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BACKGROUND: The public health community readily recognizes flooding and wildfires as climate-related health hazards, but few studies quantify
changes in risk of exposure, particularly for vulnerable children and older adults.

OBJECTIVES: This study quantifies future populations potentially exposed to inland flooding and wildfire smoke under two climate scenarios, high-
lighting the populations in particularly vulnerable age groups (≤4 y old and ≥65 y old).

METHODS: Spatially explicit projections of inland flooding and wildfire under two representative concentration pathways (RCP8.5 and RCP4.5) are
integrated with static (2010) and dynamic (2050 and 2090) age-stratified projections of future contiguous U.S. populations at the county level.

RESULTS: In both 2050 and 2090, an additional one-third of the population will live in areas affected by larger and more frequent inland flooding
under RCP8.5 than under RCP4.5. Approximately 15 million children and 25 million older adults could avoid this increased risk of flood exposure
each year by 2090 under a moderate mitigation scenario (RCP4.5 compared with RCP8.5). We also find reduced exposure to wildfire smoke under
the moderate mitigation scenario. Nearly 1 million young children and 1.7 million older adults would avoid exposure to wildfire smoke each year
under RCP4.5 than under RCP8.5 by the end of the century.

CONCLUSIONS: By integrating climate-driven hazard and population projections, newly created county-level exposure maps identify locations of
potential significant future public health risk. These potential exposure results can help inform actions to prevent and prepare for associated future
adverse health outcomes, particularly for vulnerable children and older adults. https://doi.org/10.1289/EHP2594

Introduction
Human health threats from climate change are occurring both in
the United States (Melillo et al. 2014; USGCRP 2016) and glob-
ally (Costello et al. 2009; Patz et al. 2014; Watts et al. 2015). The
public health community consistently identifies changes in
extreme events as a key driver of climate health impacts, with
the majority of publications focusing on heat waves (Verner
et al. 2016) and coastal storms and flooding (Bell et al. 2016).
Inland flooding and wildfires are comparatively understudied in
the climate impacts literature, although they have well-known
direct and indirect adverse public health outcomes, including
increased mortality and morbidity (Bell et al. 2016; Liu et al.
2017; Reid et al. 2016; Terti et al. 2017). Because climate
change will lead to continued increases in these extreme events
in the United States (Wehner et al. 2017; Bell et al. 2016), there
is a need for prospective national-level analyses to better under-
stand the spatial distribution of exposure. Such analyses should
aim to dynamically assess future risk and account for change
over time in climatic, socioeconomic, and demographic factors
(Jurgilevich et al. 2017).

Inland flooding and wildfires each present distinct health
risks, which can vary over time (i.e., before, during, or after an
event) and distance from the event. Examples of flood health
risks include drowning, injuries, electrocution, motor vehicle

accidents, increased disease or infections from contaminated
water, and mental health impacts (Bell et al. 2016; 2017).
Wildfire health risks include worsened air quality from smoke ex-
posure that can exacerbate respiratory and cardiovascular condi-
tions, watershed changes and erosion that can degrade water
quality, and mental health impacts (Bell et al. 2016; 2017).

Although any exposure to these extreme events increases a
person’s potential for experiencing an adverse health outcome,
certain groups within exposed populations are more vulnerable
because they have increased sensitivity or less adaptive capacity
(or both) than others. Specifically, children and older adults are
among those most vulnerable to the health effects of floods and
wildfire (Al-Rousan et al. 2014; English and Richardson 2016;
Gamble et al. 2016; Haq 2017; Rappold et al. 2017). Both child-
ren’s and older adults’ respiratory systems are more physically
sensitive to particulate matter pollution from wildfire smoke, con-
tributing to increased risk of hospitalization and, for older adults,
increased risk of death (Bell et al. 2013; Delfino et al. 2009;
Gamble et al. 2016; Liu et al. 2017; Perera 2017). Both children
and older adults have greater risk of gastrointestinal illness and
severe health outcomes from contact with contaminated water, a
common result of exposure to a flood (Trtanj et al. 2016). Those
≥65 y old tend to have a lower capacity to cope and prepare for
impacts of extreme events than younger adults given their higher
rates of chronic illness, reduced mobility, greater isolation, and
less financial flexibility (English and Richardson 2016; Meyer
2017). Both the very young and older adults are also more vul-
nerable to extreme events because their exposure is often deter-
mined or influenced by the preparation and response of their
caregivers (Gamble et al. 2016). In addition, severe extreme
events or those that occur simultaneously or in succession in a
given location have the potential to overwhelm the coping mech-
anisms of an individual or community, creating additional vulner-
ability (Bell et al. 2016; Ebi and Bowen 2016).

We estimated future populations within the contiguous United
States (CONUS) exposed to projected changes in two inland
flooding metrics and one wildfire smoke metric. We developed
spatially explicit projections of exposure to inland floods and wild-
fire smoke by integrating data from multiple global climate models
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(GCMs) under two climate scenarios in the mid- (2040–2059) and
late (2080–2099) 21st century with county-specific projections of
U.S. populations for 2050 and 2090. To isolate the impact of the
projected changes in these events, we also estimated future
impacts using a static 2010 population level and distribution. We
present results for populations exposed to extreme events sepa-
rately for the very young (≤4 y old), older adults (≥65 y old), and
all ages. This study contributes to the relatively small, but grow-
ing, body of literature that provides quantitative estimates of future
population exposure to climate health threats. It is also one of the
first national-level analyses for the United States that compares
multiple extreme event types under two climate futures and
presents age-stratified results to characterize future populations at
risk of exposure.

Methods

Climate Change Projections
Consistent with the U.S. Environmental Protection Agency’s
(U.S. EPA’s) Climate Change Impacts and Risk Analysis (CIRA)
project (U.S. EPA 2017a), our wildfire analysis incorporates data
from a subset of five GCMs selected from among those used
in the fifth Coupled Model Intercomparison Project ensemble
(CMIP5) (Taylor et al. 2012). These five GCMs (CCSM4, GISS-
E2-R, CanESM2, HadGEM2-ES, and MIROC5) capture much
of the variability observed across the CMIP5 ensemble and have
localized constructed analogs (LOCAs) downscaling available
for the contiguous United States (see Table S1 for details). The
LOCA downscaled results from these GCMs are used as inputs
to the MC2 model that projects future acreage burned by wildfire
in our analyses.

When selecting climate models from the broader ensemble
for the wildfire analysis, we compared projections from CMIP5
GCMs for annual and seasonal temperature and precipitation.
Although these averaged metrics may not be perfect substitutes
for comparing extreme weather effects, the relationship was
assumed to be sufficiently strong for this purpose. The five
GCMs selected capture a large range of the variability across
the entire ensemble in terms of annual and seasonal temperature
and precipitation (see Figures S1–S3), account for model inde-
pendence and demonstrate skill at reproducing observed cli-
mate at the global scale (Sanderson et al. 2015a, 2015b), and
are broadly used by the scientific community.

Our inland flooding analysis draws on downscaled and con-
sistently formatted hydrological outputs from 29 GCMs in
CMIP5 (U.S. Department of the Interior, 2014; Mizukami et al.
2016; Wobus et al. 2017). The flooding analysis considers a
larger sample of GCMs than the wildfire analysis to increase
the statistical power of sampling for the low-probability flood
events of interest.

