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BACKGROUND: Societies face the challenge of keeping people active as they age. Walkable neighborhoods have been associated with physical activity,
but more rigorous analytical approaches are needed.

OBJECTIVES: We used longitudinal data from adult residents of Brisbane, Australia (40–65 years of age at baseline) to estimate effects of changes in
neighborhood characteristics over a 6-y period on the likelihood of walking for transport.
METHODS: Analyses included 2,789–9,747 How Areas Influence Health and Activity (HABITAT) cohort participants from 200 neighborhoods at
baseline (2007) who completed up to three follow-up questionnaires (through 2013). Principal components analysis was used to derive a proxy mea-
sure of walkability preference. Environmental predictors were changes in street connectivity, residential density, and land use mix within a one-
kilometer network buffer. Associations with any walking and minutes of walking were estimated using logistic and linear regression, including ran-
dom effects models adjusted for time-varying confounders and a measure of walkability preference, and fixed effects models of changes in individuals
to eliminate confounding by time-invariant characteristics.
RESULTS: Any walking for transport (vs. none) was increased in association with an increase in street connectivity ( + 10 intersections, fixed effects
OR=1:19; 95% confidence interval (CI): 1.07, 1.32), residential density ( + 5 dwellings/hectare, OR=1:10; 95% CI: 1.05, 1.15), and land-use mix
(10% increase, OR=1:12; 95% CI: 1.00, 1.26). Associations with minutes of walking were positive based on random effects models, but null for fixed
effects models. The association between land-use mix and any walking appeared to be limited to participants in the highest tertile of increased street
connectivity (fixed effects OR=1:17; 95% CI: 0.99, 1.35 for a 1-unit increase in land-use mix; interaction p-value = 0:05).
CONCLUSIONS: Increases in street connectivity, residential density, and land-use heterogeneity were associated with walking for transport among
middle-age residents of Brisbane, Australia. https://doi.org/10.1289/EHP2080

Introduction
Walking is the most common form of physical activity (Australian
Bureau of Statistics 2011; Rosenberg et al. 2010) and is associ-
ated with mental and physical health benefits, including reduced
obesity, cardio-vascular disease, and diabetes (Physical Activity
Guidelines Advisory Committee 2008; Warburton et al. 2010).
Neighborhoods that support walking may be an effective means of
increasing population physical activity (Giles-Corti et al. 2013;
Stevenson et al. 2016), and evidence from multiple international
studies suggests that built environment characteristics may influ-
ence the amount of walking people undertake in local areas (Owen
et al. 2007). However, many studies have relied on cross-sectional
data that may be biased by self-selection, such that associations
between walkable neighborhoods and walking may occur not
because of an effect of walkable areas on walking, but because
people who like to walk choose to live in walkable areas. The
extent to which confounding from self-selection may inflate asso-
ciations is unclear (Martin et al. 2014), but various methods have
been used to account for selection (De Vos et al. 2012; Kaczynski
and Mowen 2011), including adjustment for proxy indicators of

preferences, and instrumental variables (Greenwald and Boarnet
2001), and associations between neighborhood characteristics and
physical activity have been reported to be attenuated by adjustment
for selection (Ewing and Cervero 2010) (McCormack and Shiell
2011; Owen et al. 2007). Self-selection bias can affect longitudi-
nal studies as well as cross-sectional studies, and adjustment will
not eliminate bias given that self-selection is likely to be classi-
fied with some degree of error. In addition, unmeasured con-
founders that influence both built environment characteristics
and physical activity may bias studies. Fixed effect models that
estimate effects based on within-person comparisons over time
eliminate bias due to confounding by time-invariant characteris-
tics, including personal preferences (assuming they are stable
over time), in contrast with commonly used random effects mod-
els. However, to our knowledge, these models have not been used
in previous studies of built environment and physical activity.

Three recent studies based on natural experiments, whereby
individuals who changed residences were followed over time, have
reported that changes in street connectivity, land-usemix, andwalk-
ability indices are associated with changes in walking for transport
(Hirsch et al. 2014; Kamruzzaman et al. 2016; Knuiman et al.
2014). Investigators using data from the U.S.-based Multi-Ethnic
Study of Atherosclerosis examined the relationship between area
walkability (measured using the Street Smart Walk Score), walking
(for transport and recreation), and BMI among 701 participants who
relocated during follow-up (2004–2012, 6.3 y on average) (Hirsch
et al. 2014). The authors estimated that a 10-point increase in the
walkability score (one-third of the baseline standard deviation) fol-
lowing relocation was associated with a 16-min/wk increase in
walking for transport, and a 0:06 kg=m2 (95%CI= − 0:12, −0:01)
reduction in BMI. An Australian study of Perth residents who relo-
cated to new housing developments reported that increases in street
connectivity and land-use mix predicted an increase in the number
of times people walked for transport (Knuiman et al. 2014).
Similarly, increases in street connectivity and residential density
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were associated with an increased likelihood of walking for trans-
port in a previous analysis of the first two waves of data from the
Brisbane-based cohort used in the present analysis (Kamruzzaman
et al. 2016).

