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BACKGROUND: The analysis of health effects of exposure to mixtures is a critically important issue in human epidemiology, and increasing effort is
being devoted to developing methods for this problem. A key feature of environmental mixtures is that some components can be highly correlated,
raising the issues of confounding by coexposure and colinearity. A relatively unexplored topic in epidemiologic analysis of mixtures is the impact of
residual confounding bias due to unmeasured or unknown variables.

OBJECTIVES: This paper examines the potential amplification of such biases when correlated exposure variables are included in regression models.
METHODS: We use directed acyclic graphs (DAGs) to describe different simple scenarios involving residual confounding. We derive expressions for
the expected value of the resulting bias using linear models and multiple linear regression.
RESULTS: Approaches to the analysis of mixtures that involve regressing the outcome on several exposures simultaneously can in some cases amplify
rather than reduce confounding bias.
DISCUSSIONS: The problem of bias amplification can worsen with stronger correlation between mixture components or when more mixture compo-
nents are included in the model.
CONCLUSIONS: Investigators must consider steps to minimize possible bias amplification in the design and analysis of epidemiologic studies of multi-
ple correlated exposures. This may be particularly important when biomarkers of exposure are used. https://doi.org/10.1289/EHP2450

Introduction
The analysis of health effects of exposure to mixtures is a crit-
ically important issue in environmental epidemiology—we are
not exposed to one factor at a time. This is an area of growing in-
terest and different approaches to handle this challenging issue are
being pursued. The National Institute of Environmental Health
Sciences held a workshop in July 2015 on this specific topic
(Taylor et al. 2016). Questions of interest for the epidemiologic
analysis of mixtures include identifying exposures that contribute
to the outcome, identifying interactions between exposures, and
construction of exposure summary measures. Like all analytical
epidemiology, mixtures methods must be able to deal with con-
founding (Braun et al. 2016). We focus here on the issue of con-
founding and describe a previously underappreciated additional
source of bias that may be particularly problematic for the epide-
miologic analysis of mixtures; our results are informed by recent
work on instrumental variables and Z amplification bias (Pearl
2010), a topic that has received little attention in environmental
epidemiology.

A number of statistical methods for the epidemiologic analy-
sis of mixtures include an entire set of exposure variables in a sta-
tistical model and let the method determine which are important;
many of these methods are fundamentally based on multivariable
regression (Taylor et al. 2016). Such agnostic approaches may
appear reasonable in many situations. For example, polybromi-
nated diphenyl ethers (PBDEs) are a class of compounds widely

found in human sera with moderate to high correlation (Makey
et al. 2014; Sjödin et al. 2008). PBDEs are structurally related to
thyroid hormones; previous research suggests that some may
cause changes in serum thyroid hormone levels (among other
health effects), but it is not known with certainty which PBDEs
are responsible (Makey et al. 2016). One might therefore try to
analyze the mixture by including a whole group of these com-
pounds in a model. Nevertheless, we will argue that in a number
of important cases agnostic approaches may produce highly bi-
ased results.

Epidemiologists generally want to identify and accurately
measure causal associations between exposures and outcomes.
This goal differs from predictive methods that do not necessarily
distinguish between causal and noncausal associations. In this pa-
per, we use a number of examples to show that causal methods
are crucial to our goal as epidemiologists investigating effects of
exposure to mixtures. In particular, we focus on confounding by
variables that are unknown or unmeasured, which pose a special
threat because the inclusion of multiple exposure variables together
in a model can sometimes—depending on the causal structure—
make things worse, amplifying the amount of bias in a regression
estimate compared with analyzing single exposures. The degree of
bias amplification depends in part on the amount of correlation
between exposure variables; in environmental epidemiology, groups
of exposure variables can be highly correlated. As we will discuss,
the vastly increased availability of exposure biomarkers makes the
study of the health effects of mixtures more feasible, but their use as
exposure variables in such studies can introduce confounding by
physiological or behavioral factors that are unknown or poorly
understood. Finally, we argue that this set of problems cannot be
resolved based on statistics alone but requires expert knowledge of
the problem under study combined with careful analysis. We there-
fore caution against including large sets of exposure variables in
modelswithout careful consideration.

Causal Methods and Directed Acyclic Graphs
Although ideas about causality have a long history in epidemiol-
ogy, the application of directed acyclic graphs (DAGs) has
greatly influenced the field in the last few decades. DAGs are
essentially a graphical method for showing causal assumptions.
DAGs consist of variables and arrows. Arrows between variables
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mean causality (which runs in one direction, hence directed).
DAGs cannot contain causal pathways (defined below) that are
loops (hence, acyclic).