The inland flooding and wildfire modeling incorporate tem-
perature and precipitation data from two representative concen-
tration pathways (RCPs) for each GCM that reflect alternative
future climates. Identified by their approximate total radiative
forcing in the year 2100 relative to the year 1750 (in watts per
square meter), the two pathways are RCP8.5, which reflects a
scenario with continued high greenhouse gas (GHG) emissions
growth, and RCP4.5, which reflects a scenario with moderate
global GHG emissions growth. Under RCP8.5, by 2100, global
atmospheric carbon dioxide (CO2) levels rise from current-day
levels of approximately 400 parts permillion ðppmÞ to 936 ppm,
with a projected warming of approximately 4°C (2:8–5:7�C), by
2081–2100. Under RCP4.5, projections show atmospheric CO2
levels at the end of the century remain below 550 ppm, leading to

a warming of approximately 2°C (1:3–3:3�C) by the end of the
century (USGCRP 2017a).

To provide localized climate projections and to bias correct
the projections to improve consistency with the historical
period, we used the LOCA data set [Pierce et al., 2014, 2015;
U.S. Department of the Interior et al., 2016]. The LOCA pro-
jections, which are derived from the CMIP5 ensemble outputs,
are the primary data set used in the Climate Science Special
Report of the U.S. Global Change Research Program’s Fourth
National Climate Assessment (USGCRP 2017b). The LOCA
downscaled data set provides daily maximum and minimum
temperatures (Tmin and Tmax), and daily precipitation values at
1/16-degree resolution from 2006 to 2100. For each climate
scenario, we calculated an average daily change factor for tem-
perature and precipitation at each grid cell by comparing 20 y
of LOCA projections centered on 2050 and 2090 to an histori-
cal 1/16-degree gridded data set from the period 1986–2005
(Livneh et al., 2015). We calculated these daily change factors
as a spatial average of nine 1/16-degree LOCA grid cells (3 × 3
window) surrounding each location.

We calculated hourly temperature change factors based on
model-projected changes in Tmin and Tmax by assuming these
temperatures occur at midnight and noon, respectively, and inter-
polating between Tmin and Tmax values over the course of each
day. These hourly changes were then added to the baseline North
American Land Data Assimilation System (NLDAS) temperature
time series. For precipitation, we used the GCM outputs to calcu-
late a multiplier to apply to the hourly NLDAS precipitation time
series. In some cases, the LOCA-modeled precipitation led to
unrealistically high change factors. To eliminate these outliers,
we first discarded values that exceeded the 90th percentile of all
change factors for each station. Daily change factors were then
calculated as a 31-d moving average ratio of this filtered time se-
ries and were applied to the NLDAS baseline.

Projecting Changes to Inland Flooding
For our inland flooding analysis, we captured changes in both the
frequency and magnitude of high flow events with a 1% annual
exceedance probability (AEP) threshold (referred to as a 1% AEP
flood). This threshold is a common metric for evaluating extreme
flooding, most notably because the 1% AEP or “100-y” flood
level delineates Special Flood Hazard Areas in federal flood in-
surance rate maps (FEMA 2017). Within observed or modeled
data, a 1% AEP flood defines both a flow volume (e.g., 10,000
cubic feet per second) and an expected return interval or fre-
quency for that flow volume (on average, once every 100 y).

We developed inland flooding projections using downscaled
hydrologic data developed over the past decade by the U.S.
Bureau of Reclamation and a broad group of collaborators (U.S.
Department of the Interior 2014). These hydrologic data used
GCM-modeled outputs for precipitation and temperature down-
scaled by the bias correction and spatial disaggregation method
(Wood et al. 2004; Wood and Mizukami 2014). The resulting
adjusted precipitation and temperature fields were then used as
inputs to a variable infiltration capacity hydrologic model to simu-
late catchment hydrology (Liang et al. 1994). Runoff from this
model was remapped to the Hydrologic Response Units (HRUs)
defined in the United States Geological Survey Geospatial Fabric
(Viger and Bock 2014) and routed through the Geospatial Fabric
river network using the MizuRoute routing tool (Mizukami et al.
2016). The U.S. Reclamation. (2014) provides additional details of
the downscaling, hydrologic projections, and catchment hydrology
simulations. This modeling does not address coastal flooding from
ocean storms because different models (e.g., storm surge models)
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and data (e.g., sea level rise data) would be required to project this
type of flooding event (U.S. EPA, 2017a).

The hydrologic outputs from the U.S. Reclamation. (2014)
include projections of naturalized daily flow (i.e., flow without
dams) through the 21st century at approximately 57,000 stream
reaches in the United States. For each of these stream reaches, we
extracted the modeled time series of annual maximum flows for
the entire 21st century (2001–2099) from each of the 29 GCMs
and 2 RCPs. We then fit a generalized extreme value distribution
to the annual maximum flow time series using the pooled data
from the 29 GCMs for each RCP at three 20-y intervals refer-
enced by their midpoint: a 2010 baseline (2001–2020), 2050
(2040–2059), and 2090 (2080–2099). Although individual GCMs
are not strictly statistically independent owing to shared code
(e.g., Knutti et al., 2010; Bishop and Abramowitz, 2013), the
consensus of the climate modeling community remains that it is
best to average across many ensemble members. Accordingly, our
estimate of the 1% AEP flow relied on a full ensemble of GCM
projections (e.g., Tebaldi and Knutti 2007). Wobus et al. (2017)
provide additional details of the statistical methods applied to esti-
mate changes in the frequency of baseline 1% AEP flow and the
magnitude of the flows for the 1% AEP flood over time. Further
discussion of methodological choices, implications of pooling
data from multiple GCMs, and uncertainty around internal vari-
ability can be found in the supplementary information in Wobus
et al. (2017).

Using these data, we considered changes in the frequency of
flows consistent with the historical 1% AEP flood based on avail-
able modeled data for a baseline period (i.e., the baseline 1%
AEP flood). This change in frequency is expressed as a new
return interval for the flow associated with the baseline 1% AEP
flood. We also considered changes in the magnitude of the 1%
AEP flow. This change in magnitude was captured by comparing
the flow for the 1% AEP flood calculated based on future projec-
tions to the flow for the baseline 1% AEP flood.

Figure 1 provides an example of how we used projected flow
information from each river reach to measure changes in the fre-
quency and magnitude of 1% AEP flows.

Projecting Changes to Wildfires
We projected acreage burned by wildfires using the MC2 dynamic
global vegetation model (DGVM) developed for the CIRA project
(U.S. EPA 2017a). MC2 is a spatially explicit DGVM with three
integrated modules that address biogeography, biogeochemis-
try, and fire (OSU 2011). MC2 accounts for potential impacts
of a future climate, primarily temperature and precipitation data
developed in GCMs, on a user-defined and calibrated baseline

vegetation layer. The model is calibrated using historical
observed climate, vegetation, and biogeographic data as input
into the model, then compared to natural vegetation from a his-
torical vegetation map of the same time period.