The present analysis is based on four waves of data (collected
in 2007, 2009, 2011, and 2013) from adults enrolled in How Areas
in Brisbane Influence Health and Activity (HABITAT) – a longitu-
dinal study of Brisbane, Australia, residents age 40 to 65 y old at
baseline.We used fixed and random effects longitudinal regression
models to estimate associations within and between people over
time to determine whether changes in neighborhood characteristics
(street connectivity, residential density, and land-use mix) were
associated with changes in the amount of walking for transport, af-
ter accounting for neighborhood walkability preference and time-
invariant confounders. In addition, we examined whether neigh-
borhood characteristics appear to interact with each other to affect
the amount of walking people do for transport.

Methods

Data
The data used in this analysis come from the HABITAT study: a
longitudinal, multilevel study of 11,035 40- to 65-y-old residents
in Brisbane, Australia, at four time points approximately two years
apart (2007, 2009, 2011, and 2013) (Burton et al. 2009; Turrell et al.
2010).

The primary aim of HABITAT was to identify factors that
promote and inhibit aging adults from maintaining healthy levels
of physical activity as they age. Accordingly, the parent study
comprised a middle-age cohort for whom the prevalence of phys-
ical inactivity and overweight/obesity is higher than in younger
adults, consistent with a decline in physical activity from young
adulthood to middle age.

The survey was conducted using a structured self-administered
questionnaire that was sent to 17,000 eligible participants from 200
Census Collector Districts (CCD) (out of a total of 1,680) in
Brisbane’s Central Business District, and its outskirts, in May
2007, as per Dillman (Dillman 1991). Participants were sent the
survey instrument with a cover letter noting their participation in
the surveywas voluntary. Return of a completed survey instrument
by a respondent indicated consent to participate. After excluding
873 out-of-scope contacts (i.e., deceased, no longer at the address,
unable to participate for health-related reasons), 11,035 usable sur-
veyswere returned, yielding a baseline response rate of 68.3%. The
corresponding response rates from in-scope and contactable partic-
ipants in 2009, 2011, and 2013 were 72.6% (n=7,866), 67.3%
(n=6,900), and 67.1% (n=6,520), respectively (Burton et al.
2009).

Participants who changed their address between any two data
collection points were followed (unless they moved outside of
Australia). Several strategies were implemented to track people,
including recording of alterative contact details, provision of a
replied paid change-of-address card, and access to a website
and toll-free telephone number to register a change of address.
Participants who failed to respond at a particular wave were still
included in subsequent waves. Address information was geo-
coded with automated geocoding followed by manual geocod-
ing for any addresses that could not be matched.

This study was awarded ethical clearance by the Queensland
University of Technology Human Research Ethics Committee
(Ref. no. 3967H & 1300000161).

Study setting. Brisbane is the capital city of Queensland, a state
in the northeast of Australia. The city of Brisbane has an estimated
population of 1.13 million people. It has a humid subtropical cli-
mate (with hot, humid summers and dry moderately warm

winters). Average temperatures range from 16.6°C (62°F) to
26.6°C (80°F). Although Brisbane is hilly, much of the city is on
low-lying flood plains, with several suburban creeks throughout
the suburbs joining the Brisbane River. Public transport in
Brisbane consists of buses, trains, and ferries. Cycling is a growing
but not common mode of active travel, especially among middle-
and older-age residents (and particularly so among older women);
hence, this analysis focuses on walking (Heesch et al. 2014;
Heesch and Turrell 2014; Heesch et al. 2015).

Predictor Variables
Neighborhood-level data on built environments’ characteristics
came from two sources: the Brisbane City Council (the local gov-
ernment authority responsible for the jurisdiction covered by the
HABITAT study) and MapInfo (Pitney Bowes Software). The
Brisbane City Council’s Cadastre and their Land Use Activity
Database (LUAD) and StreetPro were obtained under data access
agreements restricting public (Pitney Bowes Software) release.
Neighborhood predictors were derived for June 2007, 2009, 2011,
and 2013. These time periods correspond to the individual-level
data collections, ensuring temporal correspondence between the
neighborhoodmeasures and individual-level survey data.

A large amount of spatial variability in Brisbane exists in the
threemain components of walkability considered in this paper: res-
idential density, land-use mix, and street connectivity. Closer to
the city, neighborhoods aremore residentially dense and connected
with a greater diversity of land uses (unpublished data) than in the
outskirts of Brisbane. People are more likely to walk and cycle for
transport in these areas of Brisbane (Turrell et al. 2013). Access to
public transport is highly variable across the city.

