0.218-1.44 & 0.938 & 173/119 & 1.00 & 167/112 & 1.00 \\ 0.218-1.44 & 0.938 & 173/119 & 0.81 (0.57, 1.13) & 138/112 & 0.86 (0.66, 1.21) \\ 243-379 & 2.97 & 140/120 & 0.81 (0.57, 1.13) & 138/112 & 0.86 (0.66, 1.51) \\ 3.79-6.16 & 4.96 & 124/120 & 0.71 (0.51, 1.01) & 119/116 & 0.69 (0.48, 0.99) \\ cf.9-73.3 & 8.84 & 133/119 & 0.78 (0.55, 1.03) & 136/112 & 0.79 (0.55, 1.13) \\ La (MBP) & - & - & 0.90 (0.80, 1.01) & - & 0.89 (0.97, 1.00) \\ MCPP & & & & & & & & & & & & & & & & & & $	Ln(MEP)	_	_	0.92 (0.85, 1.00)	_	0.94 (0.86, 1.02)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MnBP						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.658-19.3	14.0	170/119	1.00	166/112	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.3–29.0	24.1	125/120	0.70 (0.50, 0.99)	123/113	0.70 (0.49, 1.00)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.1-43.6	34.1	155/120	0.86 (0.61, 1.20)	148/112	0.85 (0.60, 1.20)	
	43.9-67.9	52.3	117/120	0.65 (0.46, 0.93)	110/110	0.65 (0.45, 0.93)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	67.9–586	104	143/119	0.82 (0.59, 1.16)	135/111	0.79 (0.56, 1.13)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ln(MnBP)	_	_	0.91 (0.80, 1.04)	_	0.91 (0.79, 1.04)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MiBP					,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.218-1.44	0.938	173/119	1.00	167/112	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.44-2.43	1.95	140/120	0.81 (0.57, 1.13)	138/112	0.86 (0.60, 1.21)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.43-3.79	2.97	140/120	0.81 (0.58, 1.14)	132/109	0.80 (0.56, 1.15)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.79-6.16	4.96	124/120	0.71 (0.51, 1.01)	119/116	0.69 (0.48, 0.99)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6.19-73.3	8.84	133/119	0.78 (0.55, 1.09)	126/109	0.79 (0.55, 1.13)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ln(MiBP)	_	_	0.90 (0.80, 1.01)	_	0.89 (0.79, 1.00)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MCPP						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.487-3.27	2.52	173/119	1.00	167/114	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.28-4.52	3.74	132/120	0.73 (0.52, 1.03)	130/112	0.76(0.54, 1.08)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.53-6.45	5.32	159/120	0.85 (0.61, 1.19)	153/113	0.86 (0.61, 1.21)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.46-9.28	7.51	117/120	0.63 (0.45, 0.90)	109/108	0.64 (0.45, 0.92)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9.31-98.9	14.6	129/119	0.70 (0.50, 0.99)	123/111	0.71 (0.49, 1.01)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ln(MCPP)	_	_	0.86 (0.74, 1.01)	_	0.85 (0.72, 1.00)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MBzP						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.411-6.99	4.42	183/119	1.00	177/110	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.03-10.9	9.08	121/120	0.67 (0.47, 0.94)	119/115	0.64(0.45, 0.91)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.0-16.5	13.5	159/120	0.88 (0.63, 1.23)	150/113	0.81 (0.57, 1.14)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.6–25.7	20.1	113/120	0.63 (0.44, 0.89)	108/112	0.59 (0.41, 0.84)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.8-505	35.8	134/119	0.74 (0.53, 1.04)	128/108	0.72 (0.50, 1.03)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ln(MBzP)	_	_	0.94 (0.83, 1.06)	_	0.93 (0.82, 1.05)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MCOP ^c						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.850-3.40	2.51	78/41	1.00	76/35	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.45-4.98	4.24	60/41	0.78 (0.45, 1.35)	58/40	0.69 (0.39, 1.24)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.08-7.42	6.07	60/41	0.74 (0.42, 1.28)	57/37	0.65 (0.36, 1.17)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.66–13.44	9.81	56/41	0.66 (0.38, 1.16)	53/39	0.54 (0.30, 0.97)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.69-474	24.4	66/41	0.84 (0.48, 1.45)	64/40	0.73 (0.71, 1.30)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ln(MCOP)	_	_	0.95 (0.80, 1.12)	_	0.90 (0.75, 1.08)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MCNP ^c					,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.167-1.98	1.51	73/41	1.00	72/37	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.00-2.64	2.32	39/41	0.51 (0.28, 0.92)	39/41	0.46(0.25, 0.85)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.64-3.88	3.17	64/41	0.89 (0.51, 1.55)	61/37	0.85 (0.47, 1.52)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.96-7.60	5.28	86/41	1.15 (0.67, 1.96)	81/37	1.03 (0.59, 1.82)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.84–580	13.5	58/41	0.77 (0.44, 1.35)	55/39	0.72 (0.40, 1.30)	
MEHP 1.32 165/119 1.00 160/114 1.00 1.81-3.10 2.41 138/120 0.85 (0.61, 1.20) 132/111 0.85 (0.60, 1.21) 3.13-4.96 4.11 137/120 0.86 (0.62, 1.23) 131/113 0.82 (0.57, 1.17) 4.96-9.86 6.41 146/120 0.94 (0.67, 1.32) 142/112 0.95 (0.67, 1.35) 9.90-1,018 17.0 124/119 0.81 (0.57, 1.15) 117/108 0.79 (0.55, 1.13) Ln(MEHP) - - 0.92 (0.83, 1.02) - 0.91 (0.82, 1.02)	Ln(MCNP)	_	_	0.96 (0.79, 1.17)	_	0.95 (0.77, 1.16)	
0.238-1.79 1.32 165/119 1.00 160/114 1.00 1.81-3.10 2.41 138/120 0.85 (0.61, 1.20) 132/111 0.85 (0.60, 1.21) 3.13-4.96 4.11 137/120 0.86 (0.62, 1.23) 131/113 0.82 (0.57, 1.17) 4.96-9.86 6.41 146/120 0.94 (0.67, 1.32) 142/112 0.95 (0.67, 1.35) 9.90-1,018 17.0 124/119 0.81 (0.57, 1.15) 117/108 0.79 (0.55, 1.13) Ln(MEHP) - - 0.92 (0.83, 1.02) - 0.91 (0.82, 1.02)	MEHP					,	
1.81-3.10 2.41 138/120 0.85 (0.61, 1.20) 132/111 0.85 (0.60, 1.21) 3.13-4.96 4.11 137/120 0.86 (0.62, 1.23) 131/113 0.82 (0.57, 1.17) 4.96-9.86 6.41 146/120 0.94 (0.67, 1.32) 142/112 0.95 (0.67, 1.35) 9.90-1,018 17.0 124/119 0.81 (0.57, 1.15) 117/108 0.79 (0.55, 1.13) Ln(MEHP) - - 0.92 (0.83, 1.02) - 0.91 (0.82, 1.02)	0.238-1.79	1.32	165/119	1.00	160/114	1.00	
3.13-4.96 4.11 137/120 0.86 (0.62, 1.23) 131/113 0.82 (0.57, 1.17) 4.96-9.86 6.41 146/120 0.94 (0.67, 1.32) 142/112 0.95 (0.67, 1.35) 9.90-1,018 17.0 124/119 0.81 (0.57, 1.15) 117/108 0.79 (0.55, 1.13) Ln(MEHP) - - 0.92 (0.83, 1.02) - 0.91 (0.82, 1.02)	1.81-3.10	2.41	138/120	0.85 (0.61, 1.20)	132/111	0.85 (0.60, 1.21)	
4.96–9.86 6.41 146/120 0.94 (0.67, 1.32) 142/112 0.95 (0.67, 1.35) 9.90–1,018 17.0 124/119 0.81 (0.57, 1.15) 117/108 0.79 (0.55, 1.13) Ln(MEHP) - - 0.92 (0.83, 1.02) - 0.91 (0.82, 1.02)	3.13-4.96	4.11	137/120	0.86 (0.62, 1.23)	131/113	0.82 (0.57, 1.17)	
9.90–1,018 17.0 124/119 0.81 (0.57, 1.15) 117/108 0.79 (0.55, 1.13) Ln(MEHP) — — 0.92 (0.83, 1.02) — 0.91 (0.82, 1.02)	4.96-9.86	6.41	146/120	0.94 (0.67, 1.32)	142/112	0.95 (0.67, 1.35)	
Ln(MEHP) — 0.92 (0.83, 1.02) — 0.91 (0.82, 1.02)	9.90-1,018	17.0	124/119	0.81 (0.57, 1.15)	117/108	0.79 (0.55, 1.13)	
	Ln(MEHP)			0.92 (0.83, 1.02)		0.91 (0.82, 1.02)	

Note: LIBCSP women without BC were age-matched to women diagnosed with BC between 1 August 1996 and 31 July 1997. —, no information was collected at that particular examination point; CI, confidence interval; DEHP, di(2-ethylhexyl) phthalate; MBzP, monobenzyl phthalate; MCNP, monocarboxy-isononyl phthalate; MCOP, monocarboxyoctyl phthalate; MCPP, mono(3-carboxypropyl) phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEHP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHP, mono(2-ethyl-5-carboxypentyl) phthalate; MIBP, mono-N-butyl phthalate; MWP, molecular-weight phthalate; OR, unconditional logistic regression odds ratio.

^aAdjusted for age (continuous), age at menarche (continuous), education (< high school/high school graduate, college, and postcollege), menopausal status (pre- vs. postmenopausal), hormone replacement therapy use (never vs. ever), body mass index (<25.0, 25.0–29.9, and \geq 30.0 kg/m²), and oral contraceptive use (never vs. ever).

^bQuintiles (μ g/g creatinine) based on distributions among women without breast cancer.

MCOP and MCNP were measured in 320 women with BC and 205 women without BC only.

^dLow MWP: Creatinine-corrected molar sum of MEP, MnBP, and MiBP (expressed as MEP, molecular weight 194).

"High MWP: Creatinine-corrected molar sum of MBzP, MEHP, MEOHP, MEHPP, MECPP (expressed as MEHP, molecular weight 278).

5 DEHP: Creatinine-corrected molar sum of DEHP metabolites: MEHP, MEOHP, MEHHP, MECPP (expressed as MEHP, molecular weight 278).

Table	2.	(Continued.)
-------	----	--------------

		Ag	e adjusted	Multiva	iable adjusted ^a
Analyte $(\mu g/g \text{ creatinine})^b$	Median in women with no BC	BC/no BC	OR (95% CI)	BC/no BC	OR (95% CI)
MEOHP					
0.882-9.15	6.21	144/119	1.00	141/111	1.00
9.17-14.4	12.2	158/120	1.06 (0.75, 1.49)	150/112	1.01 (0.71, 1.44)
14.5-20.0	16.8	123/120	0.83 (0.58, 1.18)	118/114	0.78 (0.54, 1.12)
20.1-34.0	24.7	149/120	0.97 (0.69, 1.37)	143/111	0.94 (0.65, 1.34)
34.2-1,253	53.5	136/119	0.94 (0.66, 1.33)	130/110	0.89 (0.62, 1.27)
Ln(MEOHP)	_	_	0.96 (0.85, 1.08)		0.94 (0.83, 1.06)
MEHHP					
1.10-14.9	9.98	147/119	1.00	143/111	1.00
14.9–23.6	19.8	147/120	0.97 (0.69, 1.37)	140/111	0.93 (0.65, 1.34)
23.8-34.2	28.4	134/120	0.88 (0.62, 1.25)	131/115	0.86 (0.60, 1.24)
34.5-59.4	42.1	140/120	0.89 (0.63, 1.26)	134/112	0.85 (0.59, 1.21)
59.8-2,721	92.7	142/119	0.97 (0.69, 1.37)	134/109	0.92 (0.64, 1.32)
Ln(MEHHP)	_	_	0.99 (0.88, 1.11)		0.97 (0.86, 1.10)
MECPP					
3.09-22.3	15.4	152/119	1.00	146/110	1.00
22.5-33.9	28.2	173/120	1.08 (0.77, 1.52)	168/111	1.08 (0.76, 1.53)
34.0-45.9	38.6	112/120	0.70 (0.49, 1.00)	109/114	0.68 (0.47, 0.99)
46.0-78.4	55.8	139/120	0.85 (0.60, 1.20)	134/111	0.82 (0.57, 1.17)
78.9-1,950	131	134/119	0.85 (0.60, 1.20)	125/112	0.79 (0.55, 1.14)
Ln(MECPP)	_	_	0.92 (0.81, 1.04)		0.89 (0.78, 1.01)
Low MWP^{d}					
24.5-96.4	67.8	163/119	1.00	157/113	1.00
96.4–166	134	174/120	1.04 (0.74, 1.45)	167/112	1.05 (0.74, 1.48)
166–274	216	103/120	0.62 (0.43, 0.88)	98/111	0.63 (0.44, 0.91)
274–527	380	126/120	0.77 (0.55, 1.09)	121/115	0.77 (0.54, 1.10)
530-34,163	1,053	144/119	0.89 (0.63, 1.25)	139/107	0.95 (0.66, 1.35)
Ln(Low MWP)	·	_	0.92 (0.83, 1.01)		0.92 (0.84, 1.02)
High MWP ^e					
7.36-60.9	42.3	152/119	1.00	147/110	1.00
61.2–91.4	75.5	161/120	1.05 (0.75, 1.48)	156/116	0.99 (0.69, 1.40)
91.9–122	104	118/120	0.76 (0.53, 1.08)	116/112	0.74 (0.51, 1.06)
123–192	150	133/120	0.83 (0.59, 1.17)	123/110	0.75 (0.52, 1.08)
193-6,320	315	146/119	0.96 (0.68, 1.36)	140/110	0.92 (0.64, 1.32)
Ln(High MWP)	_	_	0.95 (0.83, 1.08)		0.92 (0.81, 1.06)
ΣDEHP ^f					
5.45-46.9	33.4	145/119	1.00	141/109	1.00
46.9-71.6	59.4	168/120	1.11 (0.79, 1.55)	162/113	1.05(0.74, 1.49)
71.7-99.0	83.9	115/120	0.77 (0.54, 1.10)	111/114	0.71 (0.49, 1.02)
99.0-169	123	146/120	0.94 (0.67, 1.33)	137/111	0.87 (0.61, 1.25)
169-6,265	283	136/119	0.92 (0.65, 1.30)	131/111	0.86 (0.60, 1.24)
$Ln(\Sigma DEHP)$	_		0.94 (0.83, 1.07)		0.92 (0.81, 1.05)

concentration interactions in the regression models. In secondary analyses, we also examined phthalate metabolite concentrations in association with BC subtype (ER + vs. ER – vs. women without BC) using polytomous logistic regression.

Follow-up analyses. For the follow-up analyses, we used Kaplan-Meier survival curves and log[-log(survival)] plots for visual examination of the unadjusted associations with mortality and to assess the proportional hazards assumption (data not shown). We also assessed the proportional hazards assumption using Schoenfeld residuals examining the correlations of the residuals for each exposure with time, log-time, and time² as outlined by Allison (Allison 2010). There were no violations of the proportional hazards assumption. In the primary analyses, we used multivariable Cox regression to estimate hazard ratios (HRs) and 95% CIs for all-cause and BC-specific mortality up to 18 y postdiagnosis as related to quintiles of creatininecorrected phthalate metabolite concentrations. For analyses of all-cause mortality, observations were censored at the end of follow-up, if alive. For analyses using BC-specific mortality as the outcome, non-BC deaths were censored at the time of death. In secondary analyses, we used Cox regression to estimate HRs and 95% CIs for BC-specific mortality within 5 y of BC diagnosis using tertiles of creatinine-corrected phthalate metabolite concentrations. All models included age, and in multivariable

models, we additionally adjusted for any covariates that were correlated with any of the phthalate metabolites. We *a priori* hypothesized that estrogen/progesterone status may mediate the association between phthalate metabolite concentrations and BC survival through ER-dependent pathways (Kang and Lee 2005), and thus, in the primary analyses, we did not adjust for ER status or treatment, a potential intermediate (Hammond et al. 2010). In secondary analyses, however, we examined effect measure modification by ER status and BMI by stratifying the Cox regression models by ER status (ER + vs. ER –) and BMI (<25.0 vs. \geq 25.0 kg/m²), respectively, and by including continuous BMI and dichotomized ER status by continuous phthalate metabolite concentration interactions in the regression models. We examined effect measure modification by ER status for all metabolites except MCOP and MCNP due to small numbers.