In discussing DAGs and relationships between variables, we
use causal DAG terminology that has been described elsewhere
(Glymour and Greenland 2008; Greenland et al. 1999; Hernán
and Robins 2017). Here we briefly, and in somewhat simplified
fashion, explain some of the key terms, using Figures 1 and 2a as
examples that contain the elements of interest. Causal effects are
represented by directed arrows; for example, X1 ! Y indicates a
causal effect of X1 on Y. That is, if X1 were changed, the risk of Y
would change. A pathway is any connection between two varia-
bles made by following arrows in any direction (possibly through
other intermediate variables). A backdoor pathway from variable
X1 to another variable is a pathway between the two that starts
along an arrow pointing into X1, for example, X1  U ! X2. A
collider in any pathway is a variable into which two arrows of the
pathway point: For example, in Figure 2a, X1 is a collider in the
pathway X2  U ! X1  U0 ! Y. An open pathway is one that
results in statistical (causal or noncausal) correlation between two
variables in a regression model. A blocked pathway is one that
results in no statistical correlation between two variables in a
regression model. Here is the point of this terminology: Pathways
are blocked by uncontrolled colliders or control for noncolliders
in the pathway. Pathways can be opened by control of colliders
and failure to control noncolliders. By control, we mean adjust-
ment, stratification, and restriction. For example, in Figure 2a,
the backdoor pathway X1  U0 ! Y is blocked if U0 (a noncol-
lider on this pathway) is controlled but open if it is not. The back-
door pathway X2  U ! X1  U0 ! Y is blocked if X1 (a
collider on this pathway) is not controlled, but opened if it is.

Although DAG methods may seem complicated when first
encountered, they are increasingly considered as essential for
proper interpretation of epidemiologic results. As one prominent
example, the properties of colliders were not known by most epi-
demiologists until DAGs became more popular (e.g., Hernández-
Diaz et al. 2006). As we will see, DAGs and colliders are crucial
for epidemiology of mixtures.

In what follows, we examine a series of scenarios with differ-
ent causal assumptions. We focus on estimating effects of indi-
vidual mixture components from regression models under the
assumptions of additivity (ignoring interaction) and no measure-
ment error (often an issue in environmental epidemiology). Our
interest is in potential biases in effect estimates for the individual
components, not precision of the estimates or overall prediction
of the outcome. Neither do we address whole mixture methods,
an approach used in toxicology that sometimes applies in epide-
miology (e.g., Simmons et al. 2004). We begin with a simple
example with two mixture components and then build additional
complexity including unmeasured confounding.

Confounding by Coexposures
Two well-known problems facing the epidemiologic analysis
of mixtures are confounding by coexposures and colinearity

(Braun et al. 2016). These two problems—and exposure vari-
able selection—are linked and arise because subsets of expo-
sures are often moderately to highly positively correlated due
to shared causes, such as shared sources, exposure routes, meta-
bolic pathways or other factors (Webster 2016).

Suppose for example that two exposure variables are both
associated with the outcome in separate, single-exposure analyses
and positively correlated with each other (we will discuss multi-
ple exposures later). Figure 1 shows one (of many) DAGs that
are consistent with these correlations. The two exposures X1 and
X2 are correlated because of a shared cause U, assumed unknown
or unmeasured. For example, the two exposures might be two
PBDE congeners measured in serum with common exposure to
house dust contaminated by a commercial flame retardant con-
taining these compounds. Thus, although epidemiologists would
typically use DAGs that focus on one exposure, epidemiologic
analysis of mixtures would be interested in both. Suppose, as in
Figure 1—and unknown to the analyst—that only X1 causes the
outcome Y. How well will an agnostic mixtures procedure fare in
this case?

Although the structure of DAGs can yield qualitative answers,
quantitative determination of bias requires more information. For
simplicity we will assume throughout this paper that outcomes
are continuous, associations are linear, and variables are standar-
dized. We will apply multivariable linear regression because
closed-form results are straightforward to derive. We distinguish
between causal coefficients, ci (e.g., c1, the causal effect of a
1-unit change of X1 on Y in the DAG of Figure 1), and simple
bivariate correlation coefficients, rij (e.g., r12, the bivariate corre-
lation between X1 and X2 in Figure 1). For simplicity, we will
assume, unless otherwise noted, that the ci and rij are positive;
this need not always be true, but it reduces the proliferation of
cases (some care may be needed in extrapolating to other situa-
tions when inequalities are discussed). We derive the expected
value of regression coefficients in the Supplemental Material, and
summarize them in Table 1; in some cases, results can be read
directly from DAGs.

Given the DAG in Figure 1, regressing Y on X1 alone yields
the correct causal coefficient c1 (Table 1), because there are no
other open pathways connecting X1 and Y. Regressing Y on X2
alone will be confounded through the open backdoor pathway
X2  U ! X1 ! Y. Suppose we regress Y on both X1 and X2.
The regression coefficients for both are unbiased: the estimate for
X1 (b1) is still c1; the estimate for X2 (b2) is now null because the
backdoor pathway is blocked by conditioning on X1. Thus, to
obtain an unbiased estimate for X2, both terms must be included
in the model. If r12 is high, then this colinearity can increase
standard errors in real-world analyses and make the estimates

Figure 1. Directed acyclic graph (DAG) for simple confounding by coexpo-
sure. Causal pathways are denoted by arrows and causal coefficients by ci.
In this example, only X1 causes the outcome. The two exposures (X1, X2)
have a common source (U), with causal coefficients omitted. r12 is the
bivariate correlation coefficient for X1 and X2.