Recent research investigated the differences between statisti-
cal and dynamic vegetation modeling approaches and found that
including changes in vegetation and drought–fire dynamics yields
potentially important distinctions for projections of long-term
changes in fire regimes (Hantson et al. 2016; McKenzie and
Littell 2017). The MC2 model simulates changes in future terres-
trial ecosystem vegetative cover, including shifts in vegetative
type, growth, decay, and transition over time. MC2’s fire module
incorporates algorithms that account for vegetation characteristics
(e.g., type, volume, moisture content) to determine when fire
occurs in a grid cell (see Bachelet et al. 2015 for additional
detail). Over the century-long modeled period, an area can poten-
tially burn multiple times if there is enough growth of combusti-
ble fuel and if projected environmental conditions satisfy ignition
criteria. However, MC2 also captures the potential impact of
repeated burning resulting in conversion to vegetation types that
burn less frequently. Thus, areas with large levels of current wild-
fire activity may see fewer wildfires in the future in MC2 projec-
tions than in a statistical model.

We used results for each of the five GCMs for each year in
midcentury (2040–2059) and late-century (2080–2099) 20-y time
periods under both RCP8.5 and RCP4.5. MC2 reports the impacts
of fire as the percent of the grid cell area burned, among other
metrics, where grid cells are 1=16� resolution. Because the model
does not provide a measurement of wildfire smoke emissions,
concentrations, or dispersion, we used the percent of the grid cell
burned metric to link wildfire frequency to populations poten-
tially exposed to associated smoke [see “Integrating Wildfire and
Population Projections” (below) for a description of the calcula-
tion of wildfire smoke exposure]. We considered only wildfire
smoke distribution to calculate spatially gridded exposure fre-
quency, omitting consideration of potential spatial distribution of
other wildfire health impacts, such as threats to water quality or
mental health. Risk of exposure to these important health impacts
are only captured inasmuch as they occur in the grid cells pro-
jected to experience a wildfire year.

Projecting Changes to U.S. Populations
We used county-level data from the U.S. EPA’s Integrated
Climate and Land Use Scenarios (ICLUSv2) project (U.S. EPA
2017b) to determine the total number of persons that could be
exposed to future inland flooding and wildfire smoke. ICLUSv2
projects CONUS populations using the median variant projection

Figure 1. Example of change in inland flooding for one river reach. In this example, the flow for a flood with a baseline 100-y return interval [1% annual
exceedance probability (AEP) event] becomes approximately 25% larger (vertical shift from 100 to 125m3s−1, marked “A”) in 2090 under RCP4.5. At the
same time, the 100m3s−1 flow that defines the baseline 1% AEP flood becomes approximately twice as frequent (horizontal shift from 100-y to 50-y average
return interval, marked “B”) in 2090 under RCP4.5. RCP, representative concentration pathway.
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of the United Nations’ 2015 World Population Prospects data set
(United Nations 2015). This scenario represents a midrange
national population projection (� 440million people by 2090),
which is reasonable given recent demographic trends in the United
States (Hollmann et al. 2000). The spatial pattern of population
change in ICLUSv2 is dependent on underlying assumptions
regarding fertility, migration rate, and international immigration.
The proportions of the all-age population in each county for those
≤4 y old and ≥65 y old from the first version of ICLUS were
applied to the ICLUSv2 all-age county populations to calculate
equivalent county-based age-group-based populations for the years
2010, 2050, and 2090.

Integrating Inland Flooding and Population Projections
Once the flooding projections were calculated for each of the
57,000 CONUS stream reaches, we aggregated these projections
to the county level to link them to the population projections. To
do this, we intersected all of the stream reaches in the United
States with county boundaries and calculated county-average
changes in frequency and magnitude for the baseline 1% AEP
flood for each combination of future reporting year and RCP.

Flood frequency. For projected changes in flood frequency,
we averaged the projected future return intervals of all reaches
within each county to calculate a county-averaged change in the
recurrence interval of the baseline 1% AEP flood:

FRI100 =
100
RIavg

, (1)

where
FRI100 = the future 100-y flood return interval index, and
RIavg = the county-average future return interval for the base-

line 1% AEP flood for the given combination of reporting year
and RCP.

County FRI100 values >1:0 indicate that, on average, the
modeled reaches intersecting the county would experience
the baseline 1% AEP flood more frequently in the future. In the
example depicted in Figure 1, a county FRI100 value of 2 under
RCP4.5 in 2090 would indicate that reaches intersecting the
county are projected to experience the baseline 1% AEP flow
roughly twice as frequently, or every 50 y on average, com-
pared with every 100 y in the baseline period.

Flood magnitude.We followed a similar process to develop a
county-level measure of the anticipated change in the magnitude
of the 1% AEP flow over time. First, for each modeled reach
intersecting a county, we calculated the flow for the 1% AEP
event for each combination of future reporting year and RCP. We
then calculated a future flow index as follows:

FFI100 =
FF100

BF100
, (2)

where
FFI100 = the future 1% AEP flow index,
FF100 = the magnitude of flow for a 1% AEP event for the

given combination of future year and RCP, and
BF100 = the magnitude of flow for a baseline 1% AEP event.
Finally, we averaged the FFI100 values for all reaches intersect-

ing the county to produce the county-average FFI100 value for the
representative year and RCP. The resulting county-average FFI100
values provide an indexed measure of the anticipated relative
change in the magnitude of the flows for a 1% AEP event in each
future time period relative to the baseline. In the example depicted
in Figure 1, a county-average FFI100 value of 1.25 for 2090 under
RCP4.5 would indicate that the flow for the future 1% AEP flood

event is 25% larger than in the baseline. Similarly, county-average
FFI100 values ≤1 would reflect future 1% AEP flows of the same
size or smaller than the baseline 1% AEP event.

We used the ICLUSv2 county-level age-group population
projections for 2050 and 2090 to summarize the populations
exposed to different categories of anticipated change in the fre-
quency of baseline 1% AEP floods and the magnitude of 1% AEP
flows over time. We made the simplifying assumption that all
county residents would experience uniform changes in exposure
to future flooding in ways that both directly (e.g., flood waters in
homes or businesses) or indirectly (e.g., disruption of services)
threaten human health. This assumption does not imply that all
county residents will be uniformly affected by changes in flood-
ing (i.e., that they would all uniformly become ill); in fact,
research shows that socially vulnerable populations within an
affected area experience greater adverse health effects (Cutter
et al. 2000; Zahran et al. 2008). The results presented are projec-
tions of risk of exposure, not cases of morbidity or mortality. If
the outcome of interest in this analysis were property damage, the
assumption that all county residents would experience changes in
exposure uniformly, instead of only inundated areas within the
county, would be an overestimation. But because flooding impacts
can create widespread public health threats before, during, and af-
ter flooding events (e.g., disruption of communication, transporta-
tion, water and electrical services; restricted access to health care;
injuries related to evacuation, cleanup, or recovery activities; see
Bell et al. 2016), we feel this assumption is appropriate as a metric
of change in exposure to health risks.

Different GCMs have different spatial patterns of future
hydrologic change that cannot be extracted from the integrated
ensemble; therefore, variability by GCM in populations exposed
to anticipated changes in the frequency and magnitude of flood-
ing is not shown. However, Wobus et al. (2017) found no system-
atic differences in results in the annual maximum peak flow
magnitudes from the 29 individual GCMs.