All statistical analyses are based on participants with complete data, and participants with missing data were excluded, using SAS (version 9.4; SAS Institute Inc.).

Results

The distributions of study participant characteristics in the subsample for this ancillary study and in the full sample of women with and without BC from the LIBCSP are presented in Table 1.

	Body mass	index (BMI) [OR (95% CI)] ^b	ER status [OR (95% CI)] ^b		
	$<25.0 \text{ kg/m}^2$ (<i>n</i> = 306 BC vs.	$\geq 25.0 \text{ kg/m}^2$ (<i>n</i> = 376 BC vs.		ER + (n = 354 BC vs.)	ER - (n = 109 BC vs.)
Analyte ^a	no BC = 293)	no BC = 265)	P _{Interaction} ^c	no BC = 558)	no BC = 558)
MEP					
11.3-98.1	1.00	1.00	_	1.00	1.00
98.4-280	0.82 (0.55, 1.21)	0.77 (0.52, 1.16)	_	0.75 (0.53, 1.04)	0.57 (0.34, 0.97)
282-34,127	1.00 (0.67, 1.50)	0.76 (0.52, 1.12)		0.80 (0.58, 1.12)	0.87 (0.54, 1.40)
Ln(MEP)	0.98 (0.86, 1.10)	0.90 (0.79, 1.01)	0.25	0.91 (0.81, 1.01)	0.95 (0.81, 1.11)
MnBP					
0.658-25.6	1.00	1.00		1.00	1.00
25.7-49.3	0.86(0.58, 1.28)	0.87 (0.58, 1.28)		0.91 (0.65, 1.27)	0.80 (0.49, 1.33)
49.7-586	0.97(0.66, 1.44)	0.78 (0.52, 1.16)	_	0.97 (0.69, 1.35)	0.79 (0.48, 1.31)
Ln(MnBP)	0.94 (0.78, 1.13)	0.88(0.72, 1.08)	0.80	0.93 (0.79, 1.10)	0.92 (0.71, 1.17)
MiBP	•••• (•••••, •••••)				
0.218-2.07	1.00	1.00		1.00	1.00
2.08-4.39	1.02 (0.69, 1.52)	0.73 (0.49, 1.09)		0.92 (0.66, 1.29)	0.69 (0.42, 1.14)
4 40-73 3	0.83(0.56, 1.23)	0.69(0.46, 1.03)		0.88(0.63, 1.24)	0.62(0.37, 1.03)
I n(MiBP)	0.93(0.79, 1.11)	0.86(0.72, 1.02)	0.93	0.94(0.82, 1.09)	0.78(0.63, 0.97)
MCPP	0.95 (0.79, 1.11)	0.00 (0.72, 1.02)	0.75	0.94 (0.02, 1.09)	0.70 (0.05, 0.77)
0.487_3.98	1.00	1.00	_	1.00	1.00
3 98_7 15	0.96(0.65, 1.41)	1 17 (0 79 1 73)		0.99(0.71, 1.38)	1.00 1.10(0.72, 1.07)
7 18 08 0	0.90(0.05, 1.41) 0.82(0.55, 1.24)	0.75(0.50, 1.13)		0.33(0.71, 1.38) 0.76(0.54, 1.07)	0.08(0.58, 1.65)
$I_{n}(MCDD)$	0.82(0.55, 1.24) 0.89(0.71, 1.12)	0.75(0.50, 1.15) 0.83(0.65, 1.05)	0.80	0.70(0.54, 1.07) 0.82(0.67, 1.00)	0.98(0.38, 1.03) 0.07(0.73, 1.30)
MB ₂ D	0.89 (0.71, 1.12)	0.85 (0.05, 1.05)	0.80	0.82 (0.07, 1.00)	0.97 (0.75, 1.50)
0.411.0.70	1.00	1.00		1.00	1.00
0.411 - 9.70 0.72 19.7	1.00	1.12 (0.75, 1.67)		0.81 (0.58, 1.12)	1.00
9.72-10.7	0.07(0.45, 0.98)	1.12(0.73, 1.07)		0.81(0.36, 1.13) 0.70(0.56, 1.10)	1.20(0.76, 2.10)
10.0-303	0.09(0.40, 1.03)	1.07(0.80, 1.28)	0.44	0.79(0.30, 1.10)	0.91(0.35, 1.34)
LII(IVIDZP)	0.85 (0.09, 0.99)	1.07 (0.89, 1.28)	0.44	0.90 (0.85, 1.15)	0.95 (0.75, 1.20)
0.850 4.27	1.00	1.00		1.00	1.00
4.28 0.00	1.00	0.71 (0.27, 1.28)		0.58 (0.24, 0.00)	1.00
4.36-9.09	0.03(0.34, 1.23)	0.71(0.57, 1.58)	_	0.38 (0.34, 0.99)	0.49(0.25, 1.05)
9.10-4/4 L = (MCOD)	0.04(0.55, 1.17)	0.08 (0.55, 1.58)	0.52	0.71(0.42, 1.19)	0.35(0.23, 1.11)
LII(MCOP)	0.93 (0.72, 1.20)	0.85 (0.05, 1.10)	0.55	0.92 (0.74, 1.14)	0.80 (0.38, 1.10)
MCNP 0 167 - 2 42	1.00	1.00		1.00	1.00
0.107 - 2.43	1.00	1.00	_	1.00	1.00
2.45-4.79	1.07 (0.57, 2.00)	0.92(0.46, 1.83)		1.13 (0.67, 1.91)	0.76(0.34, 1.72)
4.86-580	0.36 (0.73, 2.53)	0.83(0.42, 1.64)		1.04(0.61, 1.77)	1.49 (0.73, 3.06)
Ln(MCNP)	1.07 (0.81, 1.40)	0.82 (0.60, 1.12)	0.85	0.87 (0.68, 1.11)	0.98 (0.70, 1.37)
MEHP	1.00	1.00		1.00	1.00
0.238-2.62	1.00	1.00		1.00	1.00
2.64-5.89	1.01 (0.68, 1.49)	0.76(0.50, 1.14)		0.96 (0.69, 1.35)	0.77 (0.46, 1.29)
5.92-1,018	1.08 (0.73, 1.62)	0.77(0.52, 1.14)		0.98(0.70, 1.37)	0.97 (0.59, 1.60)
Ln(MEHP)	0.95 (0.81, 1.12)	0.87 (0.76, 1.03)	0.56	0.95 (0.83, 1.08)	0.93 (0.75, 1.13)
MEOHP	1.00	1.00		1.00	1.00
0.882-13.1	1.00	1.00		1.00	1.00
13.1-23.3	0.69 (0.47, 1.01)	0.86 (0.57, 1.29)		0.88 (0.69, 1.24)	0.72(0.43, 1.20)
23.4–1,253	0.83 (0.55, 1.24)	0.88 (0.60, 1.29)		0.97 (0.69, 1.35)	0.87 (0.53, 1.43)
Ln(MEOHP)	0.99 (0.83, 1.18)	0.90 (0.76, 1.08)	0.94	0.97 (0.83, 1.13)	0.99 (0.79, 1.25)
MEHHP	1.00	1.00		1.00	1.00
1.10-21.3	1.00	1.00	_	1.00	1.00
21.3-39.5	0.64 (0.44, 0.94)	0.96 (0.64, 1.46)	—	0.84 (0.60, 1.17)	0.80 (0.48, 1.33)
39.6-2,721	0.93 (0.62, 1.40)	0.81 (0.55, 1.19)		0.96 (0.69, 1.34)	0.87 (0.53, 1.44)
Ln(MEHHP)	1.00 (0.84, 1.19)	0.95 (0.80, 1.13)	0.84	1.00 (0.86, 1.16)	1.04 (0.84, 1.30)
MECPP					
3.09-30.0	1.00	1.00		1.00	1.00
30.1-52.1	0.74 (0.51, 1.09)	0.67 (0.44, 1.02)	_	0.73 (0.52, 1.02)	0.85 (0.51, 1.42)
2.2-1,950	0.91 (0.61, 1.37)	0.60 (0.40, 0.90)	_	0.80 (0.57, 1.13)	0.93 (0.56, 1.53)
Ln(MECPP)	0.94 (0.77, 1.14)	0.85 (0.71, 1.02)	0.98	0.87 (0.74, 1.02)	0.93 (0.73, 1.19)

Table 3. Associations between urinary phthalate metabolite concentrations ($\mu g/g$ creatinine) and risk of incident breast cancer among Long Island Breast Cancer Study Project (LIBCSP) women with and without breast cancer (BC and no BC), stratified by body mass index (BMI) and for odds of estrogen receptor (ER) + and ER - breast cancer from polytomous logistic regression models.

Note: LIBCSP women without breast cancer were age-matched to women diagnosed with breast cancer between 1 August 1996 and 31 July 1997. ---, no information was collected at that particular examination point; CI, confidence interval; DEHP, di(2-ethylhexyl) phthalate; MBzP, monobenzyl phthalate; MCNP, monocarboxy-isononyl phthalate; MCOP, monocarboxyoctyl phthalate; MCPP, mono(3-carboxypropyl) phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEHP, mono(2-ethylhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEP, monoethyl phthalate; MiBP, mono-isobutyl phthalate; MNP, molecular-weight phthalate; OR, unconditional logistic regression odds ratio.

^aTertiles (µg/g creatinine) based on distributions among women without breast cancer.

^bAdjusted for age (continuous), age at menarche (continuous), education (< high school/high school graduate, college, and postcollege), menopausal status (pre- vs. postmenopausal), hormone replacement therapy use (never vs. ever), body mass index (<25.0, 25.0-29.9, and $\geq 30.0 \text{ kg/m}^2$), and oral contraceptive use (never vs. ever), as appropriate. PInteraction derived from continuous BMI by continuous phthalate metabolite concentration interactions in the logistic regression models.

^dMCOP and MCNP were measured in 320 women with BC and 205 women without BC only.

^eLow MWP: Creatinine-corrected molar sum of MEP, MnBP, and MiBP (expressed as MEP, molecular weight 194).

^fHigh MWP: Creatinine-corrected molar sum of MBzP, MEHP, MEOHP, MEHHP, MECPP (expressed as MEHP, molecular weight 278).

⁸ DEHP: Creatinine-corrected molar sum of DEHP metabolites: MEHP, MEOHP, MEHHP, MECPP (expressed as MEHP, molecular weight 278).

	Body mass i	ndex (BMI) [OR (95% CI)] ^b	ER status $[OR (95\% CI)]^b$		
Analyte ^a	$<25.0 \text{ kg/m}^2$ (<i>n</i> = 306 BC vs. no BC = 293)	$\geq 25.0 \text{ kg/m}^2$ (n = 376 BC vs. no BC = 265)	P _{Interaction} ^c	ER + (n = 354 BC vs.) no BC = 558)	ER - (n = 109 BC vs.) no $BC = 558)$
Low MWP ^e					
24.5-141	1.00	1.00		1.00	1.00
141-335	0.82 (0.55, 1.22)	0.61 (0.41, 0.91)	_	0.68 (0.49, 0.96)	0.55 (0.33, 0.94)
337-34,163	1.05 (0.71, 1.56)	0.71 (0.48, 1.05)	_	0.79 (0.57, 1.10)	0.82 (0.51, 1.33)
Ln(Low MWP)	0.98 (0.85, 1.12)	0.88 (0.76, 1.01)	0.30	0.90 (0.79, 1.01)	0.94 (0.78, 1.13)
High MWP ^f					
7.36-81.2	1.00	1.00	_	1.00	1.00
82.0-139	0.66 (0.45, 0.96)	0.96 (0.64, 1.45)	_	0.82 (0.58, 1.14)	1.00 (0.61, 1.65)
140-6,320	0.86 (0.58, 1.29)	0.79 (0.53, 1.17)	_	0.92 (0.66, 1.28)	0.81 (0.48, 1.36)
Ln(High MWP)	0.94 (0.77, 1.15)	0.92 (0.76, 1.11)	0.91	0.94 (0.79, 1.11)	0.96 (0.74, 1.23)
$\Sigma DEHP^{g}$					
5.45-63.0	1.00	1.00		1.00	1.00
63.3-116	0.88 (0.60, 1.28)	0.85 (0.56, 1.28)		0.91 (0.65, 1.27)	0.95 (0.58, 1.57)
117-6,265	0.89 (0.59, 1.34)	0.74 (0.50, 1.10)		0.92 (0.66, 1.30)	0.83 (0.50, 1.39)
Ln(SDEHP)	0.96 (0.80, 1.17)	0.89 (0.74, 1.07)	0.93	0.93 (0.79, 1.09)	0.98 (0.77, 1.24)

In the subsample of women in this study, 65.4% were postmenopausal at diagnosis, 93.1% self-identified as white, and participants ranged in age from 22-96 y at diagnosis or selection. The mean age at diagnosis among women with BC was 59.1 y (SD = 12.8). There were small differences in the distribution of characteristics among the women with available values of urinary concentrations of phthalate metabolites and the full LIBCSP sample. Compared to the full sample of women without BC, lower proportions of women without BC included in this ancillary study were aged ≥ 65 y (25.3% vs. 28.3%) and were postmenopausal at diagnosis (62.8% vs. 66.3%). Compared to the full sample of women with BC, higher proportions of women with BC included in this ancillary study had nodal involvement (78.0% vs. 74.5%) and were diagnosed with ER + BC (76.1% vs. 73.3%); ER status was missing for 32% of women with BC. Approximately 82% of the women with BC included in this ancillary study provided urine samples prior to chemotherapy treatment.

Concentrations of most phthalate metabolites were similar, except for MEP for which the median concentrations were 10- to 100-fold higher relative to the other metabolites (Table S1). Because MCOP and MCNP were only analyzed in the second batch, data for these metabolites were missing for more than half of participants. The concentrations and concentration patterns we observed in our study are also similar to those reported among adult women for four phthalate metabolites (MEP, MnBP, MBzP, MEHP) available in the 1999–2000 National Health and Nutrition Examination Survey (Table S1) (CDC 2001).

Among the women without BC, we observed high correlations between MEHP and other DEHP metabolites, specifically MEHHP $(r_{\rm P} = 0.90)$, MEOHP $(r_{\rm P} = 0.86)$, and MECPP $(r_{\rm P} = 0.65)$, and also between MCNP and MCPP ($r_{\rm P} = 0.58$) (all p < 0.05) (Table S3). Creatinine-corrected metabolite concentrations were weakly correlated with continuous covariates; at diagnosis, BMI (kg/m^2) was positively correlated with MEOHP ($r_{\rm P} = 0.09$) and MECPP $(r_{\rm P}=0.10)$ (both p < 0.05). Continuous creatinine-corrected concentrations of MCPP were inversely correlated with age at menarche ($r_{\rm P} = -0.10$; p < 0.05). Quintiles of several metabolites were statistically significantly associated with categorized age at reference (MCPP and MEHP), BMI (MEOHP and MEHHP), education (MiBP), income (MiBP and MEHP), menopausal status (MCPP, MCNP, and MECPP), and hormone replacement therapy use (MEP) (all chi-squared p < 0.05) (Table S4). In analyses in which we examined the receipt of chemotherapy treatment prior to urine sample collection, we found that chemotherapy was associated

with lower concentrations of MEP and higher levels of MBZP and MEHHP (Table S5). Given these findings, all multivariable Cox regression models were adjusted for receipt of chemotherapy treatment prior to sample collection. Last, in analyses in which we examined phthalate metabolite concentrations in association with disease and treatment characteristics, we found that MCOP, MEHP, MEOHP, MEHHP, and MECPP concentrations differed by stage (*in situ* vs. invasive), and MBZP, MEOHP, and MEHHP concentrations differed by receipt of chemotherapy treatment, based on statistically significant mean differences derived from generalized linear models regressing each of the ln-transformed creatinine-corrected phthalate metabolite concentrations did not differ by tumor size, nodal involvement, ER status, and radiation and hormone therapies.

Case-Control Analyses

The case–control results examining associations between urinary phthalate metabolite concentrations and BC are presented in Table 2. Compared to the lowest quintiles, the highest quintiles of all phthalate metabolites were not associated with increased odds of BC; the fully adjusted ORs in the highest quintiles were all close to or below one. The largest inverse associations were for MCPP, MBzP, MCNP, and MCOP for which the highest quintiles were associated with ORs of BC of 0.71 (95% CI: 0.49, 1.01), 0.72 (95% CI: 0.50, 1.03), 0.72 (95% CI: 0.40, 1.03), and 0.73 (95% CI: 0.71, 1.30), respectively, relative to the lowest quintiles. Continuous In-transformed concentrations of MCPP were inversely associated with BC (OR = 0.85; 95% CI: 0.72, 1.00).

