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Protein–ligand (un)binding kinetics as a new
paradigm for drug discovery at the crossroad
between experiments and modelling†

M. Bernetti,ab A. Cavalliab and L. Mollica*b

In the last three decades, protein and nucleic acid structure determination and comprehension of the

mechanisms, leading to their physiological and pathological functions, have become a cornerstone of bio-

medical sciences. A deep understanding of the principles governing the fates of cells and tissue at the mo-

lecular level has been gained over the years, offering a solid basis for the rational design of drugs aimed at

the pharmacological treatment of numerous diseases. Historically, affinity indicators (i.e. Kd and IC50/EC50)

have been assumed to be valid indicators of the in vivo efficacy of a drug. However, recent studies pointed

out that the kinetics of the drug–receptor binding process could be as important or even more important

than affinity in determining the drug efficacy. This eventually led to a growing interest in the characterisa-

tion and prediction of the rate constants of protein–ligand association and dissociation. For instance, a drug

with a longer residence time can kinetically select a given receptor over another, even if the affinity for

both receptors is comparable, thus increasing its therapeutic index. Therefore, understanding the molecular

features underlying binding and unbinding processes is of central interest towards the rational control of

drug binding kinetics. In this review, we report the theoretical framework behind protein–ligand association

and highlight the latest advances in the experimental and computational approaches exploited to investi-

gate the binding kinetics.

Introduction

Among biological macromolecules, proteins represent a class
of primary interest since they are involved in a plethora of cel-
lular processes, ranging from structural and mechanical roles
to signalling and regulation functions. To exert their biologi-
cal functions, proteins typically need to directly interact with
other molecules including proteins/peptides, nucleic acids,
membranes, substrates, and small molecule ligands with high
specificity and affinity.

A deeper understanding of protein functions at the atomic
level stems from two prerequisites: the knowledge of their
three-dimensional features, i.e. details of their tertiary and
quaternary structures, and the comprehension of the mecha-
nisms responsible for their interactions with ligands. In the
last 20 years, protein structure determination has become a
gold standard in the world of biophysical chemistry and a
crucial step for the investigation of biochemical processes,
assisted by an increasing availability of large scale facilities

for protein production and data collection (i.e. X-ray diffrac-
tion and NMR spectroscopy). For these reasons, a large com-
munity has recently exploited the growing datasets of struc-
tural information to gain insight on the full description,
characterisation, and quantification of the energetics that
govern the formation of protein–protein and protein–ligand
complexes.1 In addition, the need for structural data and pro-
tein–ligand binding mechanisms for the rational design and
development of new drugs demands a deep understanding of
the nature of the molecular recognition.2

Since the primordial stages of pharmacology, it has be-
come clear that a drug works only when bound to its target
receptor.3 Direct measurement of the extent to which a drug
is bound to its receptor at equilibrium (i.e. the binding affin-
ity) was not possible until long after the theory was first pos-
tulated, and identifiable and ultimately purifiable molecular
receptors became routinely available, thus enabling direct
measurements of binding affinity and guiding most early-
stage discovery efforts. Historically, the dissociation constant
Kd and its proxies IC50/EC50 (i.e. the drug concentrations lead-
ing to the half-maximal inhibition of a biological activity)
have been assumed for decades to be a valid surrogate for
in vivo efficacy. However, recent studies have shown that the
kinetics of drug–receptor binding could be just as important
or even more important than affinity in determining drug
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efficacy,4–6 particularly when the duration of the pharmaco-
logical effect is a significant component of in vivo efficacy.
The time a ligand spends at its receptor binding site, referred
to as the drug–target residence time (tr) and expressed as the
inverse of the dissociation rate constant (tr = 1/koff), is often a
better predictor of efficacy than is binding affinity.4,6,7 A drug
with a longer residence time on a given receptor can be kinet-
ically selective for that receptor over another one, even if the
affinity for both receptors is comparable. Conversely, the ex-
tended, non-physiological drug occupancy of the target recep-
tor may cause toxicity;8–10 thus, drugs with faster dissociation
rates may be preferred in terms of drug safety, and may also
lead to an increase in the therapeutic index (the ratio be-
tween a drug's toxic dose and its efficacious dose). From the
association standpoint, a faster-binding drug, characterised
by a high on-rate, may be desirable when targeting a short-
lived receptor.11

While the concepts underlying the rational optimisation
of binding affinity are relatively well understood, the same
cannot be said for binding kinetics. This can be ascribed
to a still poor comprehension of the molecular determi-
nants of binding kinetics, compared to those of binding
affinity, which are linked to the fundamental difficulty in
characterising transient states. Binding affinity is calcu-
lated from the free energy difference between the bound
and unbound states, which are both stable and typically
easily observable. Association and dissociation rates rely
on the height of the free energy barrier separating those
states. However, the atomic arrangement of the drug and
the receptor at this point of highest free energy (namely
the transition state, TS) has only ephemeral existence and
is thus difficult to identify. Understanding the molecular
interactions taking place between drug and receptor at
this difficult-to-observe transition state is thus of pivotal
interest for moving towards a rational control of drug
binding kinetics in drug discovery.5

The rational optimisation of protein–ligand interactions
paves the way to the control of drug physiochemical behav-
iour with relevant therapeutic implications for drug efficacy
and drug safety. In the present review, we discuss both the
experimental and the theoretical techniques that are cur-
rently used for characterising protein–ligand and receptor–
drug complexes (un)binding kinetics. In particular, we focus
on the most recent studies that explicitly, functionally and/or
structurally put a focus on the residence time of ligands in
their protein binding sites as a crucial molecular determinant
of their mode of action.

The theory behind protein–ligand
association and dissociation
processes
Thermodynamics and kinetics of protein–ligand complexes

For binding to occur, the initial contacts/collisions between a
protein molecule and a ligand have to form an encounter

complex, for which molecular diffusion plays a decisive
role.12 Molecular diffusion, which originates from molecular
kinetic energy (or heat, thermal energy), is the entropy-driven
process that guides the formation of this complex. In a pro-
tein–ligand–solvent system, the diffusion (or the random
Brownian motions) of solute molecules has two origins: (i)
the kinetic energy of the solute molecules themselves; and
(ii) collisions of the large solute with the small water mole-
cules, which move with different velocities in different ran-
dom directions. At constant temperature and pressure, the
motions of individual water molecules resulting from their
atomic kinetic energy could lead to the maximisation of the
solvent entropy. It seems likely that the heavy Brownian bom-
bardment from a large amount of water molecules may play
a role in facilitating the rotations, translations, and wander-
ings of the solute molecules and ultimately, the accidental
collisions among them.13 The long-range electrostatic attrac-
tion can promote association in the case of two solute mole-
cules with opposite charges, thus allowing them to overcome
the diffusion limit.14

The collision theory was the first attempt to provide an an-
alytical description of the dependence of the rate constant of
a reaction on the temperature and the activation energy. The
relation is expressed by means of the Arrhenius equation:15

(1)

where Ea is the activation energy of the process and T is the
temperature. The pre-exponential factor A, also called the fre-
quency factor, is a constant that can be determined experi-
mentally or numerically, and it describes the number of
times two molecules collide. Notably, not every collision re-
sults in the expected product, since a proper orientation of
the two colliding species is also required. Within the collision
theory, the pre-exponential factor can be defined as follows:

(2)

where dAB is the collision radius between two particles A and
B, kB the Boltzmann factor, T is the temperature and μ is the
reduced mass of the system. The Arrhenius rate law has been
widely used to determine the energies for the reaction bar-
rier, ignoring any mechanistic considerations, such as
whether one or more reactive intermediates are involved in
the conversion of a reactant to a product. However, the colli-
sion theory deals with gases and does not account for struc-
tural complexities in atoms and molecules.