Changes in neighborhood characteristics (and individual
survey data) were defined as differences between waves. This
included both participants who changed their address within
Brisbane between any two data collection waves and people
who experienced change in their residential environment with-
out moving.

We derived proxy measures of three neighborhood character-
istics that have been used in previous studies as indicators of
neighborhood walkability: street connectivity, density, and land-
use mix (Frank et al. 2006; Saelens et al. 2003). Each characteris-
tic was defined within a 1-km buffer surrounding the residence
address of each participant using a road network buffer, which is
an area corresponding to a 1-km distance on local roads from
each respondent’s dwelling (Oliver et al. 2007). A 1-km distance
was chosen because it is a reasonable distance for people in a
middle-age cohort to walk for transport or catch public transport
(Villanueva et al. 2014). Street connectivity is believed to pro-
mote walkability by making it easier to reach destinations, both
by increasing the number of possible routes available within an
area, and by reducing the distance and time required to walk to
destinations (Handy et al. 2002). For the present study, we
used the number of four-way intersections within each 1-km
buffer as a measure of street connectivity, which has previously
been shown an association with active travel (Turrell et al.
2013).

This study uses the number of dwellings per hectare of resi-
dential land in each road network buffer to measure density.
Land-use mix refers to the range of different land uses within a
neighborhood. Neighborhoods that are “mixed use” contain a va-
riety of infrastructure and activities, and are believed to encour-
age walking because they include a larger number of destinations
(Handy et al. 2002). For the present study, we used a metric
adapted for studies of active transport based on five types of land
use within each 1-km buffer: residential, commercial, industrial,
recreational/leisure, and “other” (Christian et al. 2011). The land-
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use mix for each buffer was estimated as the negative sum of the
proportion of each land-use type multiplied by the natural log of
the its proportion, divided by 5 (the number of land categories
used) (Leslie et al. 2007). Individual scores ranged from 0 to 1,
with 0 representing complete homogeneity of land use within the
buffer, and 1 representing an even distribution of each of the five
types of land use.

Outcome Variables
At baseline and each subsequent wave, respondents were asked
howmany minutes in the past week they walked for transport (i.e.,
to get to or from any destination) using the following question:
“What do you estimate was the total time that you spent walking
for transport in the LAST WEEK?” with response options of
reporting hours or minutes and the direction “If NONE, please
write 0.”

Walking for transport was accordingly modeled as both bi-
nary (no walking, any walking) and as a continuous variable (in
self-reported minutes walked).

Covariates
All models were adjusted for factors theoretically associated with
changes in built environment characteristics and changes inwalking
for transport. The factors were age group (categorical, between 40–
44, 45–49, 50–54, 55–59, 60–64, and 65–69 years of age); occupa-
tion (professional requiring a level of specialty or skill commensu-
rate with a bachelor’s degree or higher qualification, white collar
characterized as managerial or administrative work, blue collar
characterized as manual work or not in labour force); self-rated
health (a dichotomous measure of 0 (excellent/very good/good) or 1
(fair/poor)); income group ($AUD0–$25,999, $26,000–$41,599,
$41,600–$72,799, $72,800–$129,999 or $130,000 or more per
year), and area disadvantage (using the Australian Bureau of
Statistics (ABS) Index of Relative Socio-economic Disadvantage
(IRSD), with 1 being the most disadvantaged area and 100 the least;
tertile cutoffs in the descriptive table were based on the distribution
of the IRDS in theHABITAT survey).

Random effects regression models that estimated associations
based on differences between individuals (vs. fixed effects mod-
els of changes within individuals over time) were also adjusted
for sex and education at enrollment (the highest qualification
obtained, classified as bachelor’s degree or higher, diploma, cer-
tificate, or high school only).

Respondents’ preferences for living in areas that support walk-
ing were derived using principal components analysis (with an or-
thogonal varimax rotation) on a set of responses (on a 5-point
Likert scale) to a question asked at baseline and upon moving (that
is, each person was asked once): “How important were each of the
following in your decision to move to your current suburb?” The
items were: affordability of housing, land or rent, investments
potential, closeness to work, cheaper to travel to work, safety from
crime, quiet location, familiarity with area, closeness to school,
ease of walking to places, closeness to childcare, closeness to the
city, near to green-space or ‘bushland’ (native forest), closeness to
public transport, closeness to open space (e.g., parks) (overlapping
with green-space), closeness to shops, and access to freeways or
main roads.

Four factors were identified that had an Eigenvalue (the var-
iance of the principle components) of greater than 1 and that
explained (in total) 55% of the variance in the data at baseline.
The amount of variance explained and the scoring of each factor
were reasonably consistent across waves (Table S1).