The case–control results examining effect modification by BMI and associations with BC subtype are presented in Table 3. Overall, there was little evidence of effect modification by BMI or heterogeneity by ER status.

Follow-up Analyses

Among the 710 women with BC, we identified 271 deaths, including 20 deaths among women with *in situ* disease, at the end of follow-up (median duration = 17.6 y; max = 18.4 y). Of the 271 deaths, 98 were related to BC, including three BC-related deaths among women with *in situ* disease. Cause of death was missing for eight women. The follow-up results examining associations between urinary phthalate metabolite concentrations and allcause and BC-specific survival following BC are presented in

Table 4. Associations between urinary phthalate metabolite concentrations (µg/g creatinine) and mortality in the Long Island Breast Cancer Study F	Project
(LIBCSP) women diagnosed with breast cancer in 1996–1997 and followed for $18 + y$ ($n = 710$).	

All-cause mortality [HR $(95\% \text{ CI})$] ^a			95% CI)] ^a	Breast cancer–specific mortality [HR (95% CI)] ^b				
Analyte ^d	Deaths	Censored	Age adjusted	Multivariable adjusted ^c	Deaths	Censored	Age adjusted	Multivariable adjusted
MEP								
Quintile 1	66	108	1.00	1.00	28	146	1.00	1.00
Ouintile 2	57	86	0.98 (0.69, 1.40)	1.00 (0.69, 1.45)	16	126	0.70 (0.38, 1.29)	0.91 (0.48, 1.73)
Ouintile 3	58	62	1.28 (0.90, 1.83)	1.37 (0.95, 1.98)	24	93	1.31 (0.76, 2.26)	1.52 (0.84, 2.73)
Quintile 4	40	92	0.83 (0.56, 1.23)	0.84(0.56, 1.27)	14	116	0.65 (0.34, 1.23)	0.78(0.40, 1.52)
Quintile 5	50	91	0.88 (0.61, 1.22)	0.91(0.62, 1.34)	16	123	0.69 (0.37, 1.27)	0.81(0.42, 1.52)
L n(MFP)			0.98(0.90, 1.08)	1.00(0.91, 1.09)		125	0.03 (0.80, 1.27) 0.93 (0.80, 1.08)	0.97(0.83, 1.13)
MnBP			0.90 (0.90, 1.00)	1.00 (0.91, 1.09)			0.95 (0.00, 1.00)	0.57 (0.05, 1.15)
Ouintile 1	67	103	1.00	1.00	28	141	1.00	1.00
Quintile 2	47	78	0.85(0.59, 1.24)	0.92(0.63, 1.35)	25	98	1 22 (0 71 2 10)	1 36 (0 77 2 39)
Quintile 3	64	91	0.05(0.5), 1.24) 0.89(0.63, 1.25)	0.92(0.05, 1.33)	10	135	0.72 (0.40, 1.20)	0.77 (0.42, 1.43)
Quintile J	45	72	0.89(0.05, 1.25) 0.80(0.55, 1.16)	0.94 (0.05, 1.34) 0.83 (0.55, 1.24)	19	105	0.72(0.40, 1.29) 0.50(0.24, 1.03)	0.77(0.42, 1.43) 0.53(0.24, 1.14)
Quintile 5	43	05	0.80(0.55, 1.10) 0.81(0.56, 1.18)	0.85(0.55, 1.24)	16	105	0.50(0.24, 1.03) 0.66(0.26, 1.22)	0.55(0.24, 1.14) 0.60(0.26, 1.22)
L n(MnDD)	40	95	0.01(0.30, 1.10)	0.03(0.37, 1.24)	10	125	0.00(0.30, 1.22) 0.80(0.62, 1.01)	0.09(0.30, 1.32)
MiBP	_	_	0.90 (0.85, 1.11)	0.99 (0.85, 1.15)	_	_	0.80 (0.05, 1.01)	0.85 (0.05, 1.07)
Ouintile 1	68	105	1.00	1.00	29	142	1.00	1.00
Ouintile 2	52	88	0.91 (0.64, 1.31)	0.90 (0.62, 1.31)	16	123	0.67 (0.36, 1.22)	0.66 (0.35, 1.25)
Ouintile 3	62	78	1.32 (0.93, 1.86)	1.30 (0.90, 1.87)	22	116	0.95 (0.55, 1.66)	0.93 (0.52, 1.68)
Quintile 4	42	82	0.85 (0.58, 1.25)	0.84(0.57, 1.25)	15	108	0.68 (0.37, 1.27)	0.66 (0.35, 1.26)
Quintile 5	47	86	0.91 (0.63, 1.32)	0.92(0.63, 1.35)	16	115	0.69 (0.37, 1.27)	0.64(0.34, 1.23)
Ln(MiBP)			0.97(0.86, 1.02)	0.96(0.85, 1.09)			0.01 (0.75, 1.11)	0.88(0.71, 1.08)
MCPP			0.57 (0.00, 1.05)	0.90 (0.05, 1.09)			0.91 (0.75, 1.11)	0.00 (0.71, 1.00)
Quintile 1	68	105	1.00	1.00	31	140	1.00	1.00
Quintile 2	49	83	0.77(0.53, 1.12)	0.80(0.55, 1.18)	16	116	0.64(0.35, 1.17)	0.71(0.38, 1.33)
Quintile 3	58	101	0.80(0.56, 1.12)	0.82 (0.57, 1.18)	18	138	0.61(0.34, 1.09)	0.62(0.33, 1.17)
Quintile 4	42	75	0.80(0.54, 1.13)	0.87 (0.59, 1.10)	16	101	0.01(0.04, 1.0)) 0.72(0.40, 1.32)	0.88(0.48, 1.64)
Quintile 5	42 54	75	0.00(0.54, 1.17) 0.00(0.60, 1.41)	0.07(0.5), 1.50) 0.08(0.67, 1.43)	17	100	0.72(0.40, 1.32) 0.74(0.41, 1.34)	0.35(0.40, 1.04)
L n(MCPP)	54	15	1.05(0.88, 1.41)	1.04 (0.86 + 1.25)	17	109	0.74(0.41, 1.34) 0.77(0.57, 1.06)	0.73(0.40, 1.40) 0.82(0.50, 1.14)
MB7P			1.05 (0.88, 1.25)	1.04 (0.00, 1.23)			0.77 (0.57, 1.00)	0.02(0.39, 1.14)
Ouintile 1	66	117	1.00	1.00	27	155	1.00	1.00
Quintile 2	52	60	1 24 (0 86 1 70)	1 20 (0 82 1 75)	16	100	0.96(0.52, 1.79)	0.91(0.47, 1.74)
Quintile 3	63	05	1.24(0.88, 1.75) 1.24(0.88, 1.75)	1.26(0.82, 1.75) 1.26(0.88, 1.81)	25	134	1.13(0.65, 1.04)	1.00(0.61, 1.02)
Quintile J	40	90 72	1.24(0.00, 1.73) 1.06(0.71, 1.57)	1.20(0.86, 1.81) 1.00(0.66, 1.51)	11	101	1.13(0.03, 1.94) 0.66(0.22, 1.22)	$0.54 (0.26 \ 1.14)$
Quintile 5	40	94	1.00(0.71, 1.57) 1.12(0.79, 1.62)	1.00(0.00, 1.51) 1.17(0.80, 1.71)	10	114	0.00(0.55, 1.55) 0.00(0.55, 1.70)	0.01(0.20, 1.14)
L n(MP ₂ D)	50	04	1.13(0.76, 1.03) 1.02(0.01, 1.17)	1.17(0.00, 1.71) 1.04(0.01, 1.10)	19	114	0.99(0.33, 1.79) 0.07(0.78, 1.10)	0.91(0.49, 1.09)
LII(MDZF) $MCOP^{e}$			1.05 (0.91, 1.17)	1.04 (0.91, 1.19)			0.97 (0.78, 1.19)	0.91 (0.72, 1.13)
Ouintile 1	31	17	1.00	1.00	17	60	1.00	1.00
Quintile 1	24		1.00	1.00	17	47	1.00	1 15 (0 52 2 52)
Quintile 2	24	24	1.15(0.00, 1.90) 1.15(0.69, 1.04)	1.21(0.09, 2.13) 1.02(0.50, 1.78)	15	47	1.02(0.30, 2.11) 0.72(0.22, 1.62)	1.13(0.32, 2.32)
Quintile 3	20	24	1.13(0.06, 1.94) 1.05(0.62, 1.76)	1.02(0.39, 1.78)	9	40	0.72(0.32, 1.02) 0.71(0.22, 1.60)	0.04(0.27, 1.33) 0.72(0.20, 1.77)
Quintile 4	20	20	1.03(0.02, 1.70)	1.07 (0.01, 1.80)	9	4/	0.71(0.52, 1.00)	0.72(0.29, 1.77)
Quintile 5	27	39	0.90(0.57, 1.01)	0.99 (0.58, 1.70)	8	38	0.51(0.22, 1.18)	0.55(0.23, 1.55)
Ln(MCOP) $MCNP^{e}$	_		0.98 (0.83, 1.16)	1.00 (0.84, 1.20)			0.75 (0.56, 0.99)	0.77 (0.56, 1.05)
Ouintile 1	30	13	1.00	1.00	18	55	1.00	1.00
Quintile 1	17	45	1.00	1 40 (0 76 2 50)	6	22	1.00	0.82(0.21, 2.14)
Quintile 2	21	12	1.20(0.00, 2.18) 0.82(0.47, 1.44)	0.02(0.52, 1.67)	6	59	0.05(0.20, 1.04) 0.25(0.14, 0.80)	0.32(0.31, 2.14) 0.45(0.17, 1.17)
Quintile 3	21 44	43	1.05(0.47, 1.44) 1.36(0.95, 2.14)	1.44 (0.97 2.20)	20	50	0.00 (0.14, 0.09)	1.11(0.55, 2.27)
Quintile 4	44	42 24	1.30(0.03, 2.10) 1.12(0.66, 1.04)	1.44 (0.67, 2.39)	20	50	0.99(0.32, 1.07) 0.41(0.16 1.02)	1.11(0.33, 2.27) 0.52(0.20, 1.27)
L m(MCND)	24	54	1.13(0.00, 1.94) 1.02(0.95, 1.24)	1.29(0.73, 2.27) 1.06(0.97, 1.20)	0	50	0.41 (0.10, 1.03)	0.32(0.20, 1.37)
LII(IVICINP)			1.05 (0.85, 1.24)	1.00 (0.87, 1.50)			0.78 (0.30, 1.08)	0.67 (0.02, 1.22)
MEHP Opintile 1	01	04	1.00	1.00	25	120	1.00	1.00
Quintile 1	δ1 55	84 92	1.00	1.00	33 16	129	1.00	1.00
Quintile 2	33 45	00	0.74(0.32, 1.04)	0.73(0.31, 1.04) 0.72(0.50, 1.07)	10	120	0.51(0.26, 0.92)	0.51(0.27, 0.90) 0.65(0.25, 1.19)
Quintine 5	43	92	0.09 (0.48, 1.00)	0.75 (0.50, 1.07)	1 /	118	0.55 (0.51, 0.99)	0.03 (0.35, 1.18)

Note: LIBCSP participants diagnosed with breast cancer between 1 August 1996 and 31 July 1997 followed-up for vital status through December 31, 2014. Women alive at the end of follow-up were censored at the end of follow-up. For breast cancer-specific mortality, non-breast cancer deaths were censored at the time of death. ----, no information was collected at that particular examination point; CI, confidence interval; DEHP, di(2-ethylhexyl) phthalate; HR, hazard ratio; MBzP, monobenzyl phthalate; MCNP, monocarboxy-isononyl phthalate; MCOP, monocarboxyoctyl phthalate; MCPP, mono(3-carboxypropyl) phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEHP, mono(2-ethylhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEP, monoethyl phthalate; MiBP, mono-isobutyl phthalate; MnBP, mono-N-butyl phthalate; MWP, molecular-weight phthalate.

^aAge-adjusted models based on 271 deaths and 439 censored observations, and multivariable-adjusted models based on 255 deaths and 416 censored observations due to missing covariate data.

^bAge-adjusted models based on 98 deaths and 604 censored observations, and multivariable-adjusted models based on 90 deaths and 575 censored observations due to missing covariate data

 c Adjusted for age (continuous), education (< high school/high school graduate, college, and postcollege), menopausal status (pre- vs. postmenopausal), hormone replacement therapy use (never vs. ever), body mass index (< 25.0, 25.0–29.9, and \geq 30.0 kg/m²), oral contraceptive use (never vs. ever), and receipt of hemotherapy treatment prior to urine sample collection (yes vs. no). ^dQuintiles (μ g/g creatinine) based on distributions among women without breast cancer. ^eMCOP and MCNP were measured in 320 women with BC only.

^fLow MWP: Creatinine-corrected molar sum of MEP, MnBP, and MiBP (expressed as MEP, molecular weight 194).

⁸High MWP: Creatinine-corrected molar sum of MBzP, MEHP, MEOHP, MEHHP, MECPP (expressed as MEHP, molecular weight 278).
^hΣDEHP: Creatinine-corrected molar sum of DEHP metabolites: MEHP, MEOHP, MEHHP, MECPP (expressed as MEHP, molecular weight 278).

Table 4. (Continued.)