Figure 2. a) Directed acyclic graph (DAG) for coexposure amplification
bias. To Figure 1 we have added an unknown variable (U 0) that affects the
outcome and only one exposure. Adjustment for both exposures causes bias
amplification of the X1–Y association and reversal for the X2–Y association.
r12 is the bivariate correlation coefficient for X1 and X2. b) DAG for Z ampli-
fication bias. Z is an instrumental variable for X1. Coexposure amplification
bias is an extension of this idea.
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unstable, although not biased in the statistical sense of expecta-
tion (Schisterman et al. 2017). In sum, the single-exposure analy-
sis of X2 was confounded by coexposure to X1, whereas the
mutually adjusted analysis produces the correct results for both
exposure variables, that is, the agnostic approach worked. The
latter would also be true if both exposures caused the outcome.

Confounding by Unknown or Unmeasured Variables
Epidemiologists examining mixtures must, of course, also con-
sider confounding by variables not considered exposures, inc-
luding the potential impact of uncontrolled confounding. As
discussed elsewhere (Weisskopf and Webster 2017), the vastly
expanded ability to measure biomarkers of exposure is a boon
to exposure science and environmental epidemiology, capable
of providing assessment of a large number of exposures. Indeed
this capability has spurred interest in the epidemiology of expo-
sure mixtures. However, it raises the specter of uncontrolled
confounding by novel or poorly understood behavioral or phys-
iological factors that affect processes like how blood concentra-
tions of a compound relate to levels in external media (air, dust,
food, etc.) or how urinary concentrations relate to blood. For
example, indoor dust containing PBDEs can get on hands and
via hand-to-mouth activity into the body where it is measured
in blood. Greater frequency of hand washing can reduce blood

levels of PBDEs, presumably via reducing the ingestion of con-
taminated indoor dust (Watkins et al. 2011). If frequency of
hand washing is also related to a given health outcome, it would
introduce confounding into an analysis of blood PBDEs and
that health outcome. Use of an external measure of exposure
such as PBDE concentrations in dust would not be confounded
by hand washing (although it may measure exposure less well).

In some cases confounding may be related to only one (or a
subset) of the coexposures as shown in Figure 2a (some other
possibilities will be discussed below). For example, serum con-
centrations of different compounds (X1 and X2) that share a
source could have high correlation, but there may be some enzy-
matic activity that affects the serum concentration of only one of
the compounds (X1), but not the other. Suppose that such a factor
U0 (e.g., genetic, physiological, behavioral) also affects the out-
come directly. Again considering PBDEs, it is at least conceiva-
ble that an enzyme might affect serum levels of both thyroid
hormones and preferentially one PBDE congener.

If U0 in Figure 2a is measured, then it can in principle be con-
trolled, for example, by including it in the regression model. If U0
is unknown or unmeasured, then it will confound the X1–Y asso-
ciation. In a single-exposure model, U0 will not confound the
X2–Y association given that X1 is a collider on the pathway
X2  U ! X1  U0 ! Y. However, X2–Y is still confounded
due to coexposure by X1 via the pathway X2  U ! X1 ! Y.

Table 1. Expected values of the single-exposure and mutually adjusted regression coefficients (bi) for the exposure (Xi)–outcome associations for the different
DAGs.

Exposure variable Estimate
Expected valuesa

Single-exposure modelsb Mutually adjusted for X1 and Xi Mutually adjusted for X1, X2, and X3

DAG 1
X1 b1 c1 c1
X2 b2 r12c1 0
DAG 2a
X1 b1 c1 + c2c3 c1 + ½c2c3=ð1− r122Þ�
X2 b2 r12c1 −r12c2c3=ð1− r122Þ
DAG 2b
X1 b1 c1 + c2c3 c1 + ½c2c3=ð1− c42Þ�
Z b2 c4c1 −c4c2c3=ð1− c42Þ
DAG 3a
X1 b1 c2c3 c2c3=ð1− r122Þ
X2 b2 0 −r12c2c3=ð1− r122Þ
DAG 3b
X1 b1 c1 + r12c4 + c2c3 c1 + ½c2c3=ð1− r122Þ�
X2 b2 c4 + r12c1 c4 − ½r12c2c3=ð1− r122Þ�
DAG 4a
X1 b1 c1 + c2c3 c1 + ½c2c3=ð1− r1i2Þ� c1 + ½ð1− r232Þc2c3=ð1− r122 − r132 − r232 + 2r12r13r23Þ�
X2 b2 r12c1 −r2ic2c3=ð1− r2i2Þ ðr13r23 − r12Þc2c3=ð1− r122 − r132 − r232 + 2r12r13r23Þ
X3 b3 r13c1 −r3ic2c3=ð1− r3i2Þ ðr12r23 − r13Þc2c3=ð1− r122 − r132 − r232 + 2r12r13r23Þ
DAG 4b
X1 b1 c1 + c2c3 c1 + ½c2c3=ð1− r1i2Þ� c1 + ½c2c3=ð1− r122 − r132Þ�
X2 b2 r12c1 −r2ic2c3=ð1− r2i2Þ −r12c2c3=ð1− r122 − r132Þ
X3 b3 r13c1 −r3ic2c3=ð1− r3i2Þ −r13c2c3=ð1− r122 − r132Þ
DAG 5ac