Of the factors generated, the factor that explained the most
variance (19% at baseline) related to preferences for living in

areas that support walking, including ease of walking to places,
closeness to public transport, and wanting to live close to shops,
and was used as our measure of preference for walking. The
Cronbach’s Alpha for this measure was 0.85, indicating good in-
ternal consistency across items. This variable was included as a
continuous measure in regression models (and as tertiles in the
descriptive summary), with an increasing score representing an
increase in preference for these environmental features that sup-
port walking for transport.

Analysis
All analyses were performed using Stata 14.0 (StataCorp. 2011).
To describe the analytic sample, mean and median walking (in
minutes) at enrollment in 2007 was estimated across categories
of each covariate. We also estimated the average change in each
exposure variable between consecutive waves to gauge how
much change people experienced across the HABITAT survey
(including change experienced by people who moved location
and by changes in the built environments of people who stay in
situ across the four waves).

To facilitate comparisons with previous studies, we used ran-
dom effects regression models to compare different individuals at
each point in time, while accounting for the nonindependence of
repeated observations within the same individuals. We used logis-
tic random effects models to estimate associations between the pre-
dictors of interest (connectivity, residential density, and land-use
mix) and any walking for transport vs. none (using the ‘xtlogit’
command in Stata), and linear random effects models to estimate
associations with minutes of walking for transport as a continuous
variable (using the ‘xtreg’ command in Stata). All random effects
models were adjusted for sex and education at baseline; and such
models were adjusted for age, income, occupation, self-reported
health, and area disadvantage as time-varying variables. In addi-
tion, we ran a second set of models for each outcome that also
included the proxy measure of each participant’s preference for
walking (derived using principal components analysis and catego-
rized into tertiles) as a covariate. For linear regression models, we
estimated models based on the full sample and models restricted to
peoplewhowalked for transport.

A simplified linear random effects model equation is as
follows:

Yit = b0 + vitb+Zic+ ai + lit

where Yit is the dependent variable representing minutes of walk-
ing for transport in individual i at time t, vit is a vector of the time-
varying predictors (age, occupation, self-rated health, income, area
disadvantage, connectivity, density, and land use mix), Zi repre-
sents the time invariant covariates sex and education, ai is the
unobserved individual effect (the intercept for each individual),
and lit is the time-varying error term for each individual.

In addition, we compared changes over time within individual
participants using logistic (xtlogit with the ‘fe’ option in Stata)
and linear (xtreg with the ‘fe’ option in Stata) fixed effects regres-
sion models to estimate associations with any walking (vs. none)
and minutes of walking (continuous), respectively. In contrast
with random effects models, these models are conditioned on
each individual, and therefore do not include the time-invariant
variables sex or education, or individual-level intercepts.

Both random and fixed effects models were based on com-
plete case analysis, such that observations with missing data for
any covariate were excluded from the analysis. For random
effects models, this left 9,747 participants with 23,646 observa-
tions, in comparison with 10,941 and 30,943 in the entire dataset
with information on walking for transport. In addition, linear
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fixed effects models only include information from study partici-
pants whose exposures varied over the study period, whereas
logistic fixed effects models only include participants whose
exposures and outcomes both varied over the study period
(Gunasekara et al. 2014). Therefore, after accounting for missing
covariate data, numbers of participants and observations included
in each linear fixed effects analysis were 9,747 and 23,646,
whereas logistic random effects models included 2,789 partici-
pants and 9,107 observations, for models of street connectivity,
residential density, and land-use mix.

Interactions. We evaluated pairwise interactions between
street connectivity, land-use mix, and density in relation to any
walking for transport (vs. none) using separate fixed effects logistic
regression models adjusted for age, occupation, income, area dis-
advantage, and self-reported health at each time point. Models
included interaction terms between one predictor as a continuous
variable and a second predictor categorized into tertiles (sixmodels
in total). Interaction p-values were derived using likelihood ratio

tests comparing the fit of models with and without product-
interaction terms for each pair of predictors.

Results

Descriptive Statistics
About one-third of respondents reported any walking for transport
at baseline. Men reported spending more time walking for trans-
port than women reported, and men were more likely to report any
walking for transport (Table 1). Walking for transport decreased
for each age group from 40 to 65 y. The socioeconomic measures
give amixed picture of their associationwith walking for transport.
Some markers of lower socioeconomic status (lower income and
area disadvantage)were correlatedwithmorewalking for transport
(in terms of time and proportion of walkers); however, some
markers of higher socioeconomic status (more education and
higher occupational status) also were correlatedwithmorewalking

Table 1. Description of walking for transport at enrollment into HABITAT (2007) by age group, sex, education, occupation self-rated health, income and
neighborhood preference.