			All-ca	use mortality [HR (9	95% CI)] ^a	Breast cancer-specific mortality [HR (95% CI)] ^b			[HR (95% CI)] ^b
	Analyte ^d	Deaths	Censored	Age adjusted	Multivariable adjusted ^c	Deaths	Censored	Age adjusted	Multivariable adjusted ^c
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Quintile 4	41	105	0.62 (0.43, 0.91)	0.68 (0.46, 1.00)	15	131	0.44 (0.24, 0.82)	0.47 (0.25, 0.89)
$ \begin{array}{c} {\rm Ln}({\rm MEHP}) & - & - & 0.95 (0.84, 1.07) \\ {\rm WEOHP} & 0.95 (0.84, 1.08) \\ {\rm Comp} & 1.00 \\ {\rm Quintile} & 52 & 92 & 1.00 \\ {\rm Quintile} & 54 & 104 & 0.82 (0.56, 1.20) \\ {\rm Quintile} & 55 & 0.77 (0.52, 1.15) \\ {\rm Quintile} & 56 & 67 & 1.18 (0.81, 1.72) \\ {\rm Quintile} & 55 & 1.58 & 1.04 (0.71, 1.43) \\ {\rm Quintile} & 55 & 1.85 & 1.04 (0.71, 1.53) & 0.96 (0.63, 1.44) \\ {\rm I} & 17 & 116 & 0.87 (0.46, 1.66) & 0.79 (0.55, 1.55) \\ {\rm Quintile} & 55 & 1.85 & 1.04 (0.71, 1.53) & 0.96 (0.63, 1.44) \\ {\rm La}({\rm MEOHP}) & - & - & 1.04 (0.91, 1.19) & 1.03 (0.89, 1.19) \\ {\rm Quintile} & 55 & 92 & 1.00 & 1.00 \\ {\rm Quintile} & 55 & 92 & 1.00 & 1.00 \\ {\rm Quintile} & 55 & 87 & 1.11 (0.76, 1.61) & 1.02 (0.91, 1.52) \\ {\rm Quintile} & 55 & 87 & 1.11 (0.76, 1.61) & 1.02 (0.91, 1.52) \\ {\rm Quintile} & 55 & 87 & 1.11 (0.76, 1.61) & 1.06 (0.71, 1.58) \\ {\rm Quintile} & 55 & 87 & 1.11 (0.76, 1.61) & 1.06 (0.71, 1.58) \\ {\rm Quintile} & 55 & 87 & 1.11 (0.76, 1.61) & 1.06 (0.71, 1.58) \\ {\rm Quintile} & 150 & 0.66 (0.37, 1.16) & 0.72 (0.38, 1.29) \\ {\rm Quintile} & 56 & 96 & 1.00 & 1.00 & 27 & 125 & 1.00 & 1.00 \\ {\rm Quintile} & 150 & 96 & 1.00 & 1.00 & 27 & 125 & 1.00 & 1.00 \\ {\rm Quintile} & 150 & 96 & 1.00 & 1.00 & 27 & 125 & 1.00 & 1.00 \\ {\rm Quintile} & 150 & 96 & 1.00 & 1.00 & 27 & 125 & 1.00 & 1.00 \\ {\rm Quintile} & 157 & 96 & 0.00 & 1.00 & 27 & 125 & 0.00 & 1.00 \\ {\rm Quintile} & 158 & 1.12 (0.78, 1.42) & 1.12 (0.76, 1.44) & 22 & 114 & 0.94 (0.54, 1.66) & 1.00 (0.57, 1.83) \\ {\rm Quintile} & 158 & 1.02 (0.70, 1.49) & 1.00 (0.67, 1.49) & 16 & 116 & 0.68 (0.37, 1.16) & 0.72 (0.39, 1.32) \\ {\rm Quintile} & 161 & 78 & 1.12 (0.78, 1.42) & 1.00 (0.67, 1.49) & 16 & 116 & 0.68 (0.37, 1.16) & 0.27 (0.39, 1.32) \\ {\rm Quintile} & 161 & 78 & 1.12 (0.78, 1.45) & 1.02 (0.67, 1.49) & 16 & 116 & 0.68 (0.37, 1.16) & 0.27 (0.39, 1.32) \\ {\rm Quintile} & 161 & 0.88 (0.99 (0.70, 1.40) & 1.00 (0.67, 1.49) & 16 & 116 & 0.68 (0.37, 1.16) & 0.29 (0.34, 1.18) \\ {\rm Quintile}$	Quintile 5	49	75	0.89 (0.62, 1.27)	0.87 (0.60, 1.27)	15	106	0.57 (0.31, 1.04)	0.54 (0.28, 1.04)
$\begin{split} \text{MEOHP} \\ \hline \text{Quintile } 1 & 52 & 92 & 1.00 & 1.00 & 21 & 122 & 1.00 & 1.00 \\ \text{Quintile } 3 & 56 & 67 & 1.18 (0.81, 1.72) & 1.12 (0.75, 1.66) & 16 & 106 & 0.39 (0.47, 1.71) & 0.82 (0.41, 1.62) \\ \text{Quintile } 4 & 58 & 91 & 1.03 (0.71, 1.49) & 1.01 (0.69, 1.50) & 22 & 126 & 1.02 (0.56, 1.85) & 0.94 (0.50, 1.77) \\ \text{Quintile } 5 & 51 & 85 & 1.04 (0.71, 1.53) & 0.96 (0.63, 1.44) & 17 & 116 & 0.87 (0.44, 1.60) & 0.70 (0.35, 1.40) \\ \text{Ln(MEOHP)} & - & - & - & - & - & - & - & - & - & $	Ln(MEHP)	_		0.95 (0.84, 1.07)	0.95 (0.84, 1.08)	_		0.80 (0.66, 0.98)	0.79 (0.64, 0.98)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MEOHP								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Quintile 1	52	92	1.00	1.00	21	122	1.00	1.00
$ \begin{array}{c} \mbox{Quintile 3} & 56 & 67 & 1.18 (0.81, 1.72) & 1.12 (0.75, 1.66) & 16 & 106 & 0.89 (0.47, 1.71) & 0.82 (0.41, 1.62) \\ \mbox{Quintile 4} & 58 & 91 & 1.03 (0.71, 1.53) & 0.96 (0.63, 1.44) & 17 & 116 & 0.87 (0.46, 1.66) & 0.70 (0.35, 1.40) \\ \mbox{Inf(BCHP)} & - & - & 1.04 (0.91, 1.19) & 1.03 (0.89, 1.19) & - & - & 0.97 (0.78, 1.21) & 0.92 (0.72, 1.16) \\ \mbox{MEHHP} & & & & & & & & & & & & & & & & & & &$	Quintile 2	54	104	0.82 (0.56, 1.20)	0.77 (0.52, 1.15)	22	134	0.92 (0.51, 1.67)	0.78 (0.41, 1.49)
$ \begin{array}{c} \mbox{Quintile 4} & 58 & 91 & 1.03 (0.71, 1.49) & 1.01 (0.69, 1.50) & 22 & 126 & 1.02 (0.56, 1.85) & 0.94 (0.50, 1.77) \\ \mbox{Quintile 5} & 51 & 85 & 1.04 (0.71, 1.53) & 0.96 (0.63, 1.44) & 17 & 116 & 0.87 (0.46, 1.66) & 0.70 (0.35, 1.40) \\ \mbox{Ln(MEOHP)} & - & - & 1.04 (0.91, 1.19) & 1.03 (0.89, 1.19) & - & - & 0.97 (0.78, 1.21) & 0.92 (0.72, 1.16) \\ \mbox{MEHHP} & & & & & & & & & & & & & & & & & & &$	Quintile 3	56	67	1.18 (0.81, 1.72)	1.12 (0.75, 1.66)	16	106	0.89 (0.47, 1.71)	0.82 (0.41, 1.62)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Quintile 4	58	91	1.03 (0.71, 1.49)	1.01 (0.69, 1.50)	22	126	1.02 (0.56, 1.85)	0.94 (0.50, 1.77)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Quintile 5	51	85	1.04 (0.71, 1.53)	0.96 (0.63, 1.44)	17	116	0.87 (0.46, 1.66)	0.70 (0.35, 1.40)
$\begin{split} & \text{MEHPP} \\ & \text{Quintile 1} & 55 & 92 & 1.00 & 1.00 & 22 & 124 & 1.00 & 1.00 \\ & \text{Quintile 2} & 44 & 103 & 0.69 & (0.47, 1.03) & 0.72 & (0.48, 1.09) & 15 & 131 & 0.64 & (0.33, 1.23) & 0.71 & (0.35, 1.44) \\ & \text{Quintile 3} & 55 & 69 & 1.32 & (0.92, 1.88) & 1.32 & (0.91, 1.92) & 26 & 106 & 1.36 & (0.77, 2.39) & 1.51 & (0.82, 2.76) \\ & \text{Quintile 4} & 52 & 88 & 0.99 & (0.68, 1.44) & 1.02 & (0.69, 1.52) & 18 & 121 & 0.86 & (0.46, 1.59) & 0.90 & (0.64, 1.77) \\ & \text{Quintile 5} & 55 & 87 & 1.11 & (0.76, 1.61) & 1.06 & (0.71, 1.58) & 17 & 122 & 0.82 & (0.44, 1.54) & 0.77 & (0.39, 1.55) \\ & \text{Ln(MEHPP} & - & - & 1.07 & (0.94, 1.22) & 1.05 & (0.91, 1.21) & - & - & 0.97 & (0.79, 1.21) & 0.93 & (0.74, 1.17) \\ & \text{MECPP} & & & & & & & & & & & & & & & & & & $	Ln(MEOHP)	—	—	1.04 (0.91, 1.19)	1.03 (0.89, 1.19)	_	—	0.97 (0.78, 1.21)	0.92 (0.72, 1.16)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MEHHP								
$ \begin{array}{c} \mbox{Quintile 2} & 44 & 103 & 0.69 & (0.47, 1.03) & 0.72 & (0.48, 1.09) & 15 & 131 & 0.64 & (0.33, 1.23) & 0.71 & (0.35, 1.44) \\ \mbox{Quintile 3} & 65 & 69 & 1.32 & (0.92, 1.88) & 1.32 & (0.91, 1.92) & 26 & 106 & 1.36 & (0.77, 2.39) & 1.51 & (0.82, 2.76) \\ \mbox{Quintile 4} & 52 & 88 & 0.99 & (0.68, 1.44) & 1.02 & (0.69, 1.52) & 18 & 121 & 0.86 & (0.46, 1.59) & 0.99 & (0.46, 1.77) \\ \mbox{Quintile 5} & 55 & 87 & 1.11 & (0.76, 1.61) & 1.06 & (0.71, 1.58) & 17 & 122 & 0.82 & (0.44, 1.54) & 0.77 & (0.39, 1.55) \\ \mbox{Ln(MEHPP)} & - & - & 1.07 & (0.94, 1.22) & 1.05 & (0.91, 1.21) & - & - & - & 0.97 & (0.79, 1.21) & 0.93 & (0.74, 1.17) \\ \mbox{MECPP} & & & & & & & & & & & & & & & & & & $	Quintile 1	55	92	1.00	1.00	22	124	1.00	1.00
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Quintile 2	44	103	0.69 (0.47, 1.03)	0.72 (0.48, 1.09)	15	131	0.64 (0.33, 1.23)	0.71 (0.35, 1.44)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Quintile 3	65	69	1.32 (0.92, 1.88)	1.32 (0.91, 1.92)	26	106	1.36 (0.77, 2.39)	1.51 (0.82, 2.76)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Quintile 4	52	88	0.99 (0.68, 1.44)	1.02 (0.69, 1.52)	18	121	0.86 (0.46, 1.59)	0.90 (0.46, 1.77)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Quintile 5	55	87	1.11 (0.76, 1.61)	1.06 (0.71, 1.58)	17	122	0.82 (0.44, 1.54)	0.77 (0.39, 1.55)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ln(MEHHP)	_	_	1.07 (0.94, 1.22)	1.05 (0.91, 1.21)	_	_	0.97 (0.79, 1.21)	0.93 (0.74, 1.17)
	MECPP								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Quintile 1	56	96	1.00	1.00	27	125	1.00	1.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Quintile 2	63	110	0.83 (0.58, 1.19)	0.82 (0.56, 1.20)	21	150	0.66 (0.37, 1.16)	0.72 (0.39, 1.32)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Quintile 3	37	75	0.82 (0.54, 1.25)	0.83 (0.53, 1.28)	12	99	0.60 (0.30, 1.18)	0.61 (0.30, 1.27)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Quintile 4	61	78	1.12 (0.78, 1.62)	1.12 (0.76, 1.64)	22	114	0.94 (0.54, 1.66)	1.00 (0.55, 1.83)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Quintile 5	54	80	1.02 (0.70, 1.49)	1.00 (0.67, 1.49)	16	116	0.68 (0.37, 1.26)	0.62 (0.31, 1.22)
Low MWP' Quintile 1 62 101 1.00 1.00 20 143 1.00 1.00 1.00 Quintile 2 66 108 0.99 (0.70, 1.40) 1.04 (0.72, 1.49) 24 149 1.10 (0.61, 1.99) 1.28 (0.67, 2.43) Quintile 3 53 50 1.61 (1.11, 2.32) 1.78 (1.21, 2.62) 25 76 2.23 (1.24, 4.01) 2.71 (1.44, 5.09) Quintile 4 38 88 0.87 (0.58, 1.31) 0.90 (0.59, 1.38) 12 111 0.75 (0.37, 1.54) 0.92 (0.44, 1.93) Quintile 5 52 92 0.95 (0.65, 1.37) 0.99 (0.68, 1.45) 17 125 0.94 (0.49, 1.80) 1.11 (0.56, 2.20) Ln(Low MWP) 0.99 (0.89, 1.10) 1.00 (0.90, 1.11) - 0.92 (0.77, 1.10) 0.96 (0.80, 1.16) High MWP ⁸ Quintile 1 58 94 1.00 1.00 24 127 1.00 1.00 Quintile 2 57 104 0.90 (0.62, 1.30) 0.94 (0.64, 1.37) 21 138 0.81 (0.45, 1.46) 0.83 (0.45, 1.56) Quintile 4 46 87 0.87 (0.59, 1.27) 0.92 (0.61, 1.37) 14 117 0.66 (0.34, 1.28) 0.71 (0.36, 1.43) Quintile 5 60 86 1.19 (0.83, 1.70) 1.12 (0.76, 1.66) 20 124 0.90 (0.50, 1.62) 0.73 (0.36, 1.43) Ln(High MWP) 1.06 (0.91, 1.22) 1.05 (0.90, 1.23) - 0.93 (0.73, 1.18) 0.87 (0.67, 1.13) EDEHP ⁴ Quintile 1 56 89 1.00 1.00 23 121 1.00 1.00 Quintile 3 45 70 0.96 (0.65, 1.43) 0.94 (0.63, 1.42) 14 100 0.77 (0.40, 1.50) 0.80 (0.39, 1.65) Quintile 4 62 84 1.04 (0.73, 1.50) 1.11 (0.76, 1.62) 22 122 0.97 (0.54, 1.74) 1.14 (0.60, 2.15) Quintile 4 62 84 1.04 (0.73, 1.50) 1.11 (0.76, 1.62) 22 122 0.97 (0.54, 1.74) 1.14 (0.60, 2.15) Quintile 5 53 83 0.94 (0.65, 1.38) 0.89 (0.60, 1.34) 18 116 0.84 (0.45, 1.55) 0.77 (0.39, 1.57) Ln(EDEHP) 1.06 (0.91, 1.22) 1.05 (0.90, 1.22) 0.94 (0.74, 1.19) 0.90 (0.70, 1.16)	Ln(MECPP)	—	_	1.06 (0.92, 1.22)	1.05 (0.90, 1.23)	—	_	0.93 (0.73, 1.18)	0.90 (0.70, 1.16)
	Low MWP ^r								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Quintile 1	62	101	1.00	1.00	20	143	1.00	1.00
Quintile 353501.61 (1.11, 2.32)1.78 (1.21, 2.62)25762.23 (1.24, 4.01)2.71 (1.44, 5.09)Quintile 438880.87 (0.58, 1.31)0.90 (0.59, 1.38)121110.75 (0.37, 1.54)0.92 (0.44, 1.93)Quintile 552920.95 (0.65, 1.37)0.99 (0.68, 1.45)171250.94 (0.49, 1.80)1.11 (0.56, 2.20)Ln(Low MWP)0.99 (0.89, 1.10)1.00 (0.90, 1.11)0.92 (0.77, 1.10)0.96 (0.80, 1.16)High MWP ⁸ Quintile 158941.001.00241271.001.00Quintile 2571040.90 (0.62, 1.30)0.94 (0.64, 1.37)211380.81 (0.45, 1.46)0.83 (0.45, 1.56)Quintile 350681.14 (0.78, 1.66)1.11 (0.75, 1.65)19981.04 (0.57, 1.89)1.07 (0.57, 2.02)Quintile 446870.87 (0.59, 1.27)0.92 (0.61, 1.37)141170.66 (0.34, 1.28)0.71 (0.36, 1.43)Quintile 560861.19 (0.83, 1.70)1.12 (0.76, 1.66)201240.90 (0.50, 1.62)0.73 (0.36, 1.43)EDEHP ^h 0.93 (0.73, 1.18)0.87 (0.67, 1.13)211.450.74 (0.41, 1.34)0.86 (0.45, 1.63)Quintile 156891.001.00231211.001.00Quintile 2551130.68 (0.47, 0.98)0.70 (0.47, 1.03)211450.74 (0.41, 1.34)0.86 (0.45,	Quintile 2	66	108	0.99 (0.70, 1.40)	1.04 (0.72, 1.49)	24	149	1.10 (0.61, 1.99)	1.28 (0.67, 2.43)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Quintile 3	53	50	1.61 (1.11, 2.32)	1.78 (1.21, 2.62)	25	76	2.23 (1.24, 4.01)	2.71 (1.44, 5.09)
Quintile 552920.95 (0.65, 1.37)0.99 (0.68, 1.45)171250.94 (0.49, 1.80)1.11 (0.56, 2.20)Ln(Low MWP)0.99 (0.89, 1.10)1.00 (0.90, 1.11)0.92 (0.77, 1.10)0.96 (0.80, 1.16)High MWP ^g Quintile 158941.001.00241271.001.00Quintile 2571040.90 (0.62, 1.30)0.94 (0.64, 1.37)211380.81 (0.45, 1.46)0.83 (0.45, 1.56)Quintile 350681.14 (0.78, 1.66)1.11 (0.75, 1.65)19981.04 (0.57, 1.89)1.07 (0.57, 2.02)Quintile 446870.87 (0.59, 1.27)0.92 (0.61, 1.37)141170.66 (0.34, 1.28)0.71 (0.36, 1.43)Quintile 560861.19 (0.83, 1.70)1.12 (0.76, 1.66)201240.90 (0.50, 1.62)0.73 (0.36, 1.43)Ln(High MWP)1.06 (0.91, 1.22)1.05 (0.90, 1.23)0.93 (0.73, 1.18)0.87 (0.67, 1.13)ZDEHP ^h Quintile 156891.001.00231211.001.00Quintile 345700.96 (0.65, 1.43)0.94 (0.63, 1.42)141000.77 (0.40, 1.50)0.80 (0.39, 1.65)Quintile 462841.04 (0.73, 1.50)1.11 (0.76, 1.62)221220.97 (0.54, 1.74)1.14 (0.60, 2.15)Quintile 553830.94 (0.65, 1.38)0.89 (0.60, 1.34)181160.84 (0.45, 1.55) </td <td>Quintile 4</td> <td>38</td> <td>88</td> <td>0.87 (0.58, 1.31)</td> <td>0.90 (0.59, 1.38)</td> <td>12</td> <td>111</td> <td>0.75 (0.37, 1.54)</td> <td>0.92 (0.44, 1.93)</td>	Quintile 4	38	88	0.87 (0.58, 1.31)	0.90 (0.59, 1.38)	12	111	0.75 (0.37, 1.54)	0.92 (0.44, 1.93)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Quintile 5	52	92	0.95 (0.65, 1.37)	0.99 (0.68, 1.45)	17	125	0.94 (0.49, 1.80)	1.11 (0.56, 2.20)
High MWP ^g Quintile 158941.001.00241271.001.00Quintile 2571040.90 (0.62, 1.30)0.94 (0.64, 1.37)211380.81 (0.45, 1.46)0.83 (0.45, 1.56)Quintile 350681.14 (0.78, 1.66)1.11 (0.75, 1.65)19981.04 (0.57, 1.89)1.07 (0.57, 2.02)Quintile 446870.87 (0.59, 1.27)0.92 (0.61, 1.37)141170.66 (0.34, 1.28)0.71 (0.36, 1.43)Quintile 560861.19 (0.83, 1.70)1.12 (0.76, 1.66)201240.90 (0.50, 1.62)0.73 (0.36, 1.43)Ln(High MWP)1.06 (0.91, 1.22)1.05 (0.90, 1.23)0.93 (0.73, 1.18)0.87 (0.67, 1.13)SDEHP ^h 1.06 (0.91, 1.09)1.001.00231211.001.00Quintile 156891.001.00231211.001.00Quintile 345700.96 (0.65, 1.43)0.94 (0.63, 1.42)141000.77 (0.41, 1.34)0.86 (0.45, 1.63)Quintile 462841.04 (0.73, 1.50)1.11 (0.76, 1.62)221220.97 (0.54, 1.74)1.14 (0.60, 2.15)Quintile 553830.94 (0.65, 1.38)0.89 (0.60, 1.34)181160.84 (0.45, 1.55)0.77 (0.39, 1.52)Ln(SDEHP)1.06 (0.92, 1.22)1.05 (0.90, 1.22)0.94 (0.74, 1.19)0.90 (0.70, 1.16)	Ln(Low MWP)	—	—	0.99 (0.89, 1.10)	1.00 (0.90, 1.11)	—	—	0.92 (0.77, 1.10)	0.96 (0.80, 1.16)
Quintile 158941.001.00241271.001.00Quintile 2571040.90 (0.62, 1.30)0.94 (0.64, 1.37)211380.81 (0.45, 1.46)0.83 (0.45, 1.56)Quintile 350681.14 (0.78, 1.66)1.11 (0.75, 1.65)19981.04 (0.57, 1.89)1.07 (0.57, 2.02)Quintile 446870.87 (0.59, 1.27)0.92 (0.61, 1.37)141170.66 (0.34, 1.28)0.71 (0.36, 1.43)Quintile 560861.19 (0.83, 1.70)1.12 (0.76, 1.66)201240.90 (0.50, 1.62)0.73 (0.36, 1.43)Ln(High MWP)1.06 (0.91, 1.22)1.05 (0.90, 1.23)0.93 (0.73, 1.18)0.87 (0.67, 1.13)SDEHP ^h 1.06 (0.91, 1.22)1.05 (0.90, 1.23)0.93 (0.73, 1.18)0.86 (0.45, 1.63)Quintile 156891.001.00231211.001.00Quintile 345700.96 (0.65, 1.43)0.94 (0.63, 1.42)141000.77 (0.41, 1.34)0.86 (0.45, 1.63)Quintile 345700.96 (0.65, 1.43)0.94 (0.63, 1.42)141000.77 (0.40, 1.50)0.86 (0.39, 1.65)Quintile 462841.04 (0.73, 1.50)1.11 (0.76, 1.62)221220.97 (0.54, 1.74)1.14 (0.60, 2.15)Quintile 553830.94 (0.65, 1.38)0.89 (0.60, 1.34)181160.84 (0.45, 1.55)0.77 (0.39, 1.52)Ln(SDEHP)-	High MWP ^g								
Quintile 2571040.90 (0.62, 1.30)0.94 (0.64, 1.37)211380.81 (0.45, 1.46)0.83 (0.45, 1.56)Quintile 350681.14 (0.78, 1.66)1.11 (0.75, 1.65)19981.04 (0.57, 1.89)1.07 (0.57, 2.02)Quintile 446870.87 (0.59, 1.27)0.92 (0.61, 1.37)141170.66 (0.34, 1.28)0.71 (0.36, 1.43)Quintile 560861.19 (0.83, 1.70)1.12 (0.76, 1.66)201240.90 (0.50, 1.62)0.73 (0.36, 1.43)Ln(High MWP)1.06 (0.91, 1.22)1.05 (0.90, 1.23)0.93 (0.73, 1.18)0.87 (0.67, 1.13)SDEHP ^h 1.06 (0.91, 0.98)0.70 (0.47, 1.03)211450.74 (0.41, 1.34)0.86 (0.45, 1.63)Quintile 156891.001.00231211.001.00Quintile 2551130.68 (0.47, 0.98)0.70 (0.47, 1.03)211450.74 (0.41, 1.34)0.86 (0.45, 1.63)Quintile 345700.96 (0.65, 1.43)0.94 (0.63, 1.42)141000.77 (0.40, 1.50)0.80 (0.39, 1.65)Quintile 462841.04 (0.73, 1.50)1.11 (0.76, 1.62)221220.97 (0.54, 1.74)1.14 (0.60, 2.15)Quintile 553830.94 (0.65, 1.38)0.89 (0.60, 1.34)181160.84 (0.45, 1.55)0.77 (0.39, 1.52)Ln(SDEHP)1.06 (0.92, 1.22)1.05 (0.90, 1.22)0.94 (0.74, 1.19)0.90	Quintile 1	58	94	1.00	1.00	24	127	1.00	1.00
Quintile 350681.14 (0.78, 1.66)1.11 (0.75, 1.65)19981.04 (0.57, 1.89)1.07 (0.57, 2.02)Quintile 446870.87 (0.59, 1.27)0.92 (0.61, 1.37)141170.66 (0.34, 1.28)0.71 (0.36, 1.43)Quintile 560861.19 (0.83, 1.70)1.12 (0.76, 1.66)201240.90 (0.50, 1.62)0.73 (0.36, 1.43)Ln(High MWP)1.06 (0.91, 1.22)1.05 (0.90, 1.23)0.93 (0.73, 1.18)0.87 (0.67, 1.13)ZDEHP ^h 1.06 (0.91, 0.98)0.70 (0.47, 1.03)211450.74 (0.41, 1.34)0.86 (0.45, 1.63)Quintile 156891.001.00231211.001.00Quintile 345700.96 (0.65, 1.43)0.94 (0.63, 1.42)141000.77 (0.40, 1.50)0.80 (0.39, 1.65)Quintile 462841.04 (0.73, 1.50)1.11 (0.76, 1.62)221220.97 (0.54, 1.74)1.14 (0.60, 2.15)Quintile 553830.94 (0.65, 1.38)0.89 (0.60, 1.34)181160.84 (0.45, 1.55)0.77 (0.39, 1.52)Ln(ZDEHP)1.06 (0.92, 1.22)1.05 (0.90, 1.22)0.94 (0.74, 1.19)0.90 (0.70, 1.16)	Quintile 2	57	104	0.90 (0.62, 1.30)	0.94 (0.64, 1.37)	21	138	0.81 (0.45, 1.46)	0.83 (0.45, 1.56)
Quintile 44687 $0.87 (0.59, 1.27)$ $0.92 (0.61, 1.37)$ 14 117 $0.66 (0.34, 1.28)$ $0.71 (0.36, 1.43)$ Quintile 56086 $1.19 (0.83, 1.70)$ $1.12 (0.76, 1.66)$ 20 124 $0.90 (0.50, 1.62)$ $0.73 (0.36, 1.43)$ Ln(High MWP) $1.06 (0.91, 1.22)$ $1.05 (0.90, 1.23)$ $0.93 (0.73, 1.18)$ $0.87 (0.67, 1.13)$ $\Sigma DEHP^{h}$ $0.93 (0.73, 1.18)$ $0.87 (0.67, 1.13)$ $0.87 (0.67, 1.13)$ Quintile 15689 1.00 1.00 23 121 1.00 1.00 Quintile 255 113 $0.68 (0.47, 0.98)$ $0.70 (0.47, 1.03)$ 21 145 $0.74 (0.41, 1.34)$ $0.86 (0.45, 1.63)$ Quintile 34570 $0.96 (0.65, 1.43)$ $0.94 (0.63, 1.42)$ 14 100 $0.77 (0.40, 1.50)$ $0.80 (0.39, 1.65)$ Quintile 46284 $1.04 (0.73, 1.50)$ $1.11 (0.76, 1.62)$ 22 122 $0.97 (0.54, 1.74)$ $1.14 (0.60, 2.15)$ Quintile 55383 $0.94 (0.65, 1.38)$ $0.89 (0.60, 1.34)$ 18 116 $0.84 (0.45, 1.55)$ $0.77 (0.39, 1.52)$ Ln($\Sigma DEHP)$ $1.06 (0.92, 1.22)$ $1.05 (0.90, 1.22)$ $0.94 (0.74, 1.19)$ $0.90 (0.70, 1.16)$	Quintile 3	50	68	1.14 (0.78, 1.66)	1.11 (0.75, 1.65)	19	98	1.04 (0.57, 1.89)	1.07 (0.57, 2.02)
Quintile 560861.19 (0.83, 1.70)1.12 (0.76, 1.66)201240.90 (0.50, 1.62)0.73 (0.36, 1.43)Ln(High MWP)1.06 (0.91, 1.22)1.05 (0.90, 1.23)0.93 (0.73, 1.18)0.87 (0.67, 1.13) $\Sigma DEHP^h$ Quintile 156891.001.00231211.001.00Quintile 2551130.68 (0.47, 0.98)0.70 (0.47, 1.03)211450.74 (0.41, 1.34)0.86 (0.45, 1.63)Quintile 345700.96 (0.65, 1.43)0.94 (0.63, 1.42)141000.77 (0.40, 1.50)0.80 (0.39, 1.65)Quintile 462841.04 (0.73, 1.50)1.11 (0.76, 1.62)221220.97 (0.54, 1.74)1.14 (0.60, 2.15)Quintile 553830.94 (0.65, 1.38)0.89 (0.60, 1.34)181160.84 (0.45, 1.55)0.77 (0.39, 1.52)Ln(ΣDEHP)1.06 (0.92, 1.22)1.05 (0.90, 1.22)0.94 (0.74, 1.19)0.90 (0.70, 1.16)	Quintile 4	46	87	0.87 (0.59, 1.27)	0.92 (0.61, 1.37)	14	117	0.66 (0.34, 1.28)	0.71 (0.36, 1.43)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Quintile 5	60	86	1.19 (0.83, 1.70)	1.12 (0.76, 1.66)	20	124	0.90 (0.50, 1.62)	0.73 (0.36, 1.43)
Quintile 156891.001.00231211.001.00Quintile 2551130.68 (0.47, 0.98)0.70 (0.47, 1.03)211450.74 (0.41, 1.34)0.86 (0.45, 1.63)Quintile 345700.96 (0.65, 1.43)0.94 (0.63, 1.42)141000.77 (0.40, 1.50)0.80 (0.39, 1.65)Quintile 462841.04 (0.73, 1.50)1.11 (0.76, 1.62)221220.97 (0.54, 1.74)1.14 (0.60, 2.15)Quintile 553830.94 (0.65, 1.38)0.89 (0.60, 1.34)181160.84 (0.45, 1.55)0.77 (0.39, 1.52)Ln(ΣDEHP)1.06 (0.92, 1.22)1.05 (0.90, 1.22)0.94 (0.74, 1.19)0.90 (0.70, 1.16)	Ln(High MWP) $\Sigma DFHP^{h}$		—	1.06 (0.91, 1.22)	1.05 (0.90, 1.23)		—	0.93 (0.73, 1.18)	0.87 (0.67, 1.13)
Quintile 255113 $0.68 (0.47, 0.98)$ $0.70 (0.47, 1.03)$ 21145 $0.74 (0.41, 1.34)$ $0.86 (0.45, 1.63)$ Quintile 34570 $0.96 (0.65, 1.43)$ $0.94 (0.63, 1.42)$ 14100 $0.77 (0.40, 1.50)$ $0.80 (0.39, 1.65)$ Quintile 46284 $1.04 (0.73, 1.50)$ $1.11 (0.76, 1.62)$ 22122 $0.97 (0.54, 1.74)$ $1.14 (0.60, 2.15)$ Quintile 55383 $0.94 (0.65, 1.38)$ $0.89 (0.60, 1.34)$ 18116 $0.84 (0.45, 1.55)$ $0.77 (0.39, 1.52)$ Ln(ΣDEHP)—— $1.06 (0.92, 1.22)$ $1.05 (0.90, 1.22)$ —— $0.94 (0.74, 1.19)$ $0.90 (0.70, 1.16)$	Ouintile 1	56	89	1.00	1.00	23	121	1.00	1.00
Quintile 345700.96 (0.65, 1.43)0.94 (0.63, 1.42)141000.77 (0.40, 1.50)0.80 (0.39, 1.65)Quintile 462841.04 (0.73, 1.50)1.11 (0.76, 1.62)221220.97 (0.54, 1.74)1.14 (0.60, 2.15)Quintile 553830.94 (0.65, 1.38)0.89 (0.60, 1.34)181160.84 (0.45, 1.55)0.77 (0.39, 1.52)Ln($\Sigma DEHP$)1.06 (0.92, 1.22)1.05 (0.90, 1.22)0.94 (0.74, 1.19)0.90 (0.70, 1.16)	Quintile 2	55	113	0.68 (0.47, 0.98)	0.70(0.47, 1.03)	23	145	0.74(0.41, 1.34)	0.86(0.45, 1.63)
Quintile 4 62 84 1.04 (0.73, 1.50) 1.11 (0.76, 1.62) 22 122 0.97 (0.54, 1.74) 1.14 (0.60, 2.15) Quintile 5 53 83 0.94 (0.65, 1.38) 0.89 (0.60, 1.34) 18 116 0.84 (0.45, 1.55) 0.77 (0.39, 1.52) Ln($\Sigma DEHP$) — — 1.06 (0.92, 1.22) 1.05 (0.90, 1.22) — — 0.94 (0.74, 1.19) 0.90 (0.70, 1.16)	Quintile 3	45	70	0.96(0.65, 1.43)	0.94(0.63, 1.42)	14	100	0.77(0.40, 1.54)	0.80 (0.39, 1.65)
Quintile 55383 $0.94 (0.65, 1.38)$ $0.89 (0.60, 1.34)$ 18 116 $0.84 (0.45, 1.55)$ $0.77 (0.39, 1.52)$ Ln($\Sigma DEHP$) $1.06 (0.92, 1.22)$ $1.05 (0.90, 1.22)$ $0.94 (0.74, 1.19)$ $0.90 (0.70, 1.16)$	Quintile 4	62	84	1.04(0.73, 1.50)	1.11(0.76, 1.62)	22	122	0.97(0.54, 1.74)	1.14(0.60, 2.15)
$Ln(\Sigma DEHP) 1.06 (0.92, 1.22) - 0.94 (0.74, 1.19) - 0.90 (0.70, 1.16)$	Quintile 5	53	83	0.94(0.65, 1.30)	0.89(0.60, 1.32)	18	116	0.84(0.45, 1.74)	0.77 (0.39 1.52)
	Ln(ΣDEHP)			1.06 (0.92, 1.22)	1.05 (0.90, 1.22)			0.94 (0.74, 1.19)	0.90 (0.70, 1.16)