X1 b1 c1 + c2c3c4 c1 + c2c3c4½ð1− c5Þ=ð1− c42c52Þ�
X2 b2 c1c4c5 + c2c3c5 c2c3c5½ð1− c4Þ=ð1− c42c52Þ�
DAG 5bc

X1 b1 c1 + c2c3 c1 + c2c3½ð1− c42Þ=ð1− c22c42Þ�
X2 b2 c1c2c4 + c3c4 c3c4½ð1− c22Þ=ð1− c22c42Þ�
DAG 5cd

X1 b1 c1 + c2c3 c1 + ½c2c3=ð1− r122Þ�½1− r12ðc4=c2Þ�
X2 b2 r12c1 + c3c4 −½c2c3=ð1− r122Þ�½r12 − ðc4=c2Þ�
DAG 5dd

X1 b1 c1 + c5r12 + c2c3 c1 + ½c2c3=ð1− r122Þ�½1− r12ðc4=c2Þ�
X2 b2 r12c1 + c5 + c3c4 c5 − ½c2c3=ð1− r122Þ�½r12 − ðc4=c2Þ�

Note: DAG, directed acyclic graph.
aFor derivations, see Supplemental Material. Variables are assumed to be standardized. The c’s refer to causal effects; the r’s refer to correlations.
bEffect estimates are derived from models that only include one exposure at a time.
cIn 5a, c4c5 = r12 and in 5b, c2c4 = r12.
dIn 5c and 5d, r12 is the bivariate X1–X2 correlation due to the common source U plus a correlation induced by U 0.
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Separate single-exposure analyses thus lead to biased effect esti-
mates for both exposures.

One might expect mutual adjustment to at least partially miti-
gate the problem illustrated in Figure 2a. Alas! Regressing on
both exposures (without U0 in the model) eliminates the coexpo-
sure confounding of X2 by X1, but it creates a bias in the X2–Y
association because of conditioning on a collider (here X1). As
shown in Table 1, the direction of the X2 effect estimate (b2) is
now negative, reversed from the single-exposure model estimate
(provided that c1, c2c3 > 0). This phenomenon is related to what
has been called the reversal paradox in statistics (Hernán et al.
2011; Pearl 2014; Tu et al. 2008).

Perhaps even more unexpected is what happens to the X1
effect estimate when we adjust for X2 in Figure 2a (without U0 in
the model). In the single-exposure model with X1 only, the esti-
mate (b1) of the causal effect of X1 (c1) is biased due to con-
founding by U0 (the causal effect of U0 on X1 times the causal
effect of U0 on Y, that is, c2c3). Thus, the biased estimate for b1
equals c1 + c2c3 (DAG 2a in Table 1). Mutually adjusting for X2
amplifies the bias (c2c3) by the factor

1=ð1− r122Þ [1]

such that the total bias in the estimate of c1 (b1) is now equal to
c2c3=ð1− r122Þ (see Supplemental Material, DAG 2a mutually
adjusted b1 estimate). The amplification factor [1] is always
greater than one and becomes larger as r12 increases, that is, the
more correlated the components of the mixture are, the greater
the bias. Thus, contrary to a perhaps naïve expectation, including
both exposure variables in the model made results worse.

As an example, in DAG 2a suppose X1 and X2 are highly cor-
related (r12 = 0:9). For simplicity, assume that the causal effect of
X1 on Y, U0 on Y, and U0 on X1 are all the same (c1 = c2 =
c3 = 0:2). The association between X1 and Y from a single-
exposure model is confounded (b1 = c1 + c2c3 = 0:24 instead of
0.2) as is the association between X2 and Y from a single-
exposure model (b2 = r12c1 = 0:18 instead of 0). Adjusting for
both exposures makes the confounding of b1 much worse (b1 =
c1 + ½c2c3=ð1− r122Þ�=0:41) and reverses the sign for b2 (b2 =
− r12c2c3=ð1− r122Þ= − 0:19). Bias amplification has been noted
before in statistics, although its dependence on uncontrolled con-
founding not always recognized (e.g., Hernán et al. 2011; Tu et al.
2008). But its importance was underappreciated in the causal infer-
ence literature until recently where it emerged in discussions of
instrumental variables (Pearl 2010).

Instrumental Variables and Z-Amplification Bias
Instrumental variables are a statistical tool that can be ext-
remely useful in causal inference and have been described in detail
(Glymour 2006; Greenland 2000; Hernán and Robins 2006;
Martens et al. 2006). Suppose an exposure (X1)–outcome (Y) rela-
tion is subject to unmeasured confounding (by U0). An ideal instru-
mental variable (Z) can eliminate this bias if it has the following
properties: a) Z is associated with X1, b) Z does not cause Y except
through X1, and c) Z does not share any causes with Y. A DAG
that describes this situation is shown in Figure 2b. In instrumental
variable analysis, Y is regressed on Z in place of X1. But suppose
that we regress Y on both X1 and Z. Recent literature has demon-
strated that the bias of the X1–Y effect estimate (b1) due to U0 is
amplified (termed Z-amplification bias) (Bhattacharya and Vogt
2007; Pearl 2010; Wooldridge 2009).