Covariates Total sample (n) Minutes/week of walking (mean±SD) Percentage who reported any walking

Age category
40–44 years 2,514 37:5± 89:5 38.4
45–49 years 2,382 39:1± 92:0 35.9
50–54 years 2,312 34:1± 84:8 33.5
55–59 years 2,080 32:9± 80:4 32.3
Over 60 years 1,731 29:0± 81:1 29.8
Missing 16
Sex
Male 4,849 37:0± 88:0 35.5
Female 6,186 33:3± 84:6 33.4
Missing 0
Education
High school only 4,311 28:9± 79:9 28.9
Certificate 1,952 31:8± 84:6 30.0
Diploma 1,268 36:7± 89:6 36.3
Bachelor’s 3,457 43:7± 92:5 43.1
Missing 47
Occupation
Manager/Professional 3,640 35:3± 77:4 38.2
White 2,385 33:9± 73:3 35.3
Blue 1,552 25:6± 68:3 25.7
Not in the labour force 2,644 28:6± 70:8 31.9
Missing 814
Household Income
Australian $0–$25,999 1,044 42:3± 105:1 37.2
Australian $26,000–$41,599 1,188 36:5± 98:5 32.2
Australian $41,600–$72,799 2,438 34:6± 76:7 35.5
Australian $72,800–$129,999 2,845 35:4± 82:6 36.2
Australian $130,000:00 1,889 35:4± 89:0 34.9
Missing 1631
Self-rated health
Excellent/very good/good 8,981 35:1± 85:4 34.7
Fair/poor 1,950 34:4± 89:8 33.2
Missing 104
Choice of neighbourhood related

to walkability
Tertile 1 (lowest preference) 3,189 24:3± 70:5 26.2
Tertile 2 3,189 35:7± 91:6 34.5
Tertile 3 (highest preference) 3,189 45:6± 91:7 44.2
Missing 1468
Area level socio-economic

disadvantagea

Tertile 1 (High) 3,917 39:0± 90:9 39.0
Tertile 2 3,278 34:5± 84:8 35.8
Tertile 3 (Low) 3,840 31:2± 82:1 33.3
Missing 0
aArea disadvantage was measured using the Australian Bureau of Statistics (ABS) Index of Relative Socio-economic Disadvantage (IRSD). This is widely used measure of disadvant-
age in Australia. The IRSD is calculated using Principal Component’s analyses of 17 variables that capture a wide range of socio-economic attributes including education, occupations,
unemployment, household structure, and household tenure. Each Census Collector District was assigned a socioeconomic score based on its ABS derived IRSD for the matching sur-
vey year.
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for transport. In addition, 13% were missing information on walk-
ability preference at baseline, 15% were missing information on
income, and 7% lacked information on occupation.

As the derived indicator of walkability preference increased,
so did the time people spent walking, such that those residing in
the highest tertile for walkability preference walked on average
45.6 min per week (Table 1).

The three environmental predictors of walkability are sum-
marized in Table 2 in relation to their mean and median at their
first measurement at baseline and their mean change and range of
change between consecutive, subsequent time points. On average,
there were 14 four-way intersections, 19 dwellings per hectare,
and 43% land-use heterogeneity within 1 km buffer areas sur-
rounding each participant residence at baseline (Table 2). For
each predictor, the average mean change (and interquartile
range) across all consecutive waves was small in comparison
with the standard deviation at baseline and the overall (mini-
mum–maximum) range of mean change over the study period.
Out of the total study population (n=11,035), 8,769 (28%), 1
(<0:01%), and 1 (<0:01%) had no change in street connectivity,
residential density, and land-use mix, respectively, during the
study period.

Regression Analysis
Street connectivity. Odds ratios (ORs) from adjusted random
effects models that did not account for walkability preference sug-
gested that participants who experienced a 1-unit increase in street
connectivity between study waves (representing 10 additional
four-way intersections within 1 km) were 49% more likely than
people who experienced no change to report any walking for trans-
port (OR=1:49; 95% CI: 1.42, 1.56) (Table 3). Estimates from
random effects models that were adjusted for walkability prefer-
ence were similar, though somewhat attenuated (OR=1:40; 95%
CI: 1.30, 1.47). Fixed effects conditional logistic regressionmodels
based on changes over time within individual participants, which
are not confounded by time-invariant characteristics but are limited
to participants who experienced a change in both street connectiv-
ity and walking (n=2,789 people with 9,107 observations after
accounting for missing data on time-varying covariates) indicated
a positive, but weaker association with a 1-unit increase in street
connectivity (OR=1:19; 95%CI: 1.07, 1.32).