Table 4. Compared to the lowest quintiles, the highest quintiles of all phthalate metabolites were not associated with increased risk of mortality following BC; all HRs in the highest quintiles were close to or below one. The largest inverse associations were for MEHP and MCOP for which the highest quintiles were associated with HRs of BC-specific mortality of 0.54 (95% CI: 0.28, 1.04) and 0.55 (95% CI: 0.23, 1.35), respectively, relative to the lowest quintiles. However, the estimate for MCOP was imprecise due to the availability of data for this metabolite for 320 women with BC. Continuous In-transformed concentrations of MEHP and MCOP were also inversely associated with BC-specific mortality $(HR_{Ln(MEHP)} = 0.79, 95\% \text{ CI: } 0.64, 0.98; \text{ and } HR_{Ln(MCOP)} = 0.77,$ 95% CI: 0.56, 1.05). The associations between MEHP and MCOP were stronger when we considered mortality within 5 y of BC diagnosis (Table 5); continuous In-transformed MEPH and MCOP were associated with HRs of BC-specific mortality of 0.75 (95% CI: 0.56, 100) and 0.54 (95% CI: 0.33, 0.89), though estimates were imprecise. At 5 y postdiagnosis, the highest tertile of MiBP was also associated with a HR of BC-specific mortality of 0.48 (95% CI: 0.22, 1.03); continuous In-transformed MiBP concentrations were associated with a HR of BC-specific mortality of 0.75 (95% CI: 0.56, 0.99).