Although the model in Figure 2b is a canonical diagram of an
instrumental variable, other models will also satisfy the require-
ments. For example, in our simple two-exposure mixture model
of Figure 2a the coexposure X2 meets the requirements for an

instrumental variable for the X1–Y association. Thus, using X2 as
an instrumental variable for X1 would avoid the confounding
caused by U0 in a direct X1–Y analysis. But including both X1
and X2 in the same model (something not done in an instrumental
variable analysis) causes bias amplification of the X1–Y estimate.
The algebraic solution for Figure 2b is the same as for Figure 2a
with c4 taking the place of r12 (see Supplemental Material DAG
2a and 2b). Hence the bias amplification observed for Figure 2a
is an extension of Z amplification bias. Because we are interested
in the bias of the effect estimates of both exposures, we will use a
broader term: coexposure amplification bias.

We assume that the variable U in Figure 2a—the common
source of X1 and X2—is unknown or unmeasured. If it were
measured, it would meet the requirements of an instrumental
variable for X1 (taking the place of Z in Figure 2b), and could be
used in instrumental variable analyses as described above to
avoid confounding of X1 ! Y by U0. Note that the structure of
Figure 2a also describes Mendelian randomization in which a
gene (X2) in linkage disequilibrium with a gene (U) that affects
X1 (i.e., linked to X1 via U rather than causally related) is used as
an instrumental variable for X1.

Variations on Causation by the Exposures
We will now discuss some variations of the basic DAG of Figure
2a. As noted earlier, epidemiologists may not have sufficient in-
formation a priori to know exactly which, if any, of the expo-
sures cause the outcome. Figure 3a shows a special case of
Figure 2a where neither exposure causes the outcome, that is,
c1 = 0. The main difference from the earlier case is that now the
estimate for X2 (b2) from a single-exposure model is unbiased
(and equal to zero), as there is no longer an open pathway
through X1. The biases for the mutually adjusted model are the
same as in Figure 2a: bias amplification for X1–Y and a negative
bias for X2–Y (Table 1).

Alternatively, both exposures may cause the outcome as shown
in Figure 3b. In the single-exposure analyses, both exposures are
confounded by the other; the estimate for X1 (b1) is also con-
founded by U0 (Table 1). Adjustment for both exposures produces
the same biases as in Figure 2a. Which is preferred: the single-
exposure or mutually adjusted estimates? For X1, the decision of
whether or not to condition on X2 requires balancing between the
uncontrolled confounding bias through X2 (X1  U ! X2 ! Y)
versus the amplified confounding bias through U0. Controlling for
X2 would be warranted (i.e., confounding by X2 is worse than the
amplification of bias through U0 by conditioning on X2) if

c4 > c2c3½r12=ð1− r122Þ� [2]

Figure 3. Variations of the directed acyclic graph (DAG) in Figure 2a: dif-
ferences in causation by exposures. a) Neither X1 nor X2 causes Y. Bias
amplification still occurs. r12 is the bivariate correlation coefficient for X1
and X2. b) Both exposures cause the outcome. Here there is no optimal solu-
tion: Both single-exposure and mutually adjusted regression coefficients are
biased.

Environmental Health Perspectives 047003-4



(See Supplemental Material, DAG 3b). Note that the right-most
factor increases as r12 increases; thus, as the correlation between
X2 and X1 increases, it can get quite difficult for this inequality to
favor adjustment for X2. However, a strong causal link between
X2 and the outcome (a large c4) would favor including X2 in the
model with X1. Unfortunately, the correlation between coexpo-
sures can often be quite high, typically driven by shared sources
for the exposures. The same condition [2] also implies that the
regression effect estimate for X2 (b2) from a model mutually
adjusted for X1 will be positive but biased toward zero, whereas
the single-exposure model estimate for b2 is biased upward (see
Supplemental Material, DAG 3b). Similar results have been
derived for imperfect instrumental variables (Pearl 2010).

More than Two Exposures
So far we have examined two exposures, but mixtures can obvi-
ously be much more complicated. For example, at least four
PBDE congeners have high detection rates in human serum from
the United States and are positively correlated with each other
(Makey et al. 2014; Sjödin et al. 2008).

Correlation of exposures due to a shared cause. Suppose for
simplicity that we are examining three positively correlated
exposures, that is, r12, r13, r23 are all positive as a result of a
shared source, U (Figure 4a). Table 1 summarizes the results
for separate single-exposure analyses, mutual adjustment for
combinations of two-exposure variables (X1 and X2 or X3) and
mutual adjustment for all three. Unfortunately, mutual adjust-
ment for all three exposure variables further amplifies the bias
of X1–Y (b1) beyond just adjusting for one (X2 or X3). The
amplification factor is now the determinant of the exposure cor-
relation matrix. When mutually adjusting for all three expo-
sures, the direction of bias for X2–Y (b2) and X3–Y (b3) can be
in either direction, depending on the relative magnitudes of r12,
r13, and r23 (see Supplemental Material, DAG 4a).