Random effectsmodels of minutes of walking for transport also
indicated positive associations with street connectivity that were
somewhat attenuated after adjustment for walkability preference
(b=5:23; 95% CI: 4.10, 6.36 after adjustment for preference for
the full sample and b=1:50; 95% CI 0.48, 2.53 for the sample re-
stricted to transport walkers only, consistent with a 5-min or 1.5-
min increase in walking for transport, respectively, with every 10
additional four-way intersections within a 1 km buffer) (Table 3).
However, there was no significant association between street con-
nectivity and changes in minutes of walking within individuals
based on fixed effects linear regression models of participants who
experienced a change in connectivity during the study period
(b=0:52; 95% CI: −3:47, 2.42; n=9,747 participants with 23,646
observations.)

Residential density. The odds of any walking for transport (vs.
none) was also positively associated with residential density, with
slightly attenuated estimates from random effects models after
adjustment for walkability preference (OR=1:16; 95% CI: 1.15,
1.25 for a 5 dwelling/hectare increase in residential density within
a 1-km buffer based on 8,547 participants and 20,899 observations)
(Table 3). The association also was less pronounced based on
within-individual changes over time from the fixed effects logistic
model (OR=1:10; 95% CI: 1.05, 1.15 based on 2,789 participants
and 9,107 observations). Increases in residential density also were
positively associated with minutes of walking for transport based
on random effects models (b=3:49; 95% CI: 2.91, 4.07 after
adjusting for walkability preference), but, as for street connectiv-
ity, there was no clear association based on fixed effects linear
regression of changes within individuals (9,747 participants with
23,646 observations.)

Land use mix. As for the other predictors, estimates from ran-
dom effects models, with and without adjustment for walkability
preference, indicated positive associations between any walking
for transport and an increase in land-use mix (OR=1:28; 95%
CI: 1.20, 1.35 for a 10% increase in land use heterogeneity within
a 1-km buffer, after adjusting for walkability preference) (Table 3).
The association also was positive, but less pronounced, based on
within-individual changes over time from the fixed effects logistic
model (OR=1:12; 95% CI: 1.00, 1.26). As for the other predictors,
increases in residential density also were positively associated with
minutes of walking for transport based on random effects models,
but there was no clear association based on fixed effects models of
changes within individuals.

Table 2. Environmental predictors of walkability at enrolment into the HABITAT cohort, and for mean changes in each predictor between each of the four
study waves (2007, 2009, 2011, 2013).

Variable Street connectivitya Residential densityb Land use mixc

Value at baseline (2007)
Mean±SD 13:92± 11:87 18:69± 10:33 0:43± 0:10
Minimum 0 0.10 0.11
25th percentile 4 13.61 0.37
50th percentile 11 15.64 0.43
75th percentile 21 21.26 0.49
Maximum 67 93.16 0.76
Mean change between waves
Mean±SD −0:94± 4:37 0:43± 4:64 −0:002± 0:042
Minimum −65 −218 −0:50
25th percentile 0 −0:09 −0:01
50th percentile 0 0.08 −0:0009
75th percentile 1.0 0.51 0.008
Maximum 64 125 0.47
n (%) with no change during study period 8,769 (28%) 1 (<0:1%) 1 (<0:1%)

aNumber of 4-way intersections within 1 km of each residence.
bNumber of dwellings/hectare within 1 km of each residence.
cHeterogeneity of five categories of land-use mix (residential, commercial, industrial, recreation and leisure, other) within a 1-km buffer, with 1 representing an even distribution and 0
indicating only a single type of land use.
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Test for a Statistical Interaction between Built Environment
Characteristics
A 1-unit increase in land-use mix (a 10% increase in land-use het-
erogeneity within a 1-km buffer) was positively associated with
any walking for transport among participants who also experi-
enced an increase in street connectivity from the lowest to highest
tertile based on fixed effects logistic models adjusted for time-
varying covariates (OR=1:17; 95% CI: 0.99), but was not associ-
ated with any walking for transport among those who experi-
enced only low or moderate change in land-use mix (interaction
p-value= 0:05) (Table 4).

Discussion
In this study, we estimated associations between changes in envi-
ronmental factors (street connectivity, residential density, and
land-use mix) and walking for transport using random effects
regression models (to account for repeated observations within
individuals) with and without adjustment for a proxy measure of
people’s preferences for living in areas that are walkable and
fixed effects regression to model changes within individuals over
time and control for measured and unmeasured confounders that
did not change over the 6-y study period. We found that increases
in street connectivity, land-use mix, and residential density were
associated with increases in the likelihood of any walking for
transport among middle-age residents of Brisbane, Australia. The
association between any waking for transport and an increase in
street connectivity appeared to be limited to participants who also

experienced larger increases in land-use mix. However, we found
little evidence that changes in street connectivity, density, and
land-use mix increases time spent walking. This finding is plausi-
ble as local environmental determinants of active transport likely
differ from determinants of amount of walking for transport
undertaken by walkers.