The follow-up results examining effect modification by BMI and ER status are presented in Table 6. There was little evidence of effect modification by ER status; however, ER status and cause of death were only available for 476 (67%) of the 710 women with BC. We observed effect modification by BMI for MEOHP (P_{Interaction} = 0.04), MEHHP (P_{Interaction} = 0.04), MECPP (P_{Interaction} = 0.01), the sum of the HMWPs (P_{Interaction} = 0.01), and the sum of DEPH metabolites (P_{Interaction} = 0.02). Associations were positive among women with BMI <25 kg/m² and inverse among women with BMI ≥25.0 kg/m².

Discussion

In this study of predominantly white women, urinary concentrations of phthalate metabolites were not associated with increased odds of BC. In our study, the highest quintiles of MCPP, MBzP, and MCOP were associated with ORs of BC ranging from 0.71 to 0.73, compared to the lowest quintiles. The continuous concentrations of MCPP were associated with ORs of BC of 0.85 for a one-unit increase in In-transformed MCPP concentrations. In the case–control analyses, we observed little evidence of

Table 5. Associations between urinary phthalate metabolite concentrations	(µg/g creatinine)) and 5-y mortality	y in the Long Isl	and Breast	Cancer Study	Project
(LIBCSP) women diagnosed with breast cancer in 1996–1997 ($n = 710$).						

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			All-cause morta	lity ^a	Breast cancer–specific mortality ^b			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Analyte ^c	Deaths	Censored	HR (95% CI) ^d	Deaths	Censored	HR (95% CI) ^d	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MEP							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 1	31	243	1.00	22	251	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 2	27	184	1.16 (0.67, 2.01)	20	186	1.42 (0.75, 2.69)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tertile 3	17	208	0.78 (0.69, 1.43)	9	214	0.60 (0.27, 1.32)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ln(MEP)	_	_	1.01 (0.85, 1.21)	_	_	0.91 (0.73, 1.14)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MnBP							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 1	31	222	1.00	23	228	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 2	24	205	0.69 (0.39, 1.22)	17	208	0.76 (0.40, 1.47)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tertile 3	20	208	0.75 (0.42, 1.35)	11	215	0.53 (0.25, 1.13)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ln(MnBP)	_	_	0.94 (0.70, 1.24)	_	_	0.82 (0.58, 1.15)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MiBP							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 1	32	239	1.00	25	243	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 2	25	204	0.98 (0.57, 1.70)	15	211	0.78 (0.41, 1.51)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tertile 3	18	192	0.64(0.34, 1.18)	11	197	0.48 (0.22, 1.03)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ln(MiBP)	_		0.85(0.67, 1.08)		_	0.75 (0.56, 0.99)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MCPP			(,)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 1	30	213	1.00	21	220	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 2	22	248	0.72 (0.40, 1.28)	14	253	0.70 (0.35, 1.40)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 3	23	174	0.97(0.54, 1.72)	16	178	0.92 (0.46, 1.82)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ln(MCPP)			0.96(0.66, 1.39)			0.92(0.10, 1.02) 0.92(0.59, 1.43)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MB ₇ P			0.90 (0.00, 1.99)			0.52 (0.55, 1.45)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tertile 1	21	248	1.00	15	249	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 2	33	206	1 90 (1 06 3 43)	25	213	1.00 1.78(0.91, 3.47)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 3	21	181	1 45 (0 76, 2 75)	11	180	0.88(0.30, 1.00)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I n(MBzP)	21	101	1.04 (0.80, 1.36)		107	0.88(0.64, 1.22)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$MCOP^{e}$	_		1.04 (0.80, 1.50)	_		0.00 (0.04, 1.22)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tartila 1	17	104	1.00	15	105	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 2	21	82	1 31 (0.65, 2.62)	13	86	0.00(0.45, 2.17)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 3	21 <5	02	Not determined	14 ~5	04	0.99 (0.45, 2.17) Not determined	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L p(MCOD)	<5	92	0.50(0.40, 0.80)	< 3	94	0.54 (0.22, 0.80)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MCND^{e}$	_		0.39 (0.40, 0.89)			0.54 (0.55, 0.69)	
Tertile 110611.0012631.00Tertile 21197 $0.59(0.27, 1.28)$ 6101 $0.45(0.17, 1.21)$ Tertile 315100 $0.80(0.38, 1.69)$ 1399 $0.98(0.43, 2.24)$ Ln(MCNP)0.78(0.51, 1.19)0.87(0.55, 1.38)MEHP0.78(0.51, 1.19)0.87(0.55, 1.38)Tertile 1362221.00262311.00Tertile 218205 $0.69(0.38, 1.25)$ 12207 $0.64(0.32, 1.29)$ Tertile 321208 $0.77(0.44, 1.36)$ 13213 $0.57(0.28, 1.16)$ Ln(MEHP)0.85(0.67, 1.08)0.75(0.56, 1.00)MEOHP0.85(0.67, 1.232)151970.98(0.48, 2.00)Tertile 1272361.00202401.00Tertile 3242101.06(0.59, 1.90)162140.95(0.48, 1.88)Ln(MEOHP)0.89(0.68, 1.18)0.85(0.61, 1.18)MEHP0.89(0.68, 2.29)161961.02(0.53, 2.19)Tertile 1262351.00192401.00Tertile 3262091.23(0.69, 2.20)162151.02(0.51, 2.04)Ln(MEHP)0.93(0.71, 1.22)0.88(0.64, 1.21)MECPP0.93(0.71, 1.22)	Tortila 1	16	91	1.00	12	95	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 1	10	01	1.00	12	6J 101	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 2	11	97	0.39 (0.27, 1.28)	12	101	0.43(0.17, 1.21)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L (MCNID)	15	100	0.80 (0.38, 1.09)	15	99	0.98 (0.45, 2.24)	
MEHP Tertile 1 36 222 1.00 26 231 1.00 Tertile 2 18 205 0.69 (0.38, 1.25) 12 207 0.64 (0.32, 1.29) Tertile 3 21 208 0.77 (0.44, 1.36) 13 213 0.57 (0.28, 1.16) Ln(MEHP) - - 0.85 (0.67, 1.08) - - 0.75 (0.56, 1.00) MEOHP - - 0.85 (0.67, 1.08) - - 0.75 (0.56, 1.00) MEOHP - - 0.85 (0.67, 1.232) 15 197 0.98 (0.48, 2.00) Tertile 3 24 210 1.06 (0.59, 1.90) 16 214 0.95 (0.48, 1.88) Ln(MEOHP) - - 0.89 (0.68, 1.18) - - 0.85 (0.61, 1.18) MEHHP - - 0.89 (0.68, 2.29) 16 196 1.08 (0.53, 2.19) Tertile 2 23 191 1.25 (0.68, 2.29) 16 196 1.02 (0.51, 2.04) Ln(MEHHP) - - <td< td=""><td>Ln(MCNP)</td><td>—</td><td></td><td>0.78 (0.51, 1.19)</td><td>—</td><td></td><td>0.87 (0.55, 1.38)</td></td<>	Ln(MCNP)	—		0.78 (0.51, 1.19)	—		0.87 (0.55, 1.38)	
Tertile 1 36 222 1.00 26 231 1.00 Tertile 2 18 205 0.69 (0.38, 1.25) 12 207 0.64 (0.32, 1.29) Tertile 3 21 208 0.77 (0.44, 1.36) 13 213 0.57 (0.28, 1.16) Ln(MEHP) - - 0.85 (0.67, 1.08) - - 0.75 (0.56, 1.00) MEOHP - - 0.85 (0.67, 1.232) 15 197 0.98 (0.48, 2.00) Tertile 1 27 236 1.00 20 240 1.00 Tertile 3 24 100 1.06 (0.59, 1.90) 16 214 0.95 (0.48, 1.88) Ln(MEOHP) - - 0.89 (0.68, 1.18) - - 0.85 (0.61, 1.18) MEHHP - - 0.89 (0.68, 2.29) 16 196 1.08 (0.53, 2.19) Tertile 1 26 235 1.00 19 240 1.00 Tertile 2 23 191 1.25 (0.68, 2.29) 16 196 1.08 (0.53, 2.19) Tertile 3 26 209 1.23 (0.69, 2.20)	MEHP	26	222	1.00	26	001	1.00	
Tertile 2 18 205 0.69 (0.38, 1.25) 12 207 0.64 (0.32, 1.29) Tertile 3 21 208 0.77 (0.44, 1.36) 13 213 0.57 (0.28, 1.16) Ln(MEHP) - - 0.85 (0.67, 1.08) - - 0.75 (0.56, 1.00) MEOHP - - 0.85 (0.67, 1.08) - - 0.75 (0.56, 1.00) Tertile 1 27 236 1.00 20 240 1.00 Tertile 2 24 189 1.28 (0.71, 2.32) 15 197 0.98 (0.48, 2.00) Tertile 3 24 210 1.06 (0.59, 1.90) 16 214 0.95 (0.48, 1.88) Ln(MEOHP) - - 0.89 (0.68, 1.18) - - 0.85 (0.61, 1.18) MEHHP - - 0.89 (0.68, 2.29) 16 196 1.08 (0.53, 2.19) Tertile 2 23 191 1.25 (0.68, 2.29) 16 215 1.02 (0.51, 2.04) Ln(MEHHP) - - 0.93 (0.71, 1.22) - - 0.88 (0.64, 1.21) MECPP - - <t< td=""><td>Tertile 1</td><td>30</td><td>222</td><td>1.00</td><td>26</td><td>231</td><td>1.00</td></t<>	Tertile 1	30	222	1.00	26	231	1.00	
Tertile 3 21 208 0.77 (0.44, 1.36) 13 213 0.57 (0.28, 1.16) Ln(MEHP) — — 0.85 (0.67, 1.08) — — 0.75 (0.56, 1.00) MEOHP Tertile 1 27 236 1.00 20 240 1.00 Tertile 2 24 189 1.28 (0.71, 2.32) 15 197 0.98 (0.48, 2.00) Tertile 3 24 210 1.06 (0.59, 1.90) 16 214 0.95 (0.48, 1.88) Ln(MEOHP) — — 0.89 (0.68, 1.18) — — 0.85 (0.61, 1.18) MEHHP Tertile 1 26 235 1.00 19 240 1.00 Tertile 2 23 191 1.25 (0.68, 2.29) 16 196 1.08 (0.53, 2.19) Tertile 3 26 209 1.23 (0.69, 2.20) 16 215 1.02 (0.51, 2.04) Ln(MEHHP) — — — 0.93 (0.71, 1.22) — — 0.88 (0.64, 1.21) MECPP Tertile 1 24 245 1.00 20 247 1.00 Tertile	Tertile 2	18	205	0.69 (0.38, 1.25)	12	207	0.64 (0.32, 1.29)	
Ln(MEHP) — — 0.85 (0.67, 1.08) — — 0.75 (0.56, 1.00) MEOHP Tertile 1 27 236 1.00 20 240 1.00 Tertile 2 24 189 1.28 (0.71, 2.32) 15 197 0.98 (0.48, 2.00) Tertile 3 24 210 1.06 (0.59, 1.90) 16 214 0.95 (0.48, 1.88) Ln(MEOHP) — — 0.89 (0.68, 1.18) — — 0.85 (0.61, 1.18) MEHHP Tertile 1 26 235 1.00 19 240 1.00 Tertile 2 23 191 1.25 (0.68, 2.29) 16 196 1.08 (0.53, 2.19) Tertile 3 26 209 1.23 (0.69, 2.20) 16 215 1.02 (0.51, 2.04) Ln(MEHHP) — — 0.93 (0.71, 1.22) — — 0.88 (0.64, 1.21) MECPP Tertile 1 24 245 1.00 20 247 1.00 Tertile 2 24 193 1.35 (0.74, 2.47) 12 203 0.78 (0.37, 1.66)	Tertile 3	21	208	0.77 (0.44, 1.36)	13	213	0.57 (0.28, 1.16)	
MEOHP Tertile 1 27 236 1.00 20 240 1.00 Tertile 2 24 189 1.28 (0.71, 2.32) 15 197 0.98 (0.48, 2.00) Tertile 3 24 210 1.06 (0.59, 1.90) 16 214 0.95 (0.48, 1.88) Ln(MEOHP) — — 0.89 (0.68, 1.18) — — 0.85 (0.61, 1.18) MEHHP Tertile 1 26 235 1.00 19 240 1.00 Tertile 2 23 191 1.25 (0.68, 2.29) 16 196 1.08 (0.53, 2.19) Tertile 3 26 209 1.23 (0.69, 2.20) 16 215 1.02 (0.51, 2.04) Ln(MEHP) — — — 0.93 (0.71, 1.22) — — 0.88 (0.64, 1.21) MECPP Tertile 1 24 245 1.00 20 247 1.00 Tertile 2 24 193 1.35 (0.74, 2.47) 12 203 0.78 (0.37, 1.66)	Ln(MEHP)	_	_	0.85 (0.67, 1.08)	_	_	0.75 (0.56, 1.00)	
Tertile 1 27 236 1.00 20 240 1.00 Tertile 2 24 189 1.28 (0.71, 2.32) 15 197 0.98 (0.48, 2.00) Tertile 3 24 210 1.06 (0.59, 1.90) 16 214 0.95 (0.48, 1.88) Ln(MEOHP) - - 0.89 (0.68, 1.18) - - 0.85 (0.61, 1.18) MEHHP - - 0.89 (0.68, 2.29) 16 196 1.00 (0.53, 2.19) Tertile 1 26 235 1.00 19 240 1.00 Tertile 3 26 209 1.23 (0.69, 2.20) 16 196 1.08 (0.53, 2.19) Ln(MEHHP) - - 0.93 (0.71, 1.22) - - 0.88 (0.64, 1.21) MECPP - - 0.93 (0.71, 1.22) - - 0.88 (0.64, 1.21) MECPP - - 1.00 20 247 1.00 Tertile 1 24 245 1.00 20 247 1.00 Tertile 2 24 193 1.35 (0.74, 2.47) 12 203 <td< td=""><td>MEOHP</td><td></td><td>224</td><td>1.00</td><td>20</td><td>210</td><td>1.00</td></td<>	MEOHP		224	1.00	20	210	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile I	27	236	1.00	20	240	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 2	24	189	1.28 (0.71, 2.32)	15	197	0.98 (0.48, 2.00)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 3	24	210	1.06 (0.59, 1.90)	16	214	0.95 (0.48, 1.88)	
MEHHP Tertile 1 26 235 1.00 19 240 1.00 Tertile 2 23 191 1.25 (0.68, 2.29) 16 196 1.08 (0.53, 2.19) Tertile 3 26 209 1.23 (0.69, 2.20) 16 215 1.02 (0.51, 2.04) Ln(MEHHP) - - 0.93 (0.71, 1.22) - - 0.88 (0.64, 1.21) MECPP Tertile 1 24 245 1.00 20 247 1.00 Tertile 2 24 193 1.35 (0.74, 2.47) 12 203 0.78 (0.37, 1.66)	Ln(MEOHP)	—		0.89 (0.68, 1.18)			0.85 (0.61, 1.18)	
Tertile 1 26 235 1.00 19 240 1.00 Tertile 2 23 191 1.25 (0.68, 2.29) 16 196 1.08 (0.53, 2.19) Tertile 3 26 209 1.23 (0.69, 2.20) 16 215 1.02 (0.51, 2.04) Ln(MEHHP) - - 0.93 (0.71, 1.22) - - 0.88 (0.64, 1.21) MECPP Tertile 1 24 245 1.00 20 247 1.00 Tertile 2 24 193 1.35 (0.74, 2.47) 12 203 0.78 (0.37, 1.66)	MEHHP							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tertile 1	26	235	1.00	19	240	1.00	
Tertile 3 26 209 1.23 (0.69, 2.20) 16 215 1.02 (0.51, 2.04) Ln(MEHHP) - - 0.93 (0.71, 1.22) - - 0.88 (0.64, 1.21) MECPP - 24 245 1.00 20 247 1.00 Tertile 2 24 193 1.35 (0.74, 2.47) 12 203 0.78 (0.37, 1.66)	Tertile 2	23	191	1.25 (0.68, 2.29)	16	196	1.08 (0.53, 2.19)	
Ln(MEHHP) — — 0.93 (0.71, 1.22) — — 0.88 (0.64, 1.21) MECPP	Tertile 3	26	209	1.23 (0.69, 2.20)	16	215	1.02 (0.51, 2.04)	
MECPP Tertile 1 24 245 1.00 20 247 1.00 Tertile 2 24 193 1.35 (0.74, 2.47) 12 203 0.78 (0.37, 1.66)	Ln(MEHHP)	—	_	0.93 (0.71, 1.22)	—	_	0.88 (0.64, 1.21)	
Tertile 1242451.00202471.00Tertile 2241931.35 (0.74, 2.47)122030.78 (0.37, 1.66)	MECPP							
Tertile 2 24 193 1.35 (0.74, 2.47) 12 203 0.78 (0.37, 1.66)	Tertile 1	24	245	1.00	20	247	1.00	
	Tertile 2	24	193	1.35 (0.74, 2.47)	12	203	0.78 (0.37, 1.66)	

Note: LIBCSP participants diagnosed with breast cancer between 1 August 1996 and 31 July 1997 followed-up for vital status through December 31, 2014. Women alive at the end of follow-up were censored at the end of follow-up. For breast cancer-specific mortality, non-breast cancer deaths were censored at the time of death. -, no information was collected at that particular examination point; CI, confidence interval; DEHP, di(2-ethylhexyl) phthalate; HR, hazard ratio; MBzP, monobenzyl phthalate; MCNP, monocarboxy-isononyl phthalate; MCOP, monocarboxyoctyl phthalate; MCPP, mono(3-carboxypropyl) phthalate; MECPP, mono(2-ethyl-5-carboxypetyl) phthalate; MEHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEHP, mono(2-ethyl-5-bydroxyhexyl) phthalate; MEHP, mono-isobutyl phthalate; MEHP, mono-N-butyl phthalate; MEHP, mono-isobutyl phthalate; MEHP, mono-N-butyl phthalate; MEHP, mono-isobutyl phthalate; MEHP, mono-isobutyl phthalate; MEHP, mono-N-butyl phthalate; MEHP, mono-isobutyl phthalate; MEH phthalate; MWP, molecular-weight phthalate.