In order to resolve this discrepancy, the transition state
theory was developed in the 30s by Henry Eyring, Meredith
Gwynne Evans and Michael Polanyi. This theory moved from
the foundations of thermodynamics to give a representation
of the most accurate pre-exponential factor that yields the
corresponding rate, assuming a special type of chemical equi-
librium (quasi-equilibrium) between reactants and activated
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transition state complexes.16,17 There are three basic concepts
behind the transition state theory: (i) rates of reactions can
be studied by examining activated complexes (the so-called
transition states) that lie near the saddle point of a potential
energy surface; (ii) the activated complexes are in a special
equilibrium (quasi-equilibrium) with the reactants; (iii) the
activated complexes can convert into products, and kinetic
theory can be used to calculate the rate of this conversion.
Even within this theoretical framework, absolute reaction rate
constants are extremely difficult to calculate. An accurate de-
scription of the potential energy profile of the system is re-
quired, and this is particularly challenging for the transition
states, which are typically high-energy, ephemerally existing
states. Nevertheless, transition state theory is extremely help-
ful in offering a qualitative description of how chemical reac-
tions take place and it has been successfully applied to deter-
mine standard enthalpy, entropy and Gibbs energy of
activation, once the rate constant has been experimentally de-
termined (Fig. 1).17 For the reaction between a ligand (L)
binding to a protein (P) to form the bimolecular complex
(PL), we can consider the simple equilibrium:

P + L ⇋ PL (3)

This two-state mechanism comprises a single elemen-
tary step—the binding (or unbinding) of the drug—with-
out any intermediate states; it suffices to illustrate several
key points, although drug binding may often involve, as
already stressed, one or more intermediates.7 The binding
affinity is described by the dissociation constant Kd, which
is the ratio of the product and reactants concentrations at
equilibrium:

(4)

At equilibrium, Kd corresponds to the drug concentration
at which half the receptor binding sites are occupied, and it
is directly related to the free energy difference between the
bound and unbound states, ΔGd.

In contrast to Kd, which is determined solely by stable mo-
lecular interactions between the drug, receptor and solvent,
the rate constants kon and koff depend on transient interac-
tions along the binding pathway. Specifically, they are related
to the highest free energy barrier—the transition state—that
separates the bound and unbound states:

(5a)

(5b)

with being the free energy difference between reactants

and the TS, and between the complex and the TS

(Fig. 1). Thermodynamics and kinetics of binding are linked
via the kinetics of half reactions (Fig. 1) as follows:

(6a)

(6b)

(6c)

This relation is particularly interesting as it highlights
how, at least in principle, the free energies of the unbound
and bound states and of the transition state can be varied in-
dependently of one another. Destabilising only the transition
state decreases both rates without altering affinity; con-
versely, stabilising the transition state increases rates.
Destabilising the bound state weakens affinity and increases
the off-rate without altering the on-rate, whereas altering the
energy of the unbound state affects the on-rate and the affin-
ity only. In practice however, achieving any of these ‘corner
cases’—the ‘pure’ alteration of just two of the constants Kd,
kon and koff without affecting the third—is difficult. Notably,
changes in koff can result in no measureable effect on Kd if
there are compensatory changes in kon. In such a case, ligand

Fig. 1 A scheme of the energetic landscape of the complex (PL)
formation between a protein (P) and a ligand (L). TS represents the
transition state, Ea is the activation energy of the process, ΔGd is the
difference between the free energies of the reactants and of the
product, the free energy difference between the reactants and

TS, and the free energy difference between the product and

the TS.
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optimisation based on affinity alone would hide the molecu-
lar determinants of binding kinetics behind an unchanging
Kd. As such, QSAR models that explicitly resolve kon and koff
can be more reliable than those based on binding affinity al-
one.5,18,19 From this perspective, much attention has been re-
cently focused on the impact of including kinetics informa-
tion in the optimisation steps of a drug discovery campaign.
The residence time, tr = 1/koff, and complex half-life, t1/2 =
lnĲ2/koff), are useful common measures of binding kinetics.
In a simple two-state mechanism, for instance, a typical
nanomolar affinity drug that binds at the maximal, diffusion-
limited on-rate (kon = 109 M−1 s−1)4 would have a residence
time of ∼1 s. It is worth noting that other than the on-rate, tr
and t1/2 do not depend on drug concentration. Thus, even
when the free concentration of a long-residence time drug
falls below the Kd, a significant population of receptors will
still be occupied by the drug and the pharmacological effect
will be sustained.

We want to stress at this point that on- and off-rates repre-
sent elementary mechanistic steps only for a two-state pro-
cess. In the more common, non-two-state mechanisms, the
apparent rate constants consist of the multiple elementary
rate constants describing the transitions between unbound,
intermediate and bound states. Such a possibly composite
nature—indeed, the mere existence of a non-two-state mecha-
nism—must be kept in mind, especially when observing
counterintuitive binding kinetics.20

Protein–ligand binding models

In the early stages of pharmaceutical research, the concept of
shape complementarity in biomolecular recognition was first
introduced by Fischer as early as 1894. The prerequisites of
his “lock-and-key” (Fig. 2a) model are that both the protein
and the ligand are rigid and that their binding interfaces per-

fectly match. As a result, only the correctly sized ligand (the
key) can insert into the binding pocket (key hole) of the pro-
tein (the lock). Binding within the lock-and-key model is
dominated by changes in entropy due to desolvation of the
two solutes (most commonly a protein and a ligand in a drug
discovery perspective) during the process of complex forma-
tion.21,22 However, the experimental evidence that a protein
is also able to bind to a ligand, even in the case where their
initial shapes do not match well, cannot be explained. In-
creasing application and advances of experimental tech-
niques, such as X-ray crystallography, NMR spectroscopy and
fluorescence, to the study of biomolecular processes shed
light on the extremely dynamic nature of macromolecules. In
computational chemistry, mostly because of limited computa-
tional resources, early structure based drug discovery studies
also relied on rigid conformations of the molecular targets of
interest. However, over the years it has been clearly recog-
nized that completely neglecting multiple conformations may
lead to wrong evaluations. All these observations together
contributed to raising awareness on protein conformational
plasticity, as a matter of fact, and the concepts of “induced-
fit” and “conformational selection” were established to in-
clude the more complex aspects involved in biomolecular
recognition.23