Our findings support those of a number of studies that have
used advanced forms of analysis or study designs to examine
how the built environment shapes physical activity and have
found similar measures of the local environment (particularly
street connectivity) to be significantly associated with their out-
comes of interest (Hirsch et al. 2014; Knuiman et al. 2014).
Findings from a previous analysis of the HABITAT study popu-
lation suggest that the socioeconomic patterning of walking for
transport in Brisbane is complex (Turrell et al. 2014). At the
individual level, the odds of walking for transport were greater
among individuals with more education, higher income, and
employment managers or professionals, possibly reflecting the
influence of health promotion. However, residents of disadvan-
taged areas also were more likely to walk for transport, regard-
less of their individual-level socioeconomic status. Findings
from the present analysis suggest that this might be at least
partly explained by environmental factors that may increase
walkability, specifically, higher residential density, street con-
nectivity, and land-use diversity.

Our study adjusts for time-invariant confounding in its analyt-
ical design. The relatively large difference in some of the esti-
mates generated from “between person” comparisons without

Table 3. Changes in connectivity, residential density, and land-use mix as predictors of any walking for transport (vs. none, logistic regression models) and
minutes of walking for transport (linear regression models).

Outcome and
exposure

Random effects modelsa Random effects models +walking preferenceb Fixed effects modelsc

Participants
(Observations)

OR or betad

(95% CI) p-Value
Participants

(Observations)
OR or betad

(95% CI) p-Value
Participants

(Observations)
OR or betad

(95% CI) p-Value

Any walking
(logistic
model)

Connectivity 9,747 (23,646) 1.49
(1.42, 1.56)

<0:001 8,547 (20,899) 1.40
(1.33, 1.47)

<0:001 2,789 (9,107) 1.19
(1.07, 1.32)

0.002

Residential
density

9,747 (23,646) 1.20
(1.16, 1.25)

<0:001 8,547 (20,899) 1.23
(1.20, 1.27)

<0:001 2,789 (9,107) 1.10
(1.05, 1.15)

0.003

Land use mix 9,747 (23,646) 1.39
(1.31, 1.46)

<0:001 8,547 (20,899) 1.28
(1.20, 1.35)

<0:001 2,789 (9,107) 1.12
(1.00,1.26)

0.058

Minutes of
walking
(linear model)

Full sample
Connectivity 9,747 (23,646) 6.20

(5.13, 7.28)
<0:001 9,107 (20,899) 5.23

(4.10, 6.36)
<0:001 9,747 (23,646) 0.52

(−3:47, 2.42)
0.729

Residential
density

9,747 (23,646) 3.90
(3.31, 4.49)

<0:001 9,107 (20,899) 3.49
(2.91, 4.09)

<0:001 9,747 (23,646) 0.60
(−0:73, 1.93)

0.375

Land use mix 9,747 (23,646) 5.59
(4.28, 6.90)

<0:001 9,107 (20,899) 4.01
(2.63, 5.40)

<0:001 9,747 (23,646) 0.32
(−2:89, 3.52)

0.847

Restricted to
walkers

Connectivity 5,022 (8,981) 1.32
(−0:83, 3.46)

0.002 4,752 (8,518) 1.09
(−1:04, 3.22)

0.004 5,022 (8,981) −4:57
(−11:60, 2.47)

0.203

Residential
density

5,022 (8,981) 1.65
(0.61, 2.69)

0.08 4,752 (8,518) 1.50
(0.48, 2.53)

0.21 5,022 (8,981) 0.85
(−1:96, 3.65)

0.555

Land use mix 5,022 (8,981) 1.74
(−0:21, 3.71)

0.23 4,752 (8,518) 1.25
(−0:70, 3.21)

0.32 5,022 (8,981) 1.45
(−4:69, 7.58)

0.644

aRandom effects model adjusted for age, sex, income, occupation, and area disadvantage.
bRandom effects model with additional adjustment for preference for walking.
cFixed effects models adjusted for time invariant confounding. Logistic and linear models are based only on data for participants who experienced a change in the predictor over time;
logistic model estimates are additionally limited to participants who experienced a change in walking for transport.
dORs (95% CI) from logistic regression models for any walking vs. no walking, and beta coefficients (95% CI) from linear regression models representing the difference in mean
minutes of walking, in association with an increase over time in connectivity (10 additional four-way intersections within 1 km), residential density (five additional dwellings per hec-
tare within 1 km), and land-use mix (10% increase in heterogeneity within 1 km), respectively.
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adjustment for self-selection compared with estimates generated
from “within person” comparisons (described in Table 4) support
our contention that self-selection is an important consideration in
assessing current evidence and designing analyses.