⁴Multivariable-adjusted models based on 69 deaths and 602 censored observations due to missing covariate data.

^bMultivariable-adjusted models based on 48 deaths and 617 censored observations due to missing covariate data.

^dAdjusted for age (continuous), education (< high school/high school graduate, college, and postcollege), menopausal status (pre- vs. postmenopausal), hormone replacement therapy use (never vs. ever), body mass index (<25.0, 25.0–29.9, and \geq 30.0 kg/m²), oral contraceptive use (never vs. ever), and receipt of chemotherapy treatment prior to urine sample collection (yes vs. no).

^{concention} (yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).
 ^{concention} (Yes vs. no).

Table 5. (Continued.)

		All-cause mortality ^{<i>a</i>}			Breast cancer–specific mortality ^b		
Analyte ^c	Deaths	Censored	HR (95% CI) ^d	Deaths	Censored	HR (95% CI) ^d	
Tertile 3	27	197	1.38 (0.77, 2.47)	19	201	1.25 (0.65, 2.40)	
Ln(MECPP)	_	_	0.92 (0.69, 1.24)	_	_	0.89 (0.62, 1.26)	
Low MWP ^f							
Tertile 1	29	252	1.00	20	260	1.00	
Tertile 2	29	168	1.57 (0.91, 2.73)	22	170	1.88 (0.99, 3.57)	
Tertile 3	17	215	0.83 (0.45, 1.54)	9	221	0.64 (0.29, 1.42)	
Ln(Low MWP)	_	_	0.99 (0.80, 1.22)	_	_	0.85 (0.65, 1.11)	
High MWP ^g							
Tertile 1	27	236	1.00	21	239	1.00	
Tertile 2	25	193	1.22 (0.69, 2.17)	17	200	0.99 (0.51, 1.92)	
Tertile 3	23	206	0.89 (0.49, 1.62)	13	212	0.63 (0.31, 1.32)	
Ln(High MWP)	_	_	0.90 (0.67, 1.23)	_	_	0.81 (0.56, 1.17)	
$\Sigma DEHP^{h}$							
Tertile 1	24	227	1.00	18	232	1.00	
Tertile 2	26	212	1.26 (0.70, 2.29)	18	217	1.18 (0.59, 2.36)	
Tertile 3	25	196	1.19 (0.66, 2.16)	15	202	1.03 (0.51, 2.09)	
Ln(ΣDEHP)	_	_	0.90 (0.67, 1.21)	_	—	0.85 (0.60, 1.21)	

effect measure modification (p < 0.05) by BMI or ER status. In the follow-up analyses, compared to the lowest quintiles, the highest quintiles of MEHP and MCOP were associated with HRs of BC-specific mortality of 0.54 and 0.55, respectively. Furthermore, we observed inverse associations between MEOHP and MEHHP, and MEHPP and the sum of HMWPs and the sum of DEHP phthalates and BC-specific mortality among women with BMI $\geq 25.0 \text{ kg/m}^2$, but not among women with BMI $< 25.0 \text{ kg/m}^2$. To our knowledge, ours is the first study to examine urinary phthalate metabolite concentrations in relation to survival following BC.

Our results for MCPP and MBzP are in agreement with one previous case-control study by López-Carrillo and colleagues, which reported inverse associations between the highest (vs. lowest) tertiles of these phthalate metabolites and BC among 233 Mexican women with BC and 221 age-matched controls $(OR_{MCPP} = 0.44, 95\% CI: 0.24, 0.80; and OR_{MBzP} = 0.46, 95\%$ CI = 0.27, 0.79) (López-Carrillo et al. 2010). López-Carrillo and colleagues also reported positive association between BC and the highest tertiles of MEP (OR = 2.20; 95% CI: 1.33, 3.63) and MECPP (OR = 1.68; 95% CI: 1.01, 2.78); however, in our larger study, we did not observe any increases in BC risk for either metabolite and observed an inverse association for MECPP. Also in contrast to our study are results from a more recent but small hospital-based case-control study of 170 Alaska-Native women (75 women with BC and 95 women without BC), which reported an increase in risk of developing BC for increasing MEHP concentrations (OR = 2.43; 95% CI: 1.12, 5.24) (Holmes et al. 2014). Reasons for these discrepancies are unclear but may be attributed to differences in study population racial/cultural compositions (i.e., Mexican, Alaska-Native, and postmenopausal white women), study design (i.e., use of first morning void versus untimed spot urine samples), or to noncausal explanations, including random error and bias due to uncontrolled confounding and other sources of error.

Phthalates and their metabolites are hypothesized to influence BC incidence and mortality due to their potential as endocrine disruptors—both as hormone agonists and antagonists (Brody and Rudel 2003). BBP, for example, shows weak estrogenic activity *in vitro* and also leads to demethylation of ER α promoter–associated CpG islands, resulting in increased ER α transcript expression (Kang and Lee 2005). Phthalate metabolites also bind to and activate the peroxisome proliferator–activated receptors (PPARs), nuclear transcription factors that play a key role in adipocyte differentiation, resulting in cell proliferation and in elevated oxidative stress (Hurst and Waxman 2003; Ito and Nakajima 2008). However, PPARs may also exert anti-inflammatory effects by inhibiting pro-inflammatory cytokines, adhesion molecules, and extracellular matrix proteins (Kostadinova et al. 2005). Despite the biological plausibility linking phthalates to potential increased risk of BC and mortality following BC, we did not observe increases in BC risk for any of the phthalate metabolites examined. On the contrary, we observed inverse associations between several phthalate metabolites and BC. PPAR-mediated inhibition of inflammation signaling, and thus inhibition of cancer development and progression, is one mechanism that may potentially explain the inverse associations (Kostadinova et al. 2005). Additionally, exposure to phthalates has been associated with reductions in serum testosterone in women (Meeker et al. 2009), including parent phthalates of metabolites for which we observed inverse associations (Borch et al. 2006; Lee and Koo 2007; Mylchreest et al. 2000). Our results of effect measure modification by BMI as a surrogate measure of adiposity, a source of hormones including estrogens and androgens (Pasquali 2006), further support an antiandrogenic pathway. Through this antiandrogenic pathway, exposure to phthalates could potentially inhibit BC progression; however, there is yet no clear understanding of the mechanism of androgen receptor signaling in BC (Garay and Park 2012).

Our study has several strengths, including the larger design and the use of biomarker assessment using biospecimens collected shortly after diagnosis among women with BC. However, several limitations should be noted. First, multiple measurements may be needed to adequately predict concentrations over a long time period because of the temporal variability in phthalate metabolite concentrations within individuals (Starling et al. 2015), though single measurements demonstrate fair withinperson reproducibility for several phthalate biomarkers over several days and months (Dewalque et al. 2015; Frederiksen et al. 2013; Hauser et al. 2004; Hoppin et al. 2002) and years (Townsend et al. 2013), reflecting habitual use of personal care products and fairly consistent dietary patterns. Any exposure misclassification would likely bias results towards the null if it is nondifferential with respect to BC diagnosis/survival. However, results could be biased away from the null if BC disease, diagnosis, or treatment impact phthalate exposure or metabolite concentrations. The timing of the urine collection, which occurred on average 3 mo after diagnosis, may have influenced the measured phthalate levels. For example, it is possible that after diagnosis, some women may have altered their behavior, including dietary intake. But given that the women with BC were diagnosed in the mid-1990s, before the onset of widespread public concern about phthalate exposure, it is highly unlikely that women specifically changed their behavior with the intention of altering their exposure to phthalates. However, it is possible that phthalate measures could have been influenced by chemotherapy or by other treatments or their side effects. In particular, symptoms related to BC or treatment could have influenced the dietary intake in general, thus altering exposure to phthalates. Second, because urinary phthalate metabolite concentrations reflect relatively short-term exposure to phthalates, which have short biological half-lives, metabolite concentrations

Table 6. Associations between urinary phthalate metabolite concentrations ($\mu g/g$ creatinine) and breast cancer–specific mortality in the LIBCSP, stratified by body mass index (BMI) and estrogen receptor (ER) status.

<u>,</u>	BMI ($(n = 665) [HR (95\% CI)]^b$		ER status ($n = 454$) [HR (95% CI)] ^d		
Analyte ^a	$ \begin{array}{c} <25.0 \text{ kg/m}^2 \\ (n \text{ deaths} = 30, \\ n \text{ censored} = 267) \end{array} $	$\geq 25.0 \text{ kg/m}^2$ (<i>n</i> deaths = 60, <i>n</i> censored = 308)	P _{Interaction} ^c	ER + (n deaths = 46, n censored = 300)	ER - (n deaths = 30, n censored = 78)	P _{Interaction} ^c
MEP				1		
Tertile 1	1.00	1.00	_	1.00	1.00	
Tertile 2	0.66 (0.26, 1.64)	1.40 (0.77, 2.55)	_	1.08 (0.55, 2.11)	1.51 (0.58, 3.97)	_
Tertile 3	0.72 (0.31, 1.67)	0.91 (0.47, 1.75)	_	0.75 (0.36, 1.59)	0.60 (0.23, 1.58)	
Ln(MEP)	0.93 (0.71, 1.22)	0.98 (0.80, 1.21)	0.63	0.92 (0.72, 1.16)	0.94 (0.71, 1.25)	0.77
MnBP						
Tertile 1	1.00	1.00	_	1.00	1.00	_
Tertile 2	0.54 (0.22, 1.34)	0.98 (0.55, 1.74)	_	0.57 (0.29, 1.15)	1.35 (0.56, 3.26)	_
Tertile 3	0.48 (0.20, 1.18)	0.58 (0.29, 1.16)	_	0.43 (0.21, 0.91)	0.85 (0.31, 2.32)	_
Ln(MnBP) MiBP	0.81 (0.53, 1.23)	0.87 (0.63, 1.19)	0.61	0.84 (0.59, 1.19)	0.99 (0.63, 1.57)	0.60
Tertile 1	1.00	1.00	_	1.00	1.00	
Tertile 2	0.99 (0.43, 2.29)	1.01 (0.55, 1.83)	_	0.99 (0.49, 2.00)	0.89 (0.38, 2.06)	_
Tertile 3	0.63 (0.24, 1.66)	0.75 (0.39, 1.43)	_	0.84 (0.41, 1.74)	0.56 (0.20, 1.59)	_
Ln(MiBP)	0.99 (0.69, 1.40)	0.86 (0.66, 1.11)	0.18	0.99 (0.75, 1.30)	0.92 (0.62, 1.37)	0.77
MCPP						
Tertile 1	1.00	1.00	_	1.00	1.00	
Tertile 2	0.89 (0.35, 2.26)	0.45 (0.25, 0.84)	_	0.46 (0.22, 0.95)	0.89 (0.34, 2.34)	_
Tertile 3	1.70 (0.72, 4.01)	0.48 (0.25, 0.94)	_	0.69 (0.34, 1.40)	0.88 (0.36, 2.19)	_
Ln(MCPP)	1.34 (0.79, 2.27)	0.62 (0.40, 0.95)	0.11	0.77 (0.48, 1.24)	0.96 (0.49, 1.87)	0.52
MBzP						
Tertile 1	1.00	1.00	—	1.00	1.00	
Tertile 2	0.84 (0.36, 2.12)	1.18 (0.65, 2.12)	—	1.22 (0.61, 2.46)	1.30 (0.53, 3.18)	_
Tertile 3	1.15 (0.49, 2.70)	0.73 (0.37, 1.47)	—	1.03 (0.49, 2.15)	0.62 (0.22, 1.77)	_
Ln(MBzP)	1.12 (0.79, 1.61)	0.82 (0.65, 1.12)	0.09	1.02 (0.74, 1.40)	0.88 (0.55, 1.42)	0.76
MEHP						
Tertile 1	1.00	1.00	—	1.00	1.00	—
Tertile 2	1.06 (0.45, 2.53)	0.45 (0.23, 0.89)	—	0.84 (0.41, 1.71)	0.92 (0.34, 2.49)	—
Tertile 3	1.02 (0.41, 2.53)	0.57 (0.31, 1.04)	_	0.77 (0.38, 1.57)	0.90 (0.38, 2.11)	_
Ln(MEHP)	1.06 (0.75, 1.52)	0.68 (0.52, 0.89)	0.10	0.83 (0.62, 1.11)	0.89 (0.62, 1.28)	0.95
MEOHP						
Tertile 1	1.00	1.00	—	1.00	1.00	—
Tertile 2	1.97 (0.85, 4.56)	1.10 (0.59, 2.04)	—	1.31 (0.66, 2.60)	1.62 (0.61, 4.34)	—
Tertile 3	1.23 (0.46, 3.32)	0.78 (0.42, 1.47)		0.64 (0.30, 1.37)	1.52 (0.61, 3.80)	
Ln(MEOHP)	1.32 (0.91, 1.91)	0.76 (0.56, 1.04)	0.04	0.88 (0.64, 1.22)	1.01 (0.69, 1.47)	0.53
MEHHP	1.00	1.00		1.00	1.00	
Tertile 1	1.00	1.00	—	1.00	1.00	—
Tertile 2	2.24 (0.96, 5.19)	0.91 (0.49, 1.71)	—	1.30 (0.64, 2.63)	1.46 (0.59, 3.62)	—
Tertile 3	1.24 (0.46, 3.36)	0.83 (0.45, 1.55)		0.83 (0.40, 1.75)	1.13 (0.45, 2.83)	
Ln(MEHHP)	1.25 (0.87, 1.80)	0.82 (0.61, 1.09)	0.04	0.90 (0.66, 1.24)	1.02 (0.70, 1.47)	0.58
MECPP	1.00	1.00		1.00	1.00	
I ertile I	1.00	1.00	_	1.00	1.00	_

Note: LIBCSP participants diagnosed with breast cancer between 1 August 1996 and 31 July 1997, followed-up for vital status through December 31, 2014. —, no information was collected at that particular examination point; CI, confidence interval; DEHP, di(2-ethylhexyl) phthalate; HR, hazard ratio; MBzP, monobenzyl phthalate; MCNP, monocarboxy-isononyl phthalate; MCOP, monocarboxyoctl phthalate; MCPP, mono(3-carboxypropyl) phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHP, mono(2-ethyll-5-carboxypentyl) phthalate; MEHP, mono(2-ethyll-5-oxohexyl) phthalate; MEHP, mono-isobutyl phthalate; MnBP, mono-i

^{*a*}Tertiles (μ g/g creatinine) based on distributions among women without breast cancer.