Integrating Wildfire and Population Projections
We identified populations potentially exposed to wildfire smoke
by first integrating the MC2 output grid with land characteristic
data from ICLUSv2. MC2 cells where the ICLUSv2 data indicate
that >10% of the total MC2 cell area is classified as a combination
of agricultural or urban land were removed from consideration as
cells that could burn. In the remaining MC2 cells for each GCM/
RCP combination, we summed the number of years when ≥6%
(�500 acres) of the MC2 cell is projected to burn within each
20-y modeling period to characterize wildfire frequency (number
of years out of 20 in which the threshold level of burning
occurred). The MC2 model captures the implications on future
vegetation from differences in fires that burn 6% or 99% of an
MC2 cell area, but this difference is not captured by smoke expo-
sure estimates even though wildfires that burn 99% of a grid cell
are likely to have broader smoke plumes and higher exposure than
those that burn 6% of the cell. Although wildfire smoke may be
transported large distances from the event (Bell et al. 2016), MC2
does not model smoke dispersion. Therefore, we made the assump-
tion that only residents in the burning MC2 cell and in the eight
surrounding cells would be exposed to the wildfire smoke and
would thus be exposed to health risks. The number of years a pop-
ulation in a cell would be exposed to wildfire smoke in each future
20-y modeling period was thus defined by the cell within the 9-cell
grid with the maximum number of years when ≥6% of the cell
burned. For example, people living in a cell projected to experi-
ence 2 wildfire years out of 20 in a future period but who live adja-
cent to a cell projected to experience 3 wildfire years would be
reported to experience 3 wildfire years out of 20 in that period.
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To transcribe frequency of wildfires at the grid cell level to
population exposed to wildfire smoke at the county level,
ICLUSv2 county-level age group populations were distributed
evenly over the county area and intersected with the MC2 cell
grid to develop population projections for each MC2 cell. These
projections were aggregated to county populations and summar-
ized by age group, future representative year, GCM, and RCP,
according to the calculated years of potential wildfire smoke ex-
posure, categorized as 1–3, 4–6, or ≥7 y out of the 20 maximum
possible years of exposure. County-level data were aggregated to
state-level population exposure estimates and then averaged
across the five GCMs to produce the reported population exposed
for each combination of age category, future year, and RCP.

Our wildfire analysis shows that much of the projected burning
occurs in the western states and Great Plains consistently across
the five GCMS; there is variation among GCMs in the upper
Midwest, Northeast, and Southeast regions (see Figure S4). For
example, the number of years out of 20 projected to burn in
Florida in 2090 under RCP8.5 differs between the CCSM4 model
(many cells with burning) and the HadGEM2-ES model (almost no
cells with burning). Additional variation occurs for the results in
Texas running south from the panhandle using the MIROC5 data

(many cells with burning) and the results from the CAN-ESM2
data (far fewer cells with burning). Although we acknowledge the
importance of model variability, we averaged population exposure
projections from each of the models for a given time period and
RCP because this provides a reasonable basis on which to estimate
the extent of future populations exposed to wildfire smoke.

Regional Aggregation of Results
To facilitate the presentation of summaries and comparison of
results, we aggregated our exposed population results to the same
climate regions used in the forthcoming fourth National Climate
Assessment (NCA4) (USGCRP 2017b) (see Figure S5 for a map
of the NCA4 regions; see also Table S2 for a list of states
included in each NCA4 region).

Results

Climate Change Impacts on the Return Interval for Baseline
1% AEP Floods
As shown in Figure 2, baseline 1% AEP floods are projected to
become ≤10 times more frequent in some counties (deep red)

Figure 2. Projected change in the frequency of baseline 1% annual exceedance probability (AEP) floods. Future county-level average future 100-y flood return
interval index (FRI100 ratios to the 2010 baseline 1% AEP floods are shown under RCP4.5 and RCP8.5 in 2050 and 2090. The most extreme increases in fre-
quency for the baseline flood (values greater than 1) are presented in deep red while the largest decreases in frequency (values less than 1) are presented in
dark blue. RCP, representative concentration pathway.
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but only half as frequent in others (dark blue) across the two
climate scenarios and two future time periods. In all scenarios,
more counties are projected to experience an increase than a
decrease in frequency of baseline 1% AEP floods, with this
trend increasing over time. Under RCP4.5 in 2050, roughly
65% of counties would experience the baseline 1% AEP flood
more frequently, increasing to 76% of the counties in 2090.
Under RCP8.5, the number of counties experiencing more fre-
quent baseline 1% AEP floods increases from 76% in 2050 to
89% in 2090. These results also show a general trend across the
representative years, with the largest anticipated increases in
frequency of the baseline 1% AEP flood in the Northwest,
Northern Great Plains, and Southwest regions. Simultaneously,
there are areas where the baseline 1% AEP floods are expected
to occur less frequently in the future across scenarios (e.g.,
parts of Nebraska and Oklahoma in the Southern Great Plains,
and Michigan and Minnesota in the Midwest region).

Projections show that more people will experience more fre-
quent baseline 1% AEP floods than less frequent floods in both
2050 and 2090 and under both RCP4.5 and RCP8.5, in almost ev-
ery region (Table 1; see Table S3 for state-level results). The
only exceptions are in the Midwest and Northeast regions for
2050 under the RCP4.5 scenario. For projections of a given year,
more people will live in counties that experience baseline 1%

AEP floods more frequently under RCP8.5 than under the
RCP4.5 scenario. For projections of a given RCP, more people
will live in counties that experience less frequent baseline 1%
AEP floods in 2050 than in 2090 despite increasing populations
throughout the century. Of particular note is the significantly
higher number of people projected to live in counties that experi-
ence 1% AEP floods twice as frequently in 2090 under RCP8.5
than under any other year/RCP scenario.

Subtracting the number of children ≤4 y old projected to ex-
perience less-frequent flooding in 2050 from the number of chil-
dren projected to experience floods equally or more frequently
than the baseline, we find that a net total of 11.3 million more
children live in counties that experience an increase in 1% AEP
flood frequency under RCP8.5 than under the RCP4.5 scenario
(Table 1). Similarly, a total of 25.8 million more adults ≥65 y old
live in counties that experience an increase in 1% AEP flood fre-
quency under RCP8.5 than under the RCP4.5 scenario in 2050.
By 2090, the difference between net populations experiencing an
increase in baseline 1% AEP flood frequency under RCP8.5 and
RCP4.5 increases to 15.1 million children ≤4 y old and 27.2 mil-
lion adults ≥65 y old. In other words, 15.1 million young chil-
dren and 27.2 million older adults would avoid increases in
baseline 1% AEP flood frequency under RCP4.5 than under
RCP8.5 each year by the end of the century. However, despite a

Table 1. Populations affected by changes in the frequency of baseline 1% AEP floods (millions of persons).