We performed an analysis of longitudinal data to examine how
changes in built environments affect changes in people’s walking
for transport. Our study, however, has a number of limitations. The
most important may be the size of our exposure gradient. Previous
studies argue that changes in the built environment need to be of a
sufficiently large magnitude to detect their impact on changes in
walking behavior (Giles-Corti et al. 2013). Most changes in our
environmental variables were relatively small (as described in
Table 2), and it is possible that they were inadequate to detect sig-
nificant effects in conservative fixed effects regression models
that measure changes within people over time. Although we find
significant associations in our logistic regression models (where
everyone must have changed on the outcome, and walking is
modelled as a binary (yes/no)), the null findings in the linear
models with continuous outcome measures of time spent walking
should be interpreted with this relatively small exposure gradient
in mind.

A second limitation is that although we have objectively
measured data on the characteristics of the built environment, our
outcome measure of minutes spent walking for transport is self-
reported and, therefore, likely prone to bias from measurement
error. Estimates from the fixed effects models, however, make
comparisons within people, so the extent to which each person
might misreport the amount of walking they have done may be
consistent in the reference and comparison categories mitigating
this potential source of bias. Third, we have used a single mea-
sure of street connectivity (number of four-way intersections).
Three-way intersections might also have been evaluated. Finally,

we have only evaluated walking for transport and did not assess
cycling as another common form of active transport.

It is important to note that our study focuses on people 40
years of age and older. Walkable neighborhoods (i.e., a well-
connected street network, a mix of land uses, and residential den-
sity) facilitate active living (e.g., walking, cycling, use of public
transport, social engagement) for all age groups. However, in the
context of an aging society such as Australia, walkable neighbor-
hoods are especially important in terms of supporting and pro-
moting healthy aging, slowing declines in functional capacity
(physical and cognitive), and enabling people as they age
to age in place and to live independently for longer periods
(Balfour and Kaplan 2002; Clarke and George 2005; Clarke
et al. 2009; Schootman et al. 2012; Werngren-Elgström et al.
2008).

Overall, our study lends support to calls for interventions to
change the built environments of cities and neighborhoods in ways
that promote walking and improve population health (Sallis et al.
2016; Stevenson et al. 2016). Furthermore, there are potential eco-
nomic concomitant benefits from urban designs that support walk-
ing in the form of increased retail activity (Tolley 2007). A highly
connected street network provides the foundation for the crea-
tion of a walkable community. Increasing both residential den-
sity and land-use heterogeneity may also benefit local shops and
services, in addition to increasing the likelihood of active
travel.
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Table 4. Odds ratios (OR) (95% CI) for associations between changes in continuous built environment predictors and walking for transport (any vs. none)
according to tertiles of changes in a second predictor based on adjusted fixed effects logistic regression models of longitudinal data for individuals over time.

Interaction: Change in continuous
predictor x categorical predictor OR (95% CI)a

Continuous predictor x categorical
predictor Interaction P-Valueb

Continuous predictor x continuous
predictor Interaction P-Valueb

Street connectivity x land use mix
Low land use mix 1.07 (0.77, 1.48)
Med land use mix 0.87 (0.66, 1.14)
High land use mix 1.39 (1.10, 1.77) 0.18 0.02
Street connectivity x density
Low density 0.89 (0.56, 1.43)
Medium density 1.00 (0.74,1.32)
High density 1.20 (0.98, 1.44) 0.37 0.96
Density x land use mix
Low land use mix 1.01 (0.95, 1.07)
Med land use mix 0.96 (0.91, 1.02)
High land use mix 1.01 (0.99, 1.02) 0.77 0.37
Density x street connectivity
Low street connectivity 0.97 (0.89, 1.06)
Med street connectivity 0.98 (0.93, 1.04)
High street connectivity 1.02 (1.00, 1.03) 0.43 0.96
Land use mix x density
Low density 0.83 (0.70, 1.00)
Medium density 1.05 (0.87, 1.26)
High density 1.12 (0.94, 1.35) 0.54 0.37
Land use mix x street connectivity
Low street connectivity 0.97 (0.89, 1.09)
Med street connectivity 0.97 (0.85, 1.12)
High street connectivity 1.17 (0.99, 1.39) 0.05 0.02

Note: All models are adjusted for age, occupation, income, area disadvantage, and self-reported health at each time point. For categorization of the exposure variables, ‘Low’ refers to
the first tertile, ‘Med’ to the middle tertile and ‘High’ to the third tertile.
aORs for street connectivity as a continuous variable represent the relative odds of any walking for transport (vs. none) with 10 additional four-way intersections within 1 km according
to strata of changes in density or land-use mix, respectively. ORs for density as a continuous variable represent the association with five additional residential dwellings/hectare within
1 km according to strata of street connectivity or land use mix, and ORs for land-use mix as a continuous variable represent the association with a 10% increase in land-use mix within
1 km according to strata of density or land use mix.
bInteraction p-values based on likelihood ratio tests comparing covariate-adjusted models with interaction terms and lower-order terms for each predictor to adjusted models with
lower-order terms for each predictor only.
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