Correlation of exposures with separate causes. Figure 4b
presents a DAG for a different kind of mixture: exposure to X1
comes about via two different processes (U1 and U2), one associ-
ated with X2 and the other associated with X3. Unlike Figure 4a,
X2 and X3 are not associated with each other. Although this situa-
tion should not occur for compounds with the same source, it is
not impossible more generally. For example, people can be
exposed to PBDEs via both indoor exposure and diet (Wu et al.
2007). If these sources are not associated with each other in a

population [e.g., not related via socioeconomic status (SES), or
rendered unrelated by appropriate control for SES], then a PBDE
congener might be associated with different groups of compounds,
one group via indoor exposure and another group via diet. As
shown in Table 1 for DAG 4b, under these conditions adjusting for
an additional exposure will always increase the bias amplification
of X1–Y (b1); the bias of X2–Y (b2) will always become even more
negative whenwe further adjust forX3 (and vice versa).

One can imagine more complex scenarios. For example, sup-
pose we add an arrow (causal link) from X2 to Y in Figure 4b.
Similar to what we found for Figure 3b, the decision to adjust the
analysis of the X1–Y association for X2 and X3 requires balancing
uncontrolled confounding through X2 versus the possibility of the
confounding bias through U0 (see Supplemental Material, DAG
4a and 4b).

Different Types of Unmeasured Confounding
In Figures 2–4, the unmeasured variable U0 introduces confound-
ing to only one exposure. Although potentially important because
of coexposure amplification bias, other causal structures should
be considered; some may be more common.

Confounding of both exposure variables by a shared cause.
Suppose as in Figure 5a that U 0 affects the common source (U)
of both exposures. For example, SES might be related to both
the health outcome and to purchasing decisions that affect ex-
posure to sources of the PBDE mixture. In this case, including
the coexposure X2 in the model with X1 is beneficial because
conditioning on X2 partially conditions on U 0 (conditioning on
a descendant partially conditions on the parent variable) and
thus it reduces confounding of X1–Y (b1) by U 0 (Greenland
1980; Ogburn and Vanderweele 2013) (Table 1; see also
Supplemental Material, DAG 5a). (This is true regardless
of whether X2 causes Y directly). Similarly, adjusting for X1
reduces the bias of X2–Y (b2) caused by U 0 (unlike Figure 2a,
X1 is no longer a collider between X2 and U 0).

A slight variation on the example of Figure 5a is shown in
Figure 5b, where the same variable (U0) that causes the outcome
also directly causes the correlation between X1 and X2. Adjustment

Figure 4. Variations of the directed acyclic graph (DAG) in Figure 2a: three
exposures. Bivariate correlations between exposures are r12 for X1–X2, r13
for X1–X3, and r23 for X2–X3. a) Assume all three exposures are (positively)
correlated due to causation by the same source. b) There are two different
sources and no correlation between X2 and X3: r23 = 0. This simplifies the
bias equations. In both cases, the bias amplification for the X1–Y association
caused by adjusting for one other exposure (X2 or X3) will be further ampli-
fied when adjusting for all three. This is also true for the X2–Y and X3–Y
associations for 4b.

Figure 5. Variations of the directed acyclic graph (DAG) in Figure 2a: U 0
affects both exposures. a) U 0 affects the exposures via the common source
U. b) U 0 and U are combined. c) U 0 and U are independent; both affect both
exposures. d) To 5c, this case adds a causal link from X2 to Y (parallel to
case 3b). In a and b, the casual coefficients linking the common source to X1
and X2 are explicit. In c and d, r12 is the bivariate X1–X2 correlation due to
the common source U plus a correlation induced by U 0.
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for both X1 and X2 is again beneficial. The algebraic solution is a
simplified version of that for Figure 5a (Table 1; see also
Supplemental Material, DAG 5b). In air pollution epidemiology
different air pollutants, for example, PM2:5 (particulate matter
<2:5 micrometers in diameter) and NO2 (nitrogen dioxide), are of-
ten correlated because some of the drivers of those pollutants are
the same, for example, temperature. Let X1 in Figure 5b stand for
PM2:5, X2 for NO2, and U0 for temperature. If temperature is asso-
ciated with the outcome (other than through PM2:5), then con-
founding of the PM2:5–Y association may exist. Although an
oversimplified example—current air pollution studies typically
control for temperature—we use it to illustrate our point, which
would apply to any such uncontrolled variable, even ones not rec-
ognized. Assuming temperature is not controlled, adjusting for
NO2 does not cause coexposure amplification bias. As depicted in
Figure 5b, NO2 (X2) functions as a proxy for the unmeasured vari-
able U0. Thus, instead of amplifying bias, adjustment for NO2 in
this case helps control confounding of the PM2:5–Y association
through U0.