NCA region
Two or more times more frequently

No change up to 2 times more
frequently Less frequently

Age 0–4 Age ≥65 All ages Age 0–4 Age ≥65 All ages Age 0–4 Age ≥65 All ages

RCP4.5 in 2050
Northeast 0.04 0.02 0.32 2.41 4.87 25.40 3.75 8.04 40.04
Southeast 0.08 0.29 0.98 3.90 9.46 43.39 3.53 8.71 39.47
Midwest 0.05 0.06 0.51 2.93 5.66 31.11 3.62 7.11 38.05
Northern Great Plains 0.07 0.18 0.84 0.50 1.04 5.39 0.02 0.03 0.18
Southern Great Plains 0.00 0.00 0.02 3.62 7.67 37.05 0.67 1.54 7.26
Southwest 0.11 0.34 1.29 6.47 13.84 65.66 1.14 2.43 11.51
Northwest 0.51 1.18 5.59 0.70 1.51 7.50 0.07 0.14 0.70
Total 0.87 2.08 9.56 20.53 44.06 215.50 12.79 28.00 137.21
RCP4.5 in 2090
Northeast 0.00 0.00 0.01 4.55 8.20 45.35 2.65 4.47 26.23
Southeast 0.67 1.54 7.08 5.92 11.26 59.84 2.55 5.32 26.43
Midwest 0.03 0.04 0.29 4.37 7.01 42.61 3.22 5.03 31.47
Northern Great Plains 0.22 0.48 2.35 0.47 0.77 4.64 0.04 0.05 0.38
Southern Great Plains 0.04 0.06 0.34 3.75 6.86 36.57 1.59 3.15 16.01
Southwest 0.52 1.28 5.48 8.21 14.90 79.30 0.98 1.86 9.62
Northwest 0.81 1.57 8.25 0.61 1.12 6.10 0.06 0.10 0.54
Total 2.29 4.97 23.80 27.88 50.11 274.41 11.09 19.98 110.68
RCP8.5 in 2050
Northeast 0.40 0.89 4.32 4.45 9.31 47.17 1.35 2.74 14.28
Southeast 0.44 0.89 4.61 4.78 12.01 53.59 2.29 5.56 25.64
Midwest 0.37 0.78 4.02 3.20 6.36 33.69 3.04 5.68 31.97
Northern Great Plains 0.05 0.14 0.60 0.51 1.07 5.52 0.03 0.05 0.28
Southern Great Plains 0.54 1.22 5.65 3.39 7.18 34.76 0.36 0.82 3.92
Southwest 0.17 0.59 2.03 7.52 15.90 76.02 0.03 0.13 0.42
Northwest 0.30 0.63 3.20 0.92 2.08 10.00 0.06 0.11 0.59
Total 2.27 5.14 24.42 24.76 53.90 260.75 7.16 15.09 77.10
RCP8.5 in 2090
Northeast 2.34 4.03 23.18 4.67 8.34 46.49 0.20 0.30 1.92
Southeast 3.57 6.41 35.51 5.12 10.70 53.02 0.46 1.02 4.82
Midwest 2.30 3.70 22.32 3.38 5.16 32.80 1.94 3.22 19.25
Northern Great Plains 0.14 0.28 1.46 0.52 0.89 5.23 0.07 0.13 0.68
Southern Great Plains 2.81 5.06 27.14 2.05 4.02 20.53 0.52 1.00 5.25
Southwest 7.78 14.09 75.11 1.60 3.27 16.04 0.33 0.68 3.27
Northwest 1.33 2.53 13.50 0.11 0.21 1.09 0.03 0.05 0.30
Total 20.27 36.09 198.21 17.45 32.59 175.20 3.54 6.40 35.49

Note: AEP, annual exceedance probability; NCA, National Climate Assessment; RCP, representative concentration pathway. Spatially explicit projections of exposure to more frequent
inland floods (of 1% AEP magnitude) were developed by integrating data from 29 global climate models (GCMs) under RCP8.5 and RCP4.5 in the mid- (2040–2059) and late- (2080–
2099) 21st century with county-specific projections of U.S. populations for 2050 and 2090. Corresponding county- and state-level data are depicted in Figure 2 and Table S3, respec-
tively. Populations are based on Integrated Climate and Land Use Scenarios (ICLUS) v2 county-level age group projections for the referenced year (i.e., 2050, 2090) (see Table S5 for
corresponding projections holding population at 2010 levels and distribution).
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widespread net increase in the number of people experiencing
more frequent baseline 1% AEP floods, significant populations in
some areas are projected to experience baseline 1% AEP floods
less frequently (Figure 2).

Climate Change Impacts on the Magnitude of 1%
AEP Flows
Like Figure 2, Figure 3 shows that the direction and magnitude
of the anticipated changes in future 1% AEP flows compared
with the baseline can vary substantially by county and region.
Figure 3 shows a general trend of increasing flows in future 1%
AEP events compared with the 2010 baseline over time, appear-
ing as a shift to fewer blue-green shaded counties and more
yellow-red shaded counties in 2090 than in 2050. Increases in
flows for 1% AEP events projected in 2050 under both RCP4.5
and RCP8.5 are relatively and similarly small. By 2090, some
increases in flows for the 1% AEP events are projected under
RCP4.5; however, the anticipated increases in 1% AEP flows are
far more pronounced under RCP8.5, particularly in California
and southern Nevada. These areas have multiple counties that fall
into the largest categories of change (i.e., having future 1% AEP
flows >1:5 times the baseline).

The projected populations affected by changes in 1% AEP
flows over time (Table 2) are largely consistent with the projected
populations exposed to changes in 1% AEP flood frequency
(Table 1) in terms of timing and distribution of the changes.
More people live in counties that experience equal or larger 1%
AEP flows in the future than smaller flows—in both 2050 and
2090, under both RCP4.5 and RCP8.5, and in almost every
region. The only exceptions are the Midwest and Northeast
regions for 2050 under the RCP4.5 scenario.

Increases in populations exposed to larger 1% AEP flows over
time are more pronounced under RCP8.5 than under RCP4.5.
Particularly striking is the increase in the number of people
exposed to flows that are >1:5 times the size of the baseline 1%
AEP flow under RCP8.5. Although almost no one is exposed to
this high level of change in flow in 2050, roughly 51.3 million
people of all ages are projected to live in counties that experience
flows >1:5 times baseline levels in 2090, including nearly 5.4
million children ≤4 y old, and roughly 9.3 million persons
≥65 y old. This increase is almost entirely attributable to antici-
pated changes in the Southwest region, particularly in the heavily
populated area of southern California (see Figure 3). Projections
show that western regions, particularly California, western
Washington, and the southwestern border of Texas, will see

Figure 3. Projected change in the magnitude of baseline 1% annual exceedance probability (AEP) floods. Future county-level average future 1% AEP flow
index (FFI100 ratios to the 2010 baseline 1% AEP flows are shown under RCP8.5 and RCP4.5 in 2050 and 2090. The most extreme increases in flow (values
>1) are presented in dark red, and the largest reductions in flow (values <1) are presented in dark blue. RCP, representative concentration pathway.
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substantial increases in both the frequency and magnitude of
these flooding events, especially under RCP8.5 in 2090. Under
both climate scenario projections, fewer people will live in coun-
ties that experience smaller 1% AEP flows in 2090 compared
with 2050 despite increasing population over time. Although not
shown in Figure 3, Table 2 shows large increases in the popula-
tions exposed to flows ≤1:5 times baseline 1% AEP levels in the
Northeast and Southeast, likely because of high population den-
sity in these regions (see Table S4 for state-level results).