In the induced fit model (Fig. 2b), the binding site in the
protein is considered flexible and the interacting ligand in-
duces a conformational change at the binding site. Because
the induced fit mechanism takes into account only the con-
formational flexibility of the ligand-binding site, this model
seems to be suitable for proteins showing merely minor con-
formational changes after the ligand binding. In addition,
both the lock-and-key and the induced fit models treat the
protein as a single, stable conformation under given experi-
mental conditions. Typical induced fit binding has been
demonstrated in the designed host–guest systems24,25

through combinatorial chemistry, NMR spectroscopy and
computational chemistry techniques. These studies, in con-
junction with the kinetic model calculations, demonstrate
that binding by induced fit requires a pre-existing comple-
mentarity between the interacting species.26 The lack of per-
fect surface complementary between binding partners neces-
sitates multiple tentative collisions: once initially favourable
contacts (i.e. characterised by a negative enthalpy change) be-
tween the matched sites occur, they are supposed to be
strong enough to provide the encounter complex with enough
longevity so that induced fit takes place within a reasonable
time.26

As most proteins are inherently dynamic, the conforma-
tional selection model (Fig. 2c) takes into account this inher-
ent flexibility and relies on the free energy landscape theory
of protein structure and dynamics.27–30 It postulates that the
native state of a protein does not exist as a single, rigid con-
formation but rather as a vast ensemble of conformational
states/substates31,32 that coexist at equilibrium with different
populations, according to the distribution rules of statistical
mechanics. Ligands bind the state of the protein that leads

Fig. 2 The three different binding models of proteins and ligands, i.e.
the lock and key (a), the induced fit (b), and the conformational
selection (c). The protein is represented in blue and the ligand is
represented in red.
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to the most energetically favourable complex, causing a shift
in the population distribution of these states.

We would like to emphasize that many efforts in the world
of biophysical chemistry are still focused on the theory of
biomolecular recognition; nonetheless, even more compli-
cated mechanisms than those presented here may be plausi-
ble. A unified model in which induced-fit and conformational
selection act in parallel could be also considered.33

Experimental techniques

The experimental determination of kinetic constants of
chemical reactions has a longstanding tradition in physical
chemistry, stemming from the pioneering work of Waage and
Guldberg in 1864 and being an already established discipline
in the early years of the 20th century with the work by van't
Hoff. However, the relatively recent availability of molecular
biology techniques to produce large amounts of purified pro-
teins and to master several types of polypeptide structures
and sequence labelling/editing allowed, only in the last two
decades, the extensive and routine measurement of kinetic
constants of protein–drug interactions at several levels of pre-
cision and accuracy.

Radioligands

One of the very first techniques used for the biochemical
characterisation of the formation of specific drug–receptor
complexes was the radioligand binding assay, especially for
GPCRs.34 For decades, this method has essentially been the
only one allowing for the detection of the binding of high-
affinity radioligands to their receptors. Sampling over time al-
lows the determination of on- and off-rates of the radioligand
binding. Although this type of radioligand binding assay
mainly gives information about the labelled ligand itself, this
method has been very valuable for the detection of different
ligand binding steps and allosteric regulation.

As radioligand binding assays require separation of bound
ligands from free ligands, the equilibrium shifts during this
process and sometimes only a part of receptor–ligand com-
plexes may remain bound to receptors. For the determination
of the kinetics of nonradioactive competitive ligands, several
assay formats have been proposed;35 but as shown in these
studies, the number of samples required increases dramati-
cally and only indirect information regarding the ligands' res-
idence time can be acquired. The scintillation proximity as-
say (SPA) allows for the study of radioligand binding in a
homogeneous system, without the need to separate non-
bound components.36 This method was very useful for high
throughput screening,37 but it has not been employed further
in radioligand binding kinetic studies. The use of dual-point
IC50/Ki value determination for characterisation of a competi-
tor's residence time has been suggested38 (i.e. an unlabelled
competitor is co-incubated with a radioligand for either a
short time or a long time, ranging from minutes to several
hours, and their corresponding IC50 or Ki values are calcu-
lated). This approach can be used only for ligands with sig-

nificantly long residence time. Another limitation of this
method is the preparation of specific “SPA beads” for particu-
lar assays, which requires high-quality receptor preparations
in large enough quantities for immobilisation.37 As the tech-
nology for the preparation of assay plates and beads con-
tinues to develop, the SPA method may become a very inter-
esting alternative to the available approaches.

A recent, notable example is given from the radioligand-
based determination of unbinding kinetics that has been re-
cently shown for the cholesterol-binding translocator protein
(TSPO),39 a protein that increases endogenous steroid levels,
inducing beneficial effects in different pathological condi-
tions. A relatively poor relationship between binding affinity
and steroidogenic efficacy for compounds possessing
phenylindolylglyoxylamide structure (PIGAs) prompted the
authors to investigate the ligands' kinetics. In order to inter-
pret the outcomes, they coupled a kinetic radioligand bind-
ing assay to a theoretical mathematical model for the de-
scription of equilibrium kinetics.40 This allowed the
observation of a positive correlation between drug–target tr
and compound ability to stimulate steroidogenesis and its
anxiolytic activity.

Fluorescence

During the last decade, fluorescence methods have become
serious alternatives to radioactive methods for detection,
monitoring and visualization of processes connected with
cells and their components. Fluorescent ligands were first
used for obtaining information about receptor localization at
the subcellular level about 40 years ago,41 but their usage as
an alternative to radioligands for the characterisation of li-
gand binding properties has not been very successful so
far.42 However, fluorescence has several features that can be
successfully implemented to develop methods for the charac-
terisation of ligand binding to receptors. Among these
methods, assays using fluorescence polarization-based fluo-
rescence anisotropy (FA), Förster/fluorescence resonance en-
ergy transfer (FRET), time-resolved-FRET (TR-FRET) and fluo-
rescence correlation spectroscopy (FCS) have found wider
recognition and applications in GPCR studies.42,43 In particu-
lar, FCS measures fluctuations in the fluorescence intensity
of fluorescently labelled particles diffusing through a small il-
luminated detection volume (the confocal volume), allowing
free and receptor-bound ligands44 to be distinguished based
on their different diffusion rates. The advantage of FCS is
that it can be used at a single cell level and actual quantities
of ligands can be measured, as was recently demonstrated
for different GPCRs.45,46 Moreover, the localization of recep-
tors, as well as the formation of complexes or aggregates of
receptors, can be monitored by mean of FCS at the same
time.47