Confounding of both exposure variables by two shared
causes. Both types of U variables may independently affect the
two exposures as illustrated in Figure 5c. In this case, the bias
amplification of the X1–Y association (b1) introduced by adjust-
ing for X2 that we discussed for Figure 2a is multiplied by the
term

1− r12ðc4=c2Þ [3]

such that the total bias in the estimate of c1 (b1) is now equal to

½c2c3=ð1− r122Þ�½1− r12ðc4=c2Þ� [4]

(DAG 5c in Table 1; see also Supplemental Material, mutually
adjusted b1 estimate). In this case r12 is the marginal bivariate
correlation between X1 and X2, which is not quite the same as the
earlier r12: Now the correlation between X1 and X2 depends on
both X1  U ! X2 and X1  U0 ! X2. If U0 does not affect X2
(c4 = 0), then this multiplicative term reduces to [1].

WhenU0 affects both X2 and X1 as in Figure 5c, the effect of the
bias multiplier [3] is trickier to intuit, especially given that r12, c4
and c2 are interrelated. In many cases, adjustment for X2 will be
beneficial: This occurs if [3] is positive but less than 1, reducing
overall bias for the reasons described for Figure 5a. However, the
effect of [3] could make the bias amplification worse: If r12 is posi-
tive and c4 and c2 are of opposite signs, then the bias amplification
of [1] will be increased given that [3] will be even larger than 1.
The same condition will lead to an even more negative bias for the
X2–Y coefficient (see Supplemental Material, DAG 5c). This sce-
nario is not far-fetched. In a study of children 12–36 months of age
in North Carolina (Stapleton et al. 2012), the sum of the highly cor-
related PBDE congeners BDE 47, BDE 99, and BDE 100
(RBDE3) in children’s sera was positively correlated with BDE
153. In contrast, SES factors like parents’ education were nega-
tively correlated with RBDE3, but positively correlated with BDE
153. Suppose, for example, that the SES factors were also related
to an outcome of interest. If we include both RBDE3 and BDE 153
in the same model of that outcome, but not the SES factors, then
the bias of the effect estimates forRBDE3 andBDE 153 by the SES
factors would both be more amplified than in Figure 2a. Again, this
bias amplification will occur independent of whether there are
direct causal effects ofX1 on Y.

If there are true causal effects of both exposure variables on
Y (Figure 5d), then whether or not to include a second exposure
(e.g., X2) in a model to estimate the effect of the other (e.g., X1)
requires balancing of amplified confounding through U 0 ver-
sus uncontrolled confounding through X2 similar to what was

discussed above for the inequality in [2] (see Supplemental
Material, DAG 5d).

Note that in Figures 2–5, U0 is treated as unknown or unmeas-
ured. In practice, if such U0 variables are known and measured
(e.g., health behaviors, SES), it is always best to adjust for them.
Unfortunately, they are not always measured or even known.

What Is to Be Done? Some Considerations for the
Epidemiology of Exposure to Mixtures
For all of the DAGs we have shown, crude associations would be
found between all exposures and the outcome in single-exposure
models, with the exception of X2–Y in Figure 3a. Thus, there is no
empirical way to determine the true underlying causal structure—
and the implications it has for bias—on the basis of associations
alone. Construction of a DAG (or a set of plausible DAGs) ulti-
mately requires content-specific knowledge. As such knowl-
edge does not guarantee construction of the correct DAG, it can
be useful to construct more than one DAG as a way of under-
standing how results from the same model would be interpreted
under different assumptions of relations between variables. One
should interpret the regression model results based on a DAG,
rather than constructing a DAG based on results of regression
models. Our most basic advice is a familiar one: Proper inter-
pretation of results depends on assumptions about causation
(Greenland et al. 1999; Hernán et al. 2002, 2011). But this
advice is perhaps even more important for mixtures epidemiol-
ogy because of bias amplification.

We therefore advise caution about blindly including multiple
exposure variables in a model. Sometimes, including multiple
variables is appropriate: for example, if the causal structure corre-
sponds with Figure 1a. Also, if the causal structure corresponds
with Figure 5a,b, adjustment would help mitigate the effect of the
unknown confounding through U0. But in other cases, for exam-
ple, scenarios represented by Figures 2a or 4b, adjustment makes
things worse; whereas in still other cases, for example, scenarios
represented by Figures 3b or 5c,d, the consequences of adjust-
ment vary.

There are several key general considerations. First, epidemiolo-
gists examining exposure mixtures need to consider the impact of
possible residual confounding by unmeasured variables. To the
extent that variables that introduce confounding to an exposure–
outcome relation (the U0 variables in the figures) are known and
measured, control of them should be done. As shown here, it
makes a difference if such variables (U0) affect only one exposure
(Figures 2–4)—where they can lead to bias amplification—or
whether they affect both (Figure 5). We hypothesize that similar
considerations will apply to situations with larger numbers of
exposures where only a subset is affected. Answering such ques-
tions for physiological factors may require detailed input from tox-
icology and other disciplines. We suspect that variables such as
SES that affect exposure to a common source (e.g., Figure 5a) may
be easier to understand and control. Exploration of these different
scenarios appears to be a very important line of research. We also
urge epidemiologists studying exposure mixtures to consider use
of quantitative bias assessment to explore the potential impact of
unknown confounding (Lash et al. 2011). The results we present
may provide a useful starting place.