Subtracting the number of children ≤4 y old projected to ex-
perience smaller flows in 2050 from the number of children pro-
jected to experience floods equal to or larger than the baseline,
we find that a net total of 11.6 million more children live in coun-
ties that experience an increase in 1% AEP flow under RCP8.5
than under RCP4.5. Similarly, a total of 26.8 million more adults
≥65 y old live in counties that experience an increase in 1% AEP
flow under RCP8.5 than under RCP4.5 in 2050. By 2090, the dif-
ference between net populations experiencing an increase in flood
flow under RCP8.5 and RCP4.5 increases to 14.9 million children
≤4 y old but remains roughly at 2050 levels for adults ≥65 y old.
In other words, 14.9 million young children and 26.7 million
older adults would avoid increases from the baseline 1% AEP
flow levels under RCP4.5 compared with RCP8.5 each year by
the end of the century.

Climate-Attributable Impact of Flooding Exposure on
Static Population
To provide context for the portion of these impacts due to climate
change only, we projected populations affected by changes in the
frequency and flow of baseline 1% AEP floods holding future
populations to 2010 levels and distribution (see Tables S5 and
S6). When compared with projections that account for projected
changes in future populations (Tables 1 and 2), the same overall
patterns can be seen—more people are exposed under RCP8.5
than RCP4.5, more people are exposed in 2090 than in 2050, and
regional patterns are similar—though these values shift down-
wards compared to projections that consider future population
growth and migration. Similarly, the number of people experienc-
ing the most severe category of change (baseline 1% AEP floods
occurring ≥2 times more frequently; future flow >1:5 times
larger than the baseline) jumps dramatically in 2090 under
RCP8.5, with the greatest impacts again projected to occur in
the Southwest (see Tables S5 and S6).

Wildfire Impacts
As with the flooding projections, wildfire smoke exposure projec-
tions for RCP8.5 in 2090 reflect the greatest potential exposure,
with substantial regional differences (see Table 3, Table S7, and

Table 2. Populations affected by changes in the flow of baseline 1% AEP floods (millions of persons).

NCA region

Future flow more than 1.50 times
larger than baseline

Future flow the same size to 1.50 times
larger than baseline Future flow smaller than baseline

Age 0–4 Age ≥65 All ages Age 0–4 Age ≥65 All ages Age 0–4 Age ≥65 All ages

RCP4.5 in 2050
Northeast 0.00 0.00 0.00 2.43 4.88 25.58 3.76 8.06 40.19
Southeast 0.00 0.00 0.00 4.03 9.87 44.94 3.48 8.60 38.93
Midwest 0.00 0.00 0.00 3.14 6.04 33.35 3.46 6.78 36.32
Northern Great Plains 0.00 0.00 0.00 0.58 1.23 6.28 0.01 0.02 0.13
Southern Great Plains 0.00 0.00 0.00 3.65 7.74 37.33 0.65 1.48 6.99
Southwest 0.00 0.00 0.00 6.74 14.46 68.44 0.98 2.16 10.02
Northwest 0.00 0.00 0.00 1.21 2.69 13.09 0.07 0.14 0.70
Total 0.00 0.00 0.00 21.79 46.90 229.03 12.40 27.24 133.28
RCP4.5 in 2090
Northeast 0.00 0.00 0.00 4.58 8.24 45.59 2.63 4.42 26.00
Southeast 0.00 0.00 0.00 6.64 12.92 67.43 2.51 5.21 25.97
Midwest 0.00 0.00 0.00 4.44 7.09 43.23 3.19 4.99 31.14
Northern Great Plains 0.00 0.00 0.00 0.69 1.25 7.01 0.04 0.05 0.35
Southern Great Plains 0.00 0.00 0.00 3.83 7.02 37.41 1.54 3.06 15.51
Southwest 0.02 0.12 0.31 8.71 16.07 84.52 0.98 1.84 9.58
Northwest 0.00 0.00 0.00 1.42 2.69 14.35 0.06 0.10 0.54
Total 0.02 0.12 0.31 30.30 55.28 299.53 10.94 19.67 109.09
RCP8.5 in 2050
Northeast 0.00 0.00 0.00 4.85 10.21 51.58 1.34 2.73 14.19
Southeast 0.00 0.00 0.00 5.38 13.28 60.00 2.14 5.18 23.87
Midwest 0.00 0.00 0.00 3.86 7.72 40.87 2.74 5.10 28.80
Northern Great Plains 0.00 0.00 0.00 0.56 1.21 6.11 0.03 0.05 0.29
Southern Great Plains 0.00 0.00 0.00 4.01 8.56 41.26 0.28 0.65 3.07
Southwest 0.00 0.00 0.00 7.70 16.56 78.28 0.02 0.05 0.19
Northwest 0.00 0.00 0.00 1.23 2.74 13.31 0.05 0.09 0.48
Total 0.00 0.00 0.00 27.61 60.29 291.40 6.59 13.86 70.90
RCP8.5 in 2090
Northeast 0.00 0.00 0.00 7.04 12.42 70.02 0.16 0.24 1.57
Southeast 0.00 0.00 0.00 8.68 17.10 88.52 0.46 1.03 4.87
Midwest 0.00 0.00 0.00 5.68 8.87 55.12 1.94 3.21 19.24
Northern Great Plains 0.00 0.00 0.00 0.67 1.16 6.71 0.06 0.13 0.66
Southern Great Plains 0.02 0.03 0.21 4.85 9.07 47.59 0.50 0.97 5.11
Southwest 5.30 9.14 50.27 4.08 8.21 40.88 0.33 0.68 3.27
Northwest 0.09 0.15 0.87 1.35 2.59 13.72 0.03 0.05 0.30
Total 5.41 9.33 51.34 32.36 59.42 322.56 3.49 6.32 35.03

Note: AEP, annual exceedance probability; NCA, National Climate Assessment; RCP, representative concentration pathway. Spatially explicit projections of exposure to changes in
flow (magnitude) of inland floods (of 1% AEP frequency) were developed by integrating data from 29 global climate models (GCMs) under RCP8.5 and RCP4.5 in the mid- (2040–
2059) and late- (2080–2099) 21st century with county-specific projections of U.S. populations for 2050 and 2090. Corresponding county- and state-level data are depicted in Figure 3
and Table S4, respectively. Populations are based on Integrated Climate and Land Use Scenarios (ICLUS) v2 county-level age group projections for the referenced year (i.e., 2050,
2090) (see Table S6 for corresponding projections holding population at 2010 levels and distribution).
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Figure 4 for regional-, state-, and county-level projections,
respectively). Our models estimate that tens of millions of people
will be exposed to wildfire smoke in both time periods under
both climate scenarios (Table 3). We project that three million
more people are exposed to wildfire smoke in 2050 under
RCP8.5 compared to RCP4.5; nearly 10 million more people are
exposed in 2090 under RCP8.5 compared to RCP4.5. Ninety per-
cent or more of persons in each affected age group are expected
to experience wildfire smoke 1–3 times out of the 20-y time peri-
ods modeled. In contrast to the flooding results, the total pro-
jected population anticipated to experience wildfire smoke
exposure does not consistently increase from 2050 to 2090; there
may be fewer counties with projected smoke exposure in 2090
compared to 2050 under RCP4.5 (Figure 4) as the total affected
population decreases from 2050 to 2090 by roughly 4.6 million
persons (Table 3). Under RCP8.5, 2.1 million more people are
exposed to wildfire smoke each year by 2090 compared to 2050;
this estimate includes 0.5 million more children ≤4 y old but 0.6
million fewer adults ≥65 y old.