^bAdjusted for age (continuous), education (< high school/high school graduate, college, and postcollege), menopausal status (pre- vs. postmenopausal), hormone replacement therapy use (never vs. ever), oral contraceptive use (never vs. ever), and receipt of chemotherapy treatment prior to urine sample collection (yes vs. no).

PInteraction derived from continuous BMI- and dichotomized ER by continuous phthalate metabolite concentration interactions in the Cox regression models.

 d Adjusted for age (continuous), education (< high school/high school graduate, college, and postcollege), menopausal status (pre- vs. postmenopausal), hormone replacement therapy use (never vs. ever), body mass index (<25.0, 25.0–29.9, and \geq 30.0 kg/m²), oral contraceptive use (never vs. ever), and receipt of chemotherapy treatment prior to urine sample collection (yes vs. no), as appropriate.

^eLow MWP: Creatinine-corrected molar sum of MEP, MnBP, and MiBP (expressed as MEP, molecular weight 194).

⁴High MWP: Creatinine-corrected molar sum of MBzP, MEHP, MEOHP, MEHPP, MECPP (expressed as MEHP, molecular weight 278).

^gΣDEHP: Creatinine-corrected molar sum of DEHP metabolites: MEHP, MEOHP, MEHHP, MECPP (expressed as MEHP, molecular weight 278).

Table 6. (Continued.)

	BMI $(n = 665)$ [HR $(95\% \text{ CI})$] ^b			ER status ($n = 454$) [HR (95% CI)] ^d		
Analyte ^a	$ \begin{array}{c} <25.0 \text{ kg/m}^2 \\ (n \text{ deaths} = 30, \\ n \text{ censored} = 267) \end{array} $	$\geq 25.0 \text{ kg/m}^2$ (<i>n</i> deaths = 60, <i>n</i> censored = 308)	P _{Interaction} ^c	ER + (n deaths = 46, n censored = 300)	ER - (n deaths = 30, n censored = 78)	P _{Interaction} ^c
Tertile 2	1.35 (0.53, 3.44)	0.53 (0.27, 1.04)	_	0.85 (0.41, 1.75)	0.45 (0.15, 1.33)	_
Tertile 3	2.39 (1.01, 5.67)	0.69 (0.39, 1.25)	_	0.93 (0.46, 1.86)	1.29 (0.56, 2.95)	_
Ln(MECPP)	1.40 (0.96, 2.06)	0.71 (0.51, 0.99)	0.01	0.85 (0.59, 1.22)	1.06 (0.71, 1.60)	0.40
Low MWP^e						
Tertile 1	1.00	1.00	_	1.00	1.00	_
Tertile 2	1.17 (0.49, 2.81)	2.12 (1.16, 3.89)	_	1.79 (0.91, 3.52)	1.74 (0.66, 4.63)	_
Tertile 3	0.83 (0.35, 1.98)	1.06 (0.54, 2.07)	_	0.93 (0.43, 2.01)	0.81 (0.32, 2.09)	_
Ln(Low MWP)	0.94 (0.69, 1.29)	0.97 (0.76, 1.23)	0.55	0.93 (0.70, 1.22)	0.94 (0.68, 1.30)	0.87
High MWP ^f						
Tertile 1	1.00	1.00	—	1.00	1.00	_
Tertile 2	2.33 (1.01, 5.35)	0.76 (0.42, 1.38)	—	1.05 (0.53, 2.11)	1.04 (0.43, 2.49)	_
Tertile 3	1.27 (0.47, 3.44)	0.53 (0.28, 1.01)	—	0.77 (0.37, 1.61)	0.76 (0.30, 1.94)	_
Ln(High MWP)	1.34 (0.90, 2.00)	0.70 (0.49, 0.98)	0.01	0.86 (0.60, 1.23)	1.02 (0.66, 1.56)	0.50
$\Sigma DEHP^{g}$						
Tertile 1	1.00	1.00	—	1.00	1.00	_
Tertile 2	2.21 (0.95, 5.15)	1.00 (0.55, 1.83)	_	1.25 (0.63, 2.49)	1.17 (0.47, 2.91)	
Tertile 3	1.43 (0.52, 3.94)	0.70 (0.37, 1.34)	_	0.76 (0.36, 1.63)	1.15 (0.45, 2.93)	
$Ln(\Sigma DEHP)$	1.34 (0.91, 1.96)	0.73 (0.53, 1.02)	0.02	0.87 (0.61, 1.24)	1.02 (0.68, 1.51)	0.53

may not relate to the etiologically relevant time period for the initiation of BC; the latent period for BC may be several decades (Terry et al. 2002). However, because of their potential as endocrine disruptors, phthalates may promote BC cell proliferation, migration, and invasion (Hsieh et al. 2012). Thus, assessment of phthalate exposure at the time of BC diagnosis may still be relevant to BC progression and survival. Third, in this study, we included a subsample of the population-based LIBCSP sample. Although we observed small differences between the women included in this study and the full LIBCSP sample and we adjusted our models for menopausal status for which we observed the largest difference between women without BC who were included in the present ancillary study and the full LIBCSP sample, there is a potential for selection bias. Fourth, there may be misclassification of BC-specific deaths. Fifth, although we were interested in examining associations between phthalate metabolites and BC mortality stratified by BC subtype, ER status was missing for 228 of the 710 women with BC included in this study, limiting our power to detect differences by ER status. Last, we cannot fully rule out residual and unmeasured confounding as a source of bias in this observational study. However, we examined a comprehensive list of covariates as potential confounders.

Conclusion

Our results overall do not support a hypothesized positive link between exposure to phthalates and breast carcinogenesis and progression. However, consistent with laboratory evidence and thus biologically plausible, we observed inverse associations between urinary concentrations of several phthalate metabolites and BC and subsequent BC-specific mortality among a sample of predominantly white women. Even so, these results should be interpreted with caution given that biospecimen collection among women with BC occurred after their diagnosis, which may be of concern particularly for our case–control findings.

Acknowledgments

The authors gratefully acknowledge grant support from the National Cancer Institute and the National Institute of Environmental Health Sciences (UO1 CA/ES66572, UO1 CA66572, UO1 ES019459, P30

ES009089, K01 ES012645, and T32 ES007018). We acknowledge the technical assistance of M. Silva, E. Samandar, and J. Preau (CDC) in measuring the urinary concentrations of phthalate metabolites.

References

Allison, P. 2010. Survival Analysis Using SAS: A Practical Guide. 2nd edition. Cary, NC:SAS Press.

- ATSDR (Agency for Toxic Substances and Disease Registry). 2002. Toxicological profile: di(2-ethylhexyl)phthalate (DEHP). https://www.atsdr.cdc.gov/toxprofiles/ tp9.pdf [accessed 2 February 2017].
- BASF. 2015. Hexamoll[®] DINCH[®]. http://www.plasticizers.basf.com/portal/load/ fid255203/Hexamoll[®]DINCH[®].pdf [accessed 2 February 2017].
- Borch J, Metzdorff SB, Vinggaard AM, Brokken L, Dalgaard M. 2006. Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis. Toxicology 223(1-2):144–155, PMID: 16690193, https://doi.org/10.1016/j.tox. 2006.03.015.
- Bosnir J, Puntarić D, Skes I, Klarić M, Simić S, Zorić I. 2003. Migration of phthalates from plastic products to model solutions. Coll Antropol 27(suppl 1):23–30, PMID: 12955888.
- Brody JG, Rudel RA. 2003. Environmental pollutants and breast cancer. Environ Health Perspect 111(8):1007–1109, PMID: 12826474, https://doi.org/10.1289/ehp. 6310.
- Calafat AM, Longnecker MP, Koch HM, Swan SH, Hauser R, Goldman LR, et al. 2015. Optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology. Environ Health Perspect 123(7):A166–A168, PMID: 26132373, https://doi.org/10.1289/ehp.1510041.
- CDC (Centers for Disease Control and Prevention). 2001. NHANES 1999-2000 Laboratory Data. https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx? Component=Laboratory&CycleBeginYear=1999 [accessed 1 January 2017].
- CDC. 2017. Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables. Atlanta, GA:U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/exposurereport/ [accessed 5 March 2017].
- Chen X, Xu S, Tan T, Lee ST, Cheng SH, Lee FW, et al. 2014. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int J Environ Res Public Health 11(3):3156–3168, PMID: 24637910, https://doi.org/ 10.3390/ijerph110303156.
- Dewalque L, Pirard C, Vandepaer S, Charlier C. 2015. Temporal variability of urinary concentrations of phthalate metabolites, parabens and benzophenone-3 in a Belgian adult population. Environ Res 142:414–423, PMID: 26233661, https://doi.org/10.1016/j.envres.2015.07.015.
- Frederiksen H, Kranich SK, Jørgensen N, Taboureau O, Petersen JH, Andersson AM. 2013. Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological

studies. Environ Sci Technol 47(2):958–967, PMID: 23234290, https://doi.org/10. 1021/es303640b.

- Gammon MD, Neugut AI, Santella RM, Teitelbaum SL, Britton JA, Terry MB, et al. 2002. The Long Island Breast Cancer Study Project: description of a multiinstitutional collaboration to identify environmental risk factors for breast cancer. Breast Cancer Res Treat 74(3):235–254, PMID: 12206514, https://doi.org/10. 1023/A:1016387020854.
- Garay JP, Park BH. 2012. Androgen receptor as a targeted therapy for breast cancer. Am J Cancer Res 2(4):434–445, PMID: 22860233.
- Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. 2010. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med 134(7):e48–e72, PMID: 20586616, https://doi.org/10.1043/1543-2165-134.7.e48.
- Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. 2004. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect 112(17):1734–1740, PMID: 15579421, https://doi.org/10.1289/ ehp.7212.
- Holmes AK, Koller KR, Kieszak SM, Sjodin A, Calafat AM, Sacco FD, et al. 2014. Case–control study of breast cancer and exposure to synthetic environmental chemicals among Alaska Native women. Int J Circumpolar Health 73(1):25760, PMID: 28417697, https://doi.org/10.3402/ijch.v73.25760.
- Hoppin JA, Brock JW, Davis BJ, Baird DD. 2002. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect 110(5):515– 518, PMID: 12003755, https://doi.org/10.1289/ehp.02110515.
- Hornung RW, Reed LD. 1990. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 5(1):46–51, https://doi.org/10. 1080/1047322X.1990.10389587.
- Howdeshell KL, Wilson VS, Furr J, Lambright CR, Rider CV, Blystone CR, et al. 2008. A mixture of five phthalate esters inhibits fetal testicular testosterone production in the sprague-dawley rat in a cumulative, dose-additive manner. Toxicol Sci 105(1):153–165, PMID: 18411233, https://doi.org/10.1093/toxsci/kfn077.
- Hsieh TH, Tsai CF, Hsu CY, Kuo PL, Lee JN, Chai CY, et al. 2012. Phthalates induce proliferation and invasiveness of estrogen receptor-negative breast cancer through the AhR/HDAC6/c-Myc signaling pathway. FASEB J 26(2):778–787, PMID: 22049059, https://doi.org/10.1096/fj.11-191742.
- Hurst CH, Waxman DJ. 2003. Activation of PPARα and PPARγ by environmental phthalate monoesters. Toxicol Sci 74(2):297–308, PMID: 12805656, https://doi.org/ 10.1093/toxsci/kfg145.
- Ito Y, Nakajima T. 2008. PPARα-and DEHP-induced cancers. PPAR Res 2008:1–12, PMID: 18769559, https://doi.org/10.1155/2008/759716.
- Kang SC, Lee BM. 2005. DNA methylation of estrogen receptor alpha gene by phthalates. J Toxicol Environ Health A 68(23-24):1995–2003, PMID: 16326419, https://doi.org/10.1080/15287390491008913.
- Koch HM, Preuss R, Angerer J. 2006. Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure an update and latest results. Int J Androl 29(1):155–165, PMID: 16466535, https://doi.org/10.1111/j.1365-2605.2005.00607.x.
- Kostadinova R, Wahli W, Michalik L. 2005. PPARs in diseases: control mechanisms of inflammation. Curr Med Chem 12(25):2995–3009, PMID: 16378501, https://doi.org/10.2174/092986705774462905.
- Kumar N, Sharan S, Srivastava S, Roy P. 2014. Assessment of estrogenic potential of diethyl phthalate in female reproductive system involving both genomic and non-genomic actions. Reprod Toxicol 49:12–26, PMID: 24994688, https://doi.org/ 10.1016/j.reprotox.2014.06.008.
- Lee BM, Koo HJ. 2007. Hershberger assay for antiandrogenic effects of phthalates. J Toxicol Environ Health A 70(15-16):1365–1370, PMID: 17654256, https://doi.org/10. 1080/15287390701432285.

- López-Carrillo L, Hernández-Ramírez RU, Calafat AM, Torres-Sánchez L, Galván-Portillo M, Needham LL, et al. 2010. Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118(4):539–544, PMID: 20368132, https://doi.org/10.1289/ehp.0901091.
- McPherson K, Steel C, Dixon J. 2000. ABC of breast diseases: breast cancerepidemiology, risk factors, and genetics. BMJ 321(7261):624–628, PMID: 10977847, https://doi.org/10.1136/bmj.321.7261.624.
- Meeker JD, Sathyanarayana S, Swan SH. 2009. Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc Lond B Biol Sci 364(1526):2097–2113, PMID: 19528058, https://doi.org/10.1098/ rstb.2008.0268.
- Mylchreest E, Wallace DG, Cattley RC, Foster PM. 2000. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. Toxicol Sci 55(1):143–151, PMID: 10788569, https://doi.org/10.1093/toxsci/55.1.143.
- Okamoto Y, Ueda K, Kojima N. 2011. Potential risks of phthalate esters: acquisition of endocrine-disrupting activity during environmental and metabolic processing. J Health Sci 57(6):497–503, https://doi.org/10.1248/jhs.57.497.
- Parada H Jr, Wolff MS, Engel LS, White AJ, Eng SM, Cleveland RJ, et al. 2016. Organochlorine insecticides DDT and chlordane in relation to survival following breast cancer. Int J Cancer 138(3):565–575, PMID: 26285160, https://doi.org/10. 1002/ijc.29806.
- Pasquali R. 2006. Obesity and androgens: facts and perspectives. Fertil Steril 85(5):1319–1340, PMID: 16647374, https://doi.org/10.1016/j.fertnstert.2005.10.054.
- Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. 2003. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrinedisrupting compounds in indoor air and dust. Environ Sci Technol 37(20):4543– 4553, PMID: 14594359, https://doi.org/10.1021/es0264596.
- Schettler T. 2006. Human exposure to phthalates via consumer products. Int J Androl 29(1):134–139, PMID: 16466533, https://doi.org/10.1111/j.1365-2605.2005. 00567.x.
- Silva MJ, Barr DB, Reidy JA, Kato K, Malek NA, Hodge CC, et al. 2003. Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Arch Toxicol 77(10):561–567, PMID: 14574443, https://doi.org/10. 1007/s00204-003-0486-3.
- Soerjomataram I, Louwman MW, Ribot JG, Roukema JA, Coebergh JW. 2008. An overview of prognostic factors for long-term survivors of breast cancer. Breast Cancer Res Treat 107(3):309–330, PMID: 17377838, https://doi.org/10.1007/ s10549-007-9556-1.
- Starling AP, Engel LS, Calafat AM, Koutros S, Satagopan JM, Yang G, et al. 2015. Predictors and long-term reproducibility of urinary phthalate metabolites in middle-aged men and women living in urban Shanghai. Environ Int 84:94–106, PMID: 26255822, https://doi.org/10.1016/j.envint.2015.07.003.
- Teitelbaum SL, Mervish N, Moshier EL, Vangeepuram N, Galvez MP, Calafat AM, et al. 2012. Associations between phthalate metabolite urinary concentrations and body size measures in New York City children. Environ Res 112:186–193, PMID: 22222007, https://doi.org/10.1016/j.envres.2011.12.006.
- Terry PD, Miller AB, Rohan TE. 2002. Cigarette smoking and breast cancer risk: a long latency period? Int J Cancer 100(6):723–728, PMID: 12209614, https://doi.org/ 10.1002/ijc.10536.
- Townsend MK, Franke AA, Li X, Hu FB, Eliassen AH. 2013. Within-person reproducibility of urinary bisphenol A and phthalate metabolites over a 1 to 3 year period among women in the Nurses' Health Studies: a prospective cohort study. Environ Heal 12(1):80, PMID: 24034517, https://doi.org/10.1186/ 1476-069X-12-80.