Second, the problem of coexposure amplification bias can
sometimes be avoided by using an instrumental variable to measure
exposure. As noted earlier in this paper, the vastly increased use of
exposure biomarkers may bring with it the threat of unknown con-
founding (e.g., behavioral, physiological). Measurement of the
common source variable U (e.g., in Figure 2a), if external, would
avoid confounding by physiology and its amplification. As we state
elsewhere (Weisskopf and Webster 2017), use of such exposure
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variables may sometimes pose tradeoffs between bias due to con-
founding and bias due to exposure measurement error.

Third, the correlation structure of the exposures matters,
whether it is the strength of the correlation between two expo-
sures (which influences the degree of bias amplification in Figure
2a) or the pattern of correlations when there are more (e.g.,
Figure 4). Although we have focused on nonnegative correlations
in this paper—because they are common in environmental epide-
miology due to shared sources—negative correlations are possi-
ble, for example, if one compound is a replacement for or a
metabolite of another. Although the equations in Table 1 still
apply, the direction of inequalities may change, for example, [2]
(see Supplemental Material DAG 2a).

Fourth, it makes a difference how many exposures cause
the outcome, one (e.g., Figure 2a) or more (e.g., Figure 3b).
Unfortunately, we often do not know this a priori. Even if we
did, neglecting noncausal exposures is not always the best strat-
egy. For example, in Figure 2a, X2 could be used as an instru-
mental variable for X1, avoiding the confounding of X1–Y by U 0.
In Figure 3b when both X1 and X2 cause the outcome Y, the
choice between adjustment or not poses a tradeoff: The better so-
lution depends on the parameters in inequality [2], which
unfortunately are typically not known.

We explored the implications of the combination of con-
founding and highly correlated exposures in models using linear
models with standardized variables. The assumption of standar-
dized variables can be relaxed by expanding the derivations in the
Supplemental Material (see the derivation for Figure 1). Bias
amplification has been explored in nonlinear models in the context
of instrumental variables (Pearl 2010). More research is needed to
explore the implications for nonlinear models (e.g., logistic regres-
sion) as well as interactions between exposure variables.

We analyzed the various causal scenarios using multivariable
linear regression because derivation of closed-form results is rela-
tively straightforward. An important research question is the
degree to which other proposed mixtures methods (e.g., Taylor
et al. 2016) have similar properties.

Lastly, as any field advances, the understanding of an
exposure–outcome relation, and of variables that can poten-
tially introduce confounding, improves. With new information
past results must be reevaluated with an eye towards possible
confounding that may have not been appreciated at the time of
the original study. When doing this, the possibility that coex-
posure amplification bias contributed to past findings must be
kept in mind.

Conclusions
In environmental epidemiology of mixtures, some exposures are
often highly correlated, for example, because of shared sources
or metabolic pathways. In the absence of unmeasured confound-
ing, including correlated components of a mixture in the same
regression model can in principle avoid confounding by coexpo-
sures and identify the independent effect of each component; coli-
nearity can make this difficult in practice because of effects on
precision. However, if there is unmeasured confounding of some
individual components of the mixture, then including correlated
exposures in the same regression model can in many cases
increase the confounding, a problem we have called coexposure
amplification bias. Identification and control of the unknown con-
founders is one remedy. Another option is the use of instrumental
variables, or proxy exposures that approach instrumental varia-
bles (Weisskopf and Webster 2017). Other study designs (e.g.,
panel studies, case-crossover studies) also can avoid certain types
of confounding. Thus, careful consideration of the study setting

and choice of study design can potentially eliminate confounding
even by unknown or unmeasured variables.

Progress on epidemiology of exposure to mixtures will
greatly benefit from interdisciplinary research. The correlations
between exposures are one determinant of how coexposure
amplification bias will affect results. Detailed exposure assess-
ment studies are needed to understand the strength and basis for
correlations between exposures, including common sources of
exposure. It may sometimes be useful to treat well-defined mix-
tures as a whole rather than as components. Physiological and
toxicological information will assist in the development of causal
models that are necessary for proper interpretation of regression
results. Researchers developing statistical approaches to identify
critical exposures out of many—a key goal of the epidemiologic
analysis of exposure mixtures—need to consider the possibility
that including many correlated exposures simultaneously in ana-
lytic models could make bias worse.

The problem of coexposure amplification bias is not, however,
restricted to toxicants in an exposure mixture. Any variables
included in a model could result in this problem, and in fact this
issue has been considered in the context of adjusting for propensity
scores that often include a wide variety of variables (Rosenbaum
2002; Rubin 2007, 2009; Weitzen et al. 2004). Nonetheless, envi-
ronmental toxicant exposure mixtures often have much higher cor-
relations between exposures than many other variables, potentially
making this issue particularly relevant for such exposure settings.
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