The Northeast and Southwest are projected to experience the
highest populations exposed to wildfire smoke, with nearly 19 mil-
lion people exposed 1–3 times between 2080 and 2099 in just
these two regions under RCP8.5. While the population exposed to
≥7 wildfire years out of 20 is comparatively small (on the order of

tens of thousands of people), they are almost all concentrated in
the Southwest region. The region with the most dramatic increase
in exposure from 2050 to 2090 under RCP8.5 is the Southeast.

While there is not a clear trend in the number of children or
older adults exposed over time (from 2050 to 2090), fewer people
in these vulnerable populations are exposed under RCP4.5 com-
pared to RCP8.5 (Table 3). In 2050, 0.3 million more children
≤4 y old and 0.7 million more adults ≥65 y old are exposed
under RCP8.5 than under RCP4.5. By 2090, 1.0 million more
young children and 1.7 million more older adults are exposed
under RCP8.5 than under RCP4.5. In other words, nearly 1 mil-
lion young children and 1.7 million older adults would avoid ex-
posure to wildfire smoke under RCP4.5 compared to RCP8.5
between 2080 and 2099.

Climate-Attributable Impact of Wildfire Smoke Exposure on
Static Population
As with the flooding results, parallel patterns are observed when
wildfire exposures are projected holding population size and dis-
tribution at 2010 levels (see Table S8). Specifically, larger popu-
lations are projected under the RCP8.5 scenario compared to the
RCP4.5 scenario in both time periods and across all age groups
and exposure categories. Similarly, projected wildfire smoke

Table 3. Populations projected to be exposed to wildfire smoke (millions of persons).

NCA region

Wildfire smoke exposure 1–3 times
out of 20 years

Wildfire smoke exposure 4–6 times
out of 20 years

Wildfire smoke exposure 7 or more
times out of 20 years

Age 0–4 Age ≥65 All ages Age 0–4 Age ≥65 All ages Age 0–4 Age ≥65 All ages

RCP4.5 in 2050
Northeast 0.81 1.64 8.60 0.00 0.00 0.00 0.00 0.00 0.00
Southeast 0.39 0.95 4.32 0.00 0.00 0.00 0.00 0.00 0.00
Midwest 0.16 0.29 1.68 0.00 0.00 0.00 0.00 0.00 0.00
Northern Great Plains 0.12 0.33 1.40 0.00 0.00 0.02 0.00 0.00 0.00
Southern Great Plains 0.06 0.12 0.62 0.00 0.00 0.00 0.00 0.00 0.00
Southwest 0.78 2.31 8.89 0.07 0.21 0.77 0.00 0.01 0.03
Northwest 0.48 1.13 5.28 0.01 0.03 0.13 0.00 0.00 0.00
Total 2.81 6.77 30.79 0.08 0.25 0.92 0.00 0.01 0.03
RCP4.5 in 2090
Northeast 0.60 0.96 5.89 0.00 0.00 0.00 0.00 0.00 0.00
Southeast 0.36 0.75 3.71 0.00 0.00 0.00 0.00 0.00 0.00
Midwest 0.14 0.16 1.32 0.00 0.00 0.00 0.00 0.00 0.00
Northern Great Plains 0.10 0.27 1.14 0.00 0.00 0.01 0.00 0.00 0.00
Southern Great Plains 0.08 0.15 0.76 0.00 0.00 0.00 0.00 0.00 0.00
Southwest 0.91 2.25 9.66 0.06 0.17 0.66 0.00 0.00 0.01
Northwest 0.38 0.76 3.87 0.01 0.02 0.06 0.00 0.00 0.01
Total 2.58 5.29 26.36 0.07 0.19 0.74 0.00 0.00 0.01
RCP8.5 in 2050
Northeast 0.82 1.69 8.75 0.00 0.01 0.03 0.00 0.00 0.00
Southeast 0.34 0.87 3.82 0.00 0.00 0.00 0.00 0.00 0.00
Midwest 0.20 0.35 2.10 0.00 0.00 0.00 0.00 0.00 0.00
Northern Great Plains 0.14 0.38 1.64 0.00 0.01 0.03 0.00 0.00 0.00
Southern Great Plains 0.04 0.07 0.37 0.00 0.00 0.00 0.00 0.00 0.00
Southwest 0.89 2.63 10.17 0.08 0.27 0.93 0.00 0.01 0.02
Northwest 0.61 1.43 6.71 0.01 0.04 0.15 0.00 0.00 0.00
Total 3.05 7.42 33.56 0.10 0.32 1.14 0.00 0.01 0.03
RCP8.5 in 2090
Northeast 0.89 1.34 8.67 0.00 0.00 0.00 0.00 0.00 0.00
Southeast 0.92 1.85 9.43 0.00 0.00 0.01 0.00 0.00 0.00
Midwest 0.17 0.18 1.54 0.00 0.00 0.00 0.00 0.00 0.00
Northern Great Plains 0.11 0.27 1.18 0.00 0.01 0.04 0.00 0.00 0.00
Southern Great Plains 0.31 0.59 3.08 0.00 0.00 0.00 0.00 0.00 0.00
Southwest 0.91 2.16 9.50 0.10 0.28 1.13 0.00 0.01 0.04
Northwest 0.21 0.41 2.14 0.01 0.01 0.06 0.00 0.00 0.00
Total 3.52 6.82 35.53 0.11 0.31 1.24 0.00 0.01 0.05

Note: NCA, National Climate Assessment; RCP, representative concentration pathway. Spatially explicit projections of exposure to wildfire smoke were developed by integrating data
from 5 global climate models (GCMs) under RCP8.5 and RCP4.5 in the mid- (2040–2059) and late- (2080–2099) 21st century with county-specific projections of U.S. populations for
2050 and 2090. Corresponding county- and state-level data are depicted in Figure 4 and Table S7, respectively, and county-level data for each GCM is shown in Figure S4.
Populations are based on Integrated Climate and Land Use Scenarios (ICLUS) v2 county-level age group projections for the referenced year (i.e., 2050, 2090) (see Table S8 for corre-
sponding projections holding population at 2010 levels and distribution).
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exposure is particularly pronounced the Northeast, Southeast, and
Southwest regions across time periods and RCPs.

Discussion
In this study, we evaluated climate-related risks of exposure to
public health threats in the United States from a subset of extreme
weather events. Specifically, we integrated physical projections
of inland flooding and wildfire smoke with age group–based pop-
ulation projections that account for population growth and move-
ment. This approach addresses a need identified by Jurgilevich
et al. (2017) for more modeling of exposure and vulnerability dy-
namics in climate risk analyses. Our results contribute to better
understanding of the spatial patterns of future risk for vulnerable
populations within and between U.S. regions and how the pat-
terns compare under two different climate scenarios.