The FA method is based on the phenomenon that the
fluorescent probes, when excited by plane polarized light,
emit light with a certain degree of polarization depending on
the fluorophore's rotational freedom within the fluorescence
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lifetime. Therefore, since the formation of a ligand–receptor
complex increases the level of polarization, the ligand bind-
ing process can be measured and monitored in real-time by
means of this technique. The FA method has been success-
fully used to characterise binding of ligands to peptide recep-
tors such as chemokine CXCR4,48 melanocortin MC4,49 mus-
carinic50 and serotoninergic51 receptors and binding of
nucleotides to G proteins.51 FA assay is ratiometric, therefore
its signal can only be detected if the ratio between the bound
and free forms of the fluorescent species has significantly
changed.52 This happens if the concentrations of receptor
and ligand are in a comparable range, and at the level of the
dissociation constant of their interaction. High concentra-
tions of receptors are usually difficult to achieve with natural
tissues; therefore, first attempts to implement this method
have been performed with reconstituted systems.48

Chromatography

Chromatography has traditionally been used as a separative
technique. However, it may also be used to investigate the
distribution properties per se of an analyte. An example of
this application is the chromatographic determination of par-
tition coefficients,53 which provides a rapid alternative to tra-
ditional methods for high-throughput work. Giddings and
Eyring published their statistical approach to describe molec-
ular migration in chromatography in 1955, considering the
separation process as a Poisson distribution and the chro-
matographic peak as the probability density function for the
elution of a solute as a function of time (assuming a single
mode of binding). The shape of a chromatographic peak may
be completely characterised by its zero (the area) and first
(center of gravity) moments.54 Thus, by measuring the chro-
matographic profiles of a retained and an unretained com-
pound, one can directly determine kon, koff and Kd (assuming
the receptor loading of the stationary phase is known). To en-
sure the kinetics are measurable, it is necessary to employ
flow rates (u) that are sufficiently fast that equilibrium on the
column cannot be established, whereupon peak broadening
through kinetic effects occurs and can be modulated by tai-
loring the temperature conditions and mobile-phase compo-
sition. Talbert and coworkers55 illustrated the technique by
determining the binding characteristic of L-tryptophan, an ar-
chetypal plasma binding probe, using dimethyl sulfoxide
(DMSO) as the unretained reference time. A “critical ratio” (η)
can be used that quantifies the kinetic peak broadening and
allows the separation of compounds according to their ki-
netic properties:

(7)

where EĲtR) and EĲt0) are the mean times of the chromato-
graphic peak of a retained and an unretained compound, re-
spectively, and σR and σ0 are the variances of the correspond-
ing peaks. For the kinetics to be measurable, this ratio must
be greater than 1, thus allowing the estimate of a kinetic fac-

tor k that can be used for the prioritisation of the examined
compounds:

k = u(η2 − 1)σR/η
2 (8)

Surface plasmon resonance spectroscopy

The major modern and routinely used technique for the de-
termination of kon and koff of protein–ligand (un)binding pro-
cess is surface plasmon resonance (SPR) spectroscopy. SPR is
an optical-based method that measures the change in the re-
fractive index near a sensor surface, and has the advantages
of being label-free and capable of real-time quantification of
protein–ligand binding kinetics and affinities.56 The sensor
surface is a thin film of gold on a glass support (with particu-
lar reference to Biacore instruments), which forms the floor
of a flow cell through which an aqueous solution flows con-
tinuously. The protein receptor molecules are immobilized
on the sensor surface, and the ligand (i.e. analyte) is injected
into the aqueous solution to detect the binding reaction. As
ligands bind to immobilized receptor molecules, an increase
in the refractive index is observed. After a desired association
time (i.e. when all binding sites are occupied), a solution
containing no ligands is injected through the flow cell to dis-
sociate the ligands from the proteins. As the ligands dissoci-
ate from the immobilized protein, a decrease in refractivity is
observed. The time-dependent response unit (RU) curves can
then be used to calculate the kinetic association rate constant
kon and the dissociation rate constant koff.

22

The capacity of SPR to measure the real-time binding data
makes it well suited to binding kinetics analyses, although
the mass transport limitation makes it difficult to accurately
measure kon values faster than ∼106 M−1 s−1, as stated by Van
der Merwe et al.57 Compared to isothermal titration calorime-
try (ITC), SPR has the ability to measure higher binding affin-
ities, typically in the ranges of 10−6–10 μM. For SPR, the
highly reproducible affinity measurements, in conjunction
with precise temperature control, allow the estimation of
binding enthalpy via van't Hoff analysis.58

Although this measurement is not as rigorous as in the
case of ITC, the procedure has the practical advantage of
requiring much smaller amounts of protein sample.57

Moreover, although the traditional SPR technique is not
well suited to high-throughput screening (HTS), recent de-
velopments in SPR instrumentation, sensor chip design
and sample preparation strategies show that SPR has a
high potential for HTS, as recently shown for membrane
protein ligands.56,59 However, protein immobilization may
affect the conformational and translational/rotational en-
tropies and it therefore may influence the association rate
evaluation.60

Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is well
suited for the identification and characterisation of
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molecules that can be ideally placed between “target to trac-
table hit” and “tractable hit to candidate”, when resonances
of the ligand (i.e. chemical shifts) are observed and no label-
ling is required, minimal amounts of protein are needed and
there is no protein size limitation.

Dynamic events can be observed by chemical exchange,
which occurs when a nucleus exchanges between environ-
ments with structural characteristics that lead to a difference
in the local magnetic environment. These may be intra-
molecular or inter-molecular processes, the former including
motions of protein side chains, helix–coil transitions of
nucleic acids, unfolding of proteins, conformational equilib-
ria, tautomerization; the latter binding of ligands to macro-
molecules, protonation/deprotonation equilibria of ionizable
groups.61 The exchange can be slow, intermediate or fast
according to the timescale (or frequencies) at which they oc-
cur relative to NMR observables.

A proof of concept for measuring the unbinding rates of li-
gands from proteins has been provided by Pons and co-
workers measuring the calcium ion koff when released from
calmodulin.62 The timescale of the process can be deter-
mined by exploring the static magnetic field dependence of
the dispersion profile63 obtained by means of the so-called
spin echo experiments.64 In this case, the exchange contribu-
tion to transverse relaxation (i.e. the magnetization decay
measured perpendicular to the static magnetic field) for a
two-state system (in the fast exchange limit) is given by the
following:

Rex = papbΔω
2/kex (9)

where pa and pb are the populations of the two states, Δω is
the frequency difference between the chemical shifts of the
two sites and kex is the sum of the pseudo-first order rate
constants for the direct and reverse processes. The off-rate
for the highest-affinity calcium binding site of the
synaptotagmin I C2A domain obtained from NMR data (2.0 ×
103 s−1) is similar to the one derived via laser photolysis on
caged calcium.65

One pharmacologically relevant example of a protein–li-
gand kinetic study66 has been performed on the interaction
between the highly soluble chromogenic peptide substrate
(substrate C) and the active human immunodeficiency
virus-1 (HIV-1) protease (PR), a homodimer that constitutes
a prime target of drugs directed against AIDS.67 The system
was observed to be in slow exchange; hence, the difference
in chemical shift (Δω) between the free (P) and bound (PL)
form peaks of the protease, satisfies the following condi-
tion:

(10)

where [P] is a pseudo-first-order rate constant.

This allows the determination of the limiting values for kon
and koff, <2 × 104 M−1 s−1 and <10 s−1, respectively. 3D

NOESY66 spectra of the complex allowed the determination
of exchange rate of the substrate orientation relative to the
two monomers of PR, leading to a protein-substrate koff be-
tween 1 and 5 Hz, in agreement with the line broadening
observed during the titration. This result implies that the
substrate dissociates from PR during the domain
reorientation, otherwise the koff estimated from the NOESY
experiment and line broadening would differ. In contrast, it
was found that the inhibitor KNI529 (a small and more
tightly bound ligand) reorients without dissociation from
PR.66

The potential for utilising the ubiquitous fingerprinting
1H–15N HSQC NMR experiment68,69 to determine thermody-
namic quantities, such as dissociation constants and kinetics
from a single set of spectra corresponding to a protein–pro-
tein or protein–ligand titration, is alluring.

A chemical shift titration method based on the line shape
analysis has been recently developed, where co-variation of
the total protein and ligand concentrations allows for the de-
termination of precise Kd values for 1 : 1 protein–protein (i.e.
ubiquitin-Mms2) interactions and of kinetics in the fast ex-
change regime.70 Due to the general consensus that line
shape analysis is mainly a qualitative, or semi-quantitative
method,71 the accuracy of line shape analysis in the present
study was determined by conducting quantum mechanical
NMR simulations of the chemical shift titration methods,72

whereas theoretical and experimental precision for koff has
been determined using Monte Carlo statistics alongside clas-
sical line shape analysis. The lower koff limit is determined
by the amount of line broadening, and the resulting impact
on signal to noise ratio. The upper koff limit was chosen as it
represents the approximate Kd value (1.8 mM), beyond which
the biological relevance of an interaction becomes question-
able. Despite the presented application being referred to as
multidimensional NMR spectroscopy, its extension to mono-
dimensional spectroscopy should be quite straightforward in
the near future.

Interestingly, it has been recently demonstrated73 that hy-
drogen bond scalar couplings (i.e. an observable that encodes
information about the distance and connectivity of atoms)
can yield information on the residence times of molecular
complexes in solution. Hydrogen bond scalar couplings were
discovered in the late 90s as direct evidence of the existence
of hydrogen bonds, initially observed for the hydrogen bonds
of nucleic-acid base pairs and protein secondary structures
and successively for the molecular interfaces of nucleic
acids,74 protein–nucleic acid complexes,75 and other protein–
ligand complexes.76 The molecular exchange of binding part-
ners via the disruption and reformation of a complex alters
the values of inter-molecular hydrogen bond scalar couplings.
The residence time of a complex can be related to the appar-
ent values of the inter-molecular hydrogen bond scalar cou-
pling constants measured by quantitative J-modulation spin-
echo difference experiments.75,77 The observation of inter-
molecular hydrogen bond scalar couplings is possible only if
the residence time is sufficiently long (≳10–2 s).
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X-ray scattering

Single crystal diffractive techniques have been used over
many decades for the determination of the atomic level pro-
tein structure of biomolecules; therefore, X-ray scattering of
molecular solutions could be used for the analysis of the
binding properties of complexes. The scattering profile of
such a mixture can be observed by means of small angle and
wide angle X-ray scattering (SAXS an WAXS, respectively), and
can be represented as a linear combination of individual
scattering intensity contributions from the different molecu-
lar species.78 In the absence of high resolution structural
models, the one-dimensional SAXS data can be utilised to
generate low-resolution (typically, 30–10 Å) three-dimensional
models of macromolecules and their assemblies in solution.
The minimum number of species can be obtained with sin-
gular value decomposition (SVD) or principal component
analysis (PCA), although difficulties could arise from the
presence of long-living transient protein–ligand structures.79

In perspective, the kinetics of protein–ligand interaction,
as well as the dynamics, can be monitored via the time evolu-
tion of X-ray scattering of the molecules of interest in solu-
tion. Spatial resolution and unbiased retrieval of structural
information are lost when the X-ray scattering pattern from
an ensemble of randomly oriented and unequally spaced
macromolecules is observed: nevertheless, changes in the
overall dimension/mass can be measured while higher reso-
lution information (relative position of different subunits, do-
mains, or secondary structure elements) shows fingerprints
in the WAXS region. In 2008 Cammarata and coworkers80

demonstrated that in a time-resolved WAXS experiment (TR-
WAXS), a laser pulse is used to trigger the protein structural
change, and transient structures are then followed by delayed
X-ray pulses. Structural changes occurring in the sample
leave their ‘fingerprints’ measured in the differences between
the signals before and after the laser initiates the reaction
and can be monitored as a function of time. The authors ex-
plore the case of haemoglobin (Hb) interactions with carbon
monoxide (CO), photolyzing the Hb–CO bonds by means of a
laser pulse in the green light wavelength (527 nm), thus trig-
gering a tertiary relaxation that is dominated by local struc-
ture changes. Strain at the Hb subunit interfaces drives a
large-amplitude quaternary structural transition leading to
T-state Hb. Finally, CO recombines bimolecularly with T-state
Hb to regenerate the R-state. Data patterns representing ter-
tiary relaxed proteins (200 ns) and the fully deoxygenated
ones (100 μs) can be identified, thus demonstrating that the
time resolution of TR-WAXS can reach the nanosecond time-
scale. Therefore, in the future, this technique can be success-
fully adapted, extended and applied to the case of ligands
dissociating from proteins.

X-ray free-electron lasers (XFELs) represent an exciting
new alternative if sub-picosecond time resolution is needed,
despite the fact that they are still in an immature stage.
XFELs are able to produce extremely short (∼10 fs) X-ray
pulses with a number of photons ∼102–103 times higher than

the ∼100 ps pulses produced at synchrotrons.81 XFELs have
been used to perform the first steady-state serial femtosecond
crystallography (SFX) experiments on protein crystals.82,83

The signal evolution at timescales longer than a few tens of
ps, can usually be attributed to exchanges in the population
of a finite set of different molecular species, each with a well-
defined time-independent structure. When a plausible kinetic
model is available, it can be used to analyse the data in terms
of a generalized approach (GA) that retrieves the fingerprint
of a given physical species on the basis of its predicted time
evolution.84

Computational studies

Binding and unbinding kinetics are emerging as key factors
for predicting drug efficacy in living organisms. As men-
tioned in the previous section, there are several experimental
techniques for studying (un)binding kinetics, but there are
currently no efficient computational approaches for
predicting absolute kinetic parameters. The few attempts
reported in the literature have mainly been based on brute-
force molecular dynamics (MD) simulations, which are highly
demanding in terms of time and computational power. In
MD, Newton's equation of motion is integrated for each atom
at each step of the simulation to give a detailed, all atom de-
scription of the evolution of the system over time. However,
MD has typically suffered from the so-called timescale prob-
lems, as accessible simulation times have traditionally been
shorter than those required by slow biomolecular processes,
such as binding/unbinding, to take place. Thus, several
methods have been developed to more efficiently improve
sampling and explore kinetics by means of computer simula-
tions. Herein, we report on recent applications of computa-
tional methods for the investigation of binding kinetics.

Plain MD

Referring to standard simulations of ordinary length, Huang
and Caflisch simulated the spontaneous dissociation of 6
small ligands from the FK506 binding protein (FKBP).85 One
hundred independent, relatively short runs, lasting up to 20
ns each, were carried out for each of the six ligands, whose
affinities were in the mM range. A network analysis was built
based on inter-molecular distances between the ligands'
heavy atoms and eight residues in the active site. A cutoff dis-
tance of 15 Å was chosen between the ligand and the active
site center of mass to designate the unbinding event. A single
exponential fit was then applied to the cumulative distribu-
tions of the dissociation events recorded in each trajectory to
calculate the unbinding time of each ligand. Low energy bar-
riers between different binding poses, compared to the rate-
limiting step of dissociation, led to the simple exponential
time-dependence of dissociation kinetics.

One hardware-based solution that translates into a brute
force approach to simulations of biomolecules has been ap-
plied using the massively parallel supercomputer ANTON,
specifically devised by the D. E. Shaw Research group to
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perform long MD simulations. By relying on such architec-
ture, the first examples of unbiased MD for spontaneous pro-
tein–ligand binding simulations were reported, and kinetic
information was extracted. Starting from a completely un-
bound state and without employing any driving forces, the
binding processes to Src kinase by the anti-cancer drug
Dasatinib and the inhibitor PP1 were investigated at atomic-
level detail. Independent runs for a total of 150 μs simulation
time were carried out, which successfully reproduced the cor-
rect, crystallographic binding mode for both ligands. Based
on the single binding event recorded for Dasatinib and the
three observed for PP1, an estimate for the on-rates was
given, with a kon of ∼1.9 s−1 M−1 in fairly good agreement
with the experimental value of ∼5 s−1 μM−1 for the former li-
gand. Extensive MD simulations of the β2 and β1 adrenergic
receptors, pharmaceutically relevant examples of G-protein
coupled receptors, were also performed in order to elucidate
the binding mechanism of known agonists and antagonists.86

The direct calculation of the on-rate was complicated by vary-
ing ligand concentrations to mimic their partition into the
lipid bilayer: for Alprenolol, kon of 3.1 × 107 s−1 M−1 was cal-
culated, which is in line with the experimental value of about
1.0 × 107 s−1 M−1. Interestingly, the dominant pathway lead-
ing to the protein binding pocket was elucidated and
explained as a two-step process. The desolvation prior to li-
gand entry in an extracellular vestibule is the first, rate-
limiting step, which acts as a kinetic bottleneck for the sub-
sequent ligands' access to the binding pocket. Importantly,
both studies underline how water desolvation influences the
kinetics of binding.

An elegant approach to the problem of kinetics in compu-
tational studies is the application of Markov State Models
(MSMs), a powerful statistical tool that allows the extraction
of both equilibrium thermodynamic and kinetic properties
from long MD simulations.87 A crucial step affecting the
quality of an MSM is the identification of the so-called meta-
stable states. To reach this end, the configurational space vis-
ited by the system must be grouped into its most relevant
states. Classifying data items into groups is a general issue,
which is typically addressed by means of the clustering tech-
nique. Different clustering algorithms exist and have been
successfully applied to computer aided drug design over the
years, ranging from docking pose classification88,89 to analy-
sis of MD simulations.90–97 Construction of an MSM relies on
clustering to give a coarse grained representation of the
metastable states of a system. Geometrically similar configu-
rations are typically assumed to possess similar kinetic prop-
erties. In this view, intra-state transitions are considered to
be faster than inter-state transitions. The model is Markov-
ian, meaning that a transition from state i to state j only de-
pends on state i and not on previously visited states. Once
the coarse grained representation has been identified, a tran-
sition matrix is built and the interconversion rate between
the metastable states can be estimated. Although an ade-
quate sampling is still needed as a starting point to build the
model, a clear advantage is that the method can be applied

to aggregates of long MD simulations carried out in parallel,
instead of relying on a single, or a few, μs-long simulations.

A detailed reconstruction of the benzamidine binding pro-
cess to trypsin was obtained from analysis of 495 indepen-
dent MD runs, for a total simulation time of about 50 μs.98

Construction of several MSMs allowed for the identification
of metastable states, the rate-limiting step and the transition
states involved. The on- and off-rates were estimated from
the mean first passage time (MFPT) for the direct and inverse
reactions, calculated as the average time taken to go from the
unbound to bound and from the bound to unbound clusters,
respectively. While evaluating kon, the ligand concentration
must also be taken into account. Both results deviate by at
least one order of magnitude from the experimental values,
with the typical larger uncertainty on the koff, most likely due
to poor sampling of dissociation events or to intrinsic force
field limitations.

The same protocol was subsequently followed to study the
carboxy-thiophene fragment association with AmpC B-
lactamase.99 Besides reproducing all of the known binding
poses reported from crystal structures, a new one was identi-
fied that possessed peculiar kinetic properties. Specifically,
the closure of a loop stabilises such a binding mode, provid-
ing an explanation for the highest residence time calculated
for the cluster from the simulations.

Application of MSMs to MD simulations (65 and 200 ns
long) of the lysine-, arginine- and ornithine-binding protein
in the presence of their ligand L-arginine allowed the identifi-
cation of the involvement of both conformational selection
and induced fit models in the binding mechanism.100 In a
subsequent study on the choline-binding protein belonging
to the same protein family, a flux analysis was combined with
the previous framework. This allowed the quantitative charac-
terisation of the contribution from the two models, resulting
in the predominance of the conformational selection
mechanism.101

Breaking down complex transitions into Markov model
microstates representing apo and holo states of trypsin was
the strategy recently adopted by Plattner and Noé to under-
stand the binding mechanism of benzamidine.102 The path-
way leading to the association occurs on the same timescale
of the interconversion of the apo states of the protein. This
first step, dominated by conformational selection, is followed
by a population shift towards a bound state, implying the in-
duced-fit. On- and off-rates were evaluated from the MFPT,
with the calculated kon of 6.4 ± 1.6 × 107 s−1 M−1 being in ex-
cellent agreement with the reported experimental value of 2.9
× 107 s−1 M−1.

Another approach, based on classical MD simulations and
machine learning, was exploited by Decherchi et al. to eluci-
date how a transition state analogue, DADMe-imucillin-H, as-
sociates with purine nucleoside phosphorylase.103 Simulation
data were gathered for a total of 13 μs and a kinetic model
was derived, describing relevant intermediates and identify-
ing three different routes leading to ligand association to the
protein. The mean first time for binding was calculated from
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the simulations, and the obtained value of 216 ± 101 ns com-
pared well with 246 ns derived from experiments.

Recently, the adaptive multilevel splitting algorithm
(AMS104), a rare event sampling technique, was applied for
the first time to an MD simulation of protein–ligand unbind-
ing.105 The authors showed how the mean first passage time
for the dissociative process can be estimated from the time
spent by the system in nonreactive trajectory loops and in re-
active paths. The method was applied to determine the un-
binding time of trypsin from benzamidine. A total simulation
time of about 2 μs was collected, leading to an estimate of
the dissociation rate within the same order of magnitude as
the experimental value.

Biased approaches

Although reaching higher timescales is becoming increas-
ingly feasible, it is clear that the computational resources re-
quired are not easily affordable for most research groups.
These methods are also unsuitable for industrial use, where
dozens of compounds must be prioritised in the hit-to-lead
and the lead optimisation phases. Importantly, since the resi-
dence time (tr) of molecules can be in the order of seconds,
minutes, or even hours, directly determining (un)binding
rates via computational methods is extremely challenging.
Thus, smarter algorithms and effective practical solutions are
needed to tackle the problem of kinetic rates estimation.

In the effort to improve sampling and guide the explora-
tion of the configurational space of a system towards its slow
degrees of freedom, biased methods such as parallel temper-
ing, umbrella sampling, steered molecular dynamics,
temperature-accelerated molecular dynamics and meta-
dynamics (typically referred to as enhanced sampling
methods), random acceleration molecular dynamics and
scaled molecular dynamics, among many others, have been
specifically devised. Even if the application of such tech-
niques is typically aimed at reconstructing free energy sur-
faces (FES), we report here on their employment in recent
years for investigating protein–ligand binding.

In metadynamics (MetaD), exploration of the configura-
tional space is guided by adding a bias potential along spe-
cific collective variables (CVs). Such variables must be chosen
based on their ability to represent slow degrees of freedom
and distinguish the different states of the system. The bias
potential is added as a sum of Gaussian functions that are
deposited on points of the CV space that are visited, thus dis-
couraging the system from assuming configurations that
have already been explored and favouring sampling in differ-
ent regions of the CV space. In this way, the method allows
large free energy barriers to be overcome and thus facilitates
the efficient characterisation of complex FES. Different rep-
licas of the system are simulated at the same time in the
bias-exchange metadynamics (BE-META). In each replica, a
different CV is biased and exchanges between different rep-
licas are allowed.106 A set of 7 CV (including hydrogen bond
count and distances between ligand and target) was chosen

for the simulation of the binding process of a peptide sub-
strate to HIV-1 protease. Based on the BE-META simulations,
thermodynamic and kinetic models were derived and associa-
tion and dissociation rates were calculated, obtaining values
consistent with kinetic experimental data available for similar
ligands. The dissociation of a COX-2 selective inhibitor was
simulated by Limongelli et al. by means of well-tempered
MetaD, a formulation of MetaD that has been shown to offer
faster convergence properties.107 A path CV was used for bias-
ing the gating through two helices, while the position and
orientation of the ligand with respect to the protein were con-
trolled by means of a distance and a dihedral angle CV. Be-
sides the well-known binding mode for the ligand, a second
basin was identified while simulating the ligand unbinding,
which corresponds to a different pose inside the pocket with
good thermodynamic stability. Thus, the longer residence
time of the considered ligand was interpreted as related to
the rearrangement between these two stable binding modes.

Tiwary and Parrinello recently formulated a methodology
to determine kinetic properties from simulations biased via
MetaD.108–110 With a minimal additional computational cost,
pathways, binding rates and rate-limiting steps can be de-
rived. Thus, kon and koff were computed from MetaD simula-
tions of benzamidine unbinding from trypsin. The results
agreed well with the experimental values, and a detailed rep-
resentation, including transition states and rate-limiting
steps, was given. Application of this innovative methodology
to different ligand–target complexes for calculating kinetic
rates is extremely promising, but still rather time-consuming.

A system can be dragged from an initial to a final state
acting along a reaction coordinate by means of steered mo-
lecular dynamics (SMD).111 This computational technique in-
volves the application of a potential – typically a constant ve-
locity or force – to a subset of a system's particles along
predefined degrees of freedom. Critical parameters, on the
calibration of which particular care must be taken during
setup, are the pulling velocity and force constant applied.
The potential of mean force (PMF) can be reconstructed and
the free energy difference along the chosen reaction coordi-
nate calculated. In the context of protein–ligand binding, the
method can be employed to pull a molecule out of its bind-
ing site and determine the corresponding PMF profile.

The unbinding of two drugs, Sunitinib and Sorafenib,
from the human vascular endothelial growth factor receptor
2 (VEGFR2), was studied by Capelli et al. by means of
SMD.112 The distance between the ligand center of mass and
the centroid of the Sorafenib binding site was used as a reac-
tion coordinate to reconstruct the PMF profiles of the un-
binding process for the two molecules. The analysis reveals
that the PMF of Sorafenib (63.5 ± 7.2 kcal mol−1) is higher
than that of Sunitinib (29.6 ± 4 kcal mol−1), qualitatively in
agreement with the experimental koff and residence time
values (10−5 vs. 10−3 s−1) reported for the two drugs.

Umbrella sampling (US)113 was recently exploited to inves-
tigate the molecular features governing a mechanism of slow-
onset inhibition.114 In US, a harmonic restraining potential is
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applied to a series of windows that are equally spaced along
a reaction coordinate. The free energy profile in the consid-
ered space of the reaction coordinate can then be determined
via a reweighting procedure, typically the weighted histogram
analysis.115 The partial nudged elastic band method116 was
applied to generate intermediate steps leading from the
open- to the closed-conformations, both identified via X-ray
crystallography, of Mycobacterium tuberculosis InhA's
substrate-binding loop (SBL). The free energy profiles of dif-
ferent enzyme-inhibitor complexes were then determined via
US. The closed state of SBL was shown to be uniquely stabi-

lized by slow-onset inhibitors via an induced-fit mechanism,
unveiling the molecular basis of the slow-onset kinetics of
this class of compounds.

Site-directed mutagenesis experiments were combined
with temperature-accelerated MD (TAMD)117 by Guo et al. to
identify relevant protein residues in the unbinding pathway
of the antagonist ZM241385 from adenosine A2A receptor, a
prototypical GPCR.118 In TAMD, sampling is enhanced by
harmonically tethering a CV to a fictitious particle that is
subject to Brownian motion at a higher temperature. The un-
binding events of the antagonist were simulated, applying

Fig. 3 (a) Grp78 ligand prioritisation via Scaled MD.120 The ligand's scaffold is reported together with single ligand names and their substituents in
positions R1 and R2. The scaled MD based vs. experimental normalized residence times are represented in the right part of the figure, as reported
by Mollica et al. (the dashed line is the regression line of the four points represented in the graph). In the inset, the absolute values of residence
time are reported. (b) GK1 ligands prioritised according to the scaled MD-based methodology described in the text are reported and grouped
according to their molecular shape and computational residence times.128 Ligands 2, 6a and 7a (enclosed in the blue line) possess a linear shape
and have a short computational residence time (respectively 29, 26 and 25 ns; the last two values are relative to a racemic mixture, whereas in the
figure only the R entantiomer is represented for simplicity). Ligands 1, 3, 4 and 5 (enclosed in the red line) are T-shaped and have a longer compu-
tational residence time than the ones in the first group (105, 39, 93 and 99 ns, respectively).
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TAMD, and contacts with protein residues along the dissocia-
tion pathway were registered. Subsequent mutagenesis of the
residues identified allowed the determination of those more
significantly affecting the dissociation characteristics of
ZM241385. The authors noted how determinant the contribu-
tion from the MD simulations had been, as they recognized
the importance of residues that would otherwise have gone
unnoticed. This study undoubtedly highlights the potential
of optimized kinetic properties in the rational design of new
drugs.

Niu and co-workers119 made use of random acceleration
molecular dynamics (RAMD) to study protein–ligand unbind-
ing. In RAMD, a force in a random direction is applied to a li-
gand and after a set of MD steps a new random force is ap-
plied if the molecule has not moved by a predefined
distance, thus allowing a more extensive sampling of the con-
formational space. RAF kinase, a protein with a central role
in the conserved RAS–RAFMEK–ERK signal transduction
pathway for cell proliferation and survival, has been studied
by the authors, with particular focus on the unbinding pro-
cesses of the inhibitors PLX4720 and TAK-632 from B-RAF.
The ligands could successfully be distinguished according to
their binding energetics, in agreement with experimental ki-
netic data. Residue level information about the interactions
that are able to retain the ligands for longer residence times
was also provided by the study, suggesting new routes to the
synthesis of novel, promising therapeutic compounds.

Exploiting kinetics in drug discovery: ligand prioritisation via
scaled MD

The aforementioned methods are able to simulate dissocia-
tion events and can provide indications about the way disso-
ciation occurs; however, rates seem to be elusive. Moreover,
such advanced, system-dependent techniques are still unsuit-
able to be applied in a routine manner, as required in hit-to-
lead or lead optimisation phases of a drug discovery cam-
paign. This unavoidably calls for smarter algorithms and ef-
fective practical solutions to tackle the problem of exploiting
kinetic information in the development of new drugs.

Recently, a novel computational method has been
reported that addresses the challenge of predicting unbind-
ing kinetics of ligands in a relative manner.120 The require-
ment in terms of computational resources is lower compared
to other approaches. Therefore, application in the hit-to-lead
and lead optimisation phases of drug discovery is extremely
promising. Rather than trying to predict the absolute off-rate
value on individual complexes, the authors established a pro-
cedure to identify the correct koff-based ordering relationship
among congeneric compounds, which bind to a given target.
The solution is rooted in the enhancement of the transition
probability between different free energy minima during MD
simulations by means of scaled potentials.121–123 Thus, in the
resulting scaled molecular dynamics (Scaled MD), the rupture
of all the fundamental physical interactions that confer sta-
bility to a protein–ligand complex is facilitated, leading to un-

binding in much shorter simulation timescales. Application
of scaled potentials to the entire system is not advisable and
may lead to loss of stability of the overall structure of the mo-
lecular target. A countermeasure to this has been the applica-
tion of proper harmonic restraints that preserve the overall
correct folding, while leaving the regions involved in the
binding process unrestrained. For each protein–ligand sys-
tem, multiple runs of scaled MD simulations are performed
and stopped once the ligand is released from the binding site
and fully solvated. Finally, a bootstrap analysis124 on the sim-
ulated unbinding times per target is done in order to assess
the statistical significance of the observations and to possibly
decide whether to increase the number of runs per complex.

In the first application of this methodology, three differ-
ent systems were analysed, namely the Heat Shock Protein
90, the 78 kDa Glucose-Regulated Protein and the Adenosine
Receptor A2A. Four ligands could be ranked correctly for each
system in agreement with experimental kinetic data obtained
by means of SPR measurements.125–127 Twenty unbinding
simulations were carried out per ligand to determine the av-
erage unbinding times. This led to a linear distribution of
rates for all the systems. Interestingly, the method was able
to correctly reproduce the experimental ranking even when
significant variations were observed both in terms of molecu-
lar volume and net charge of the ligands. The small and
charged ATP could be distinguished well from other larger
and globally neutral compounds unbinding from Grp78
(Fig. 3a).

In a subsequent publication,128 the method was tested on
a series of chemically unrelated ligands of glucokinase (GK,
GK1, or hexokinase IV),129 a system of primary pharmaceuti-
cal interest due to its involvement in Type 2 Diabetes
Mellitus.130 An interesting feature that emerged from this
study is the influence of the ligand shape on the residence
times. The compounds displaying a more pronounced linear
shape (2, 6, and 7) exhibit a significantly shorter residence
time than those with a T-shaped geometry (1, 3, 4, and 5),
with an average tr of ∼27 ns for the former molecules and
∼90 ns for the latter (Fig. 3b). This can be explained by in-
spection of the GK activators binding site – possessing a
rather linear shape – which is easily accessible to ligands hav-
ing a linear geometry, whereas molecules bearing other
shapes than linear require an induced fit binding mecha-
nism. Therefore, the present computational approach can
help to discern among rather different scaffolds, and hence
prioritise, for subsequent chemical synthesis, those most
promising from residence time and lead efficacy standpoints.
Furthermore, despite the loss of details associated with
Scaled MD simulations, precious information can still be
gained on the chemical features responsible for longer resi-
dence times, thus establishing structure–kinetics relation-
ships (SKRs).

The applications discussed above highlight how the com-
putational community is recently focusing much of the inter-
est in studying the ligand binding process and determining
the related rates. In principle, average binding times can be
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directly calculated via plain MD if several binding events are
observed.103 However, this is currently only feasible for rela-
tively fast binders, and even in this case, an enormous
amount of computational resources is required; in view of
this, calculating unbinding times is still unreachable. In the
simplest picture, achieving the bound state first involves free
diffusion of the two partners into the solvent to get in prox-
imity, followed by overcoming the ΔGon free energy barrier
(Fig. 1). Dissociation relies instead on the disruption of all
the interactions between the protein and the ligand in the
bound state, a process that typically requires significantly
higher energy barriers to be crossed (ΔGoff, Fig. 1). The transi-
tion states along binding pathways and the height of the cor-
responding free energy barriers can be determined via free
energy based methods, such as MetaD and US. In the limit of
a fully converged simulation, both binding and unbinding
rates can be thus derived as indicated in eqn (5a) and (b).
The error of the measured rates is then related to the uncer-
tainty on the free energy barrier and on the accuracy of the
pre-exponential factor. Scaled MD was used to accelerate un-
binding events and successfully rank ligands consistently
with their experimental koff.