Under the climate scenarios and time periods considered, hun-
dreds of millions of future CONUS residents of any age will be
exposed to changes in future inland flooding that result in
increased health risk each year, with tens of millions of those
exposed being ≤4 y old or ≥65 y old. Millions of residents

≤4 y old or ≥65 y old, and tens of millions of residents of all
ages will be exposed to wildfire smoke in the 20-y windows
around 2050 and 2090. The projected populations exposed to the
health stressors of inland flooding and wildfire smoke are consis-
tently larger under RCP8.5 compared to RCP4.5 (Figure 5). The
number of additional people exposed under RCP8.5 to increased
measures of inland flooding compared to those exposed under
RCP4.5 are roughly one third of the future total U.S. population
in each age group. Importantly, many people will experience
recurring exposure to flooding and wildfire hazards, which can
lead to cumulative or compounding health impacts and weaken-
ing of adaptive capacity and resilience.

A benefit of the methods used in this study is the integration of
the physical climate impacts with projected populations. In some
instances, climate impacts are projected to be severe in a given
region, but exposure is greater in a different region due to high
population density. For instance, 2090 flooding impacts appear
most severe for the Southwest region, primarily in California, in
RCP8.5; however, the population-dense Northeast and Southeast
are nearly equally affected. Digging deeper, we see that of the 50
million people exposed to future inland flooding flows that are

Figure 4. Projected percent of time counties will experience wildfire smoke. The projected years of exposure to wildfire smoke in MC2 cells where ≥6% of
the cell area burns is expressed as a percentage of the total possible number of years of exposure from all MC2 cells in the county within future 20-y windows
under RCP8.5 and RCP4.5 in 2050 and 2090. Values in deep red reflect the most frequent exposure to wildfire smoke, and dark blue values reflect the least fre-
quent exposure. Counties with no projected wildfire smoke exposure are colored white. These counties either experienced >6% burning or were removed from
consideration because 10% of all MC2 cells within the county are designated as agricultural or urban land. RCP, representative concentration pathway.
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≥1:5 times larger than baseline under RCP8.5 in 2090, 20 million
are residents of Los Angeles County, an area that supports twice
the number of people projected to reside in the entire Northern
Great Plains region. These severe impacts in California are likely
due to increases in the return period of extreme precipitation
events, which are projected to occur more frequently even in
regions like the Southwest, where total precipitation is expected to
decline (Easterling et al. 2017). At the same time, arid regions
with very low baseline 1% AEP flow levels require only small
changes in future precipitation to lead to large threshold exceedan-
ces. By holding populations constant at 2010 levels, we confirm
the critical role of the projected changes in climate in contributing
to these increasing exposures.

In our methods, we attempted to limit the bias of any single
GCM by aggregating and averaging results. Though a reasonable
approach, this step has a dampening effect for extreme results at
the tails of the impact distribution. Furthermore, we took conserva-
tive assumptions regarding impact exposure; different plausible
assumptions could significantly affect results. For example, differ-
ent assumptions about the average extent and direction of wildfire
smoke could have a substantial impact on affected populations.
Allowing burning in grid cells where >10% of the total MC2 cell
area is classified as agricultural or urban land could increase the
potential area burned by allowing fire to occur in the wildland–
urban interface. In addition, if burning were to occur closer to
urban areas, larger populations would experience smoke exposure
under our approach. Furthermore, our methods do not capture the
potential exposure associated with long-range transport of wildfire

smoke that can travel hundreds (Luber et al. 2014) or even thou-
sands (Morris et al. 2006) of miles from the source, as observed
via satellites in the recent 2017 fires that burned in western states
(NASA 2017). Such long-range transport, including from future
wildfires in Mexico or Canada, would expose distant urban popula-
tion centers to wildfire smoke (Dreessen et al. 2016; Heilman et al.
2014). Finally, though projections of climate change impacts on
wildfires in Alaska demonstrate significant increases in the number
of acres burned, particularly under RCP8.5 (Melvin et al. 2017),
this study could not include Alaska exposure estimates as the
LOCA downscaling was only available for the contiguous United
States. Thus, our results very likely represent a lower bound for
smoke exposure and show fewer U.S. residents affected by wildfire
smoke than the recent work by Liu et al. (2016a, 2016b), who
modeled some dispersion and transport, but only on a subnational
basis and under one emissions scenario. Further limitations to the
wildfire modeling approach can be found in U.S. EPA (2017a).

Other considerations that would affect exposure estimates
include future adaptation, education or public health outreach pro-
grams, or general changes in land use and management, such as
zoning and building codes that could reduce or mitigate potential
future exposure to these hazards. For example, a current public
education campaign around floodwaters communicates the mes-
sage “Turn around, don’t drown,” which is aimed at discouraging
contact with floodwaters, particularly by driving into them; this has
been shown to be a critical factor in determining drowning deaths
(NWS 2016). Adaptation measures, including increased freeboard
requirements (elevation of a building’s lowest floor), property

Figure 5. Avoided Exposure under RCP4.5. Difference in contiguous United States (CONUS) populations (in millions) exposed to modeled extreme events
under RCP8.5 and RCP4.5 (values for RCP4.5 are subtracted from RCP8.5 values) for (A) 2050 and (B) 2090. The age group population living in an area
exposed to a net increase in the frequency of the baseline 1% annual exceedance probability (AEP) flood (“Increased Flood Frequency”) equals the population
experiencing no change or an increase in the frequency of the baseline 1% AEP flood minus the population experiencing less frequent baseline 1% AEP floods.
The age group population living in an area exposed to a net increase in the magnitude for future 1% AEP flows (“Increased Flood Magnitude”) equals the pop-
ulation experiencing no change or an increase in the baseline 1% AEP flow minus the population experiencing a smaller flow. For context, “CONUS popula-
tion” is the total population projected by ICLUSv2 in 2050 and 2090. RCP, representative concentration pathway.
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buyout programs, or abandonment, are likely to be taken in areas
that experience recurring floods. Investments in flood protection
could decrease overall exposure to these risks; however, a reasona-
ble method for predicting floodplain protection in the future was
beyond the scope of this analysis. These types of considerations,
particularly as they relate to vulnerable populations like children
and older adults, would be beneficial to address uncertainty when
progressing from estimating changes in exposure to quantifying
projected health outcomes (e.g., number of cases of illness, prema-
ture mortality) (Crimmins et al. 2016). Further limitations to the
inland flooding modeling approach can be found in Wobus et al.
(2017).

Our findings highlight regions with high numbers of exposed
populations, particularly within vulnerable age groups, and
potential areas of increased risk of exposure for recurring inland
flooding and wildfire events. Both are important considerations
for public health, disaster risk management, and climate adapta-
tion planning and decision making. Such results can be used to
identify areas that would benefit from regional risk assessments
conducted at a finer scale (e.g., with current population estimates
from the U.S. Census or projections generated by regional or
state governments), which could inform adaptation needs and pri-
orities for local policies.

Conclusion
Compared with future projections assuming moderate global
emissions mitigation, millions of additional young children, older
adults, and persons of all ages in the United States are projected
to live in areas exposed to future inland flooding and wildfire
smoke impacts under a high greenhouse gas emissions scenario.
This represents a significant potential public health burden but
also an opportunity to prevent exposures and prepare for adverse
health outcomes associated with inland flooding and wildfires in
the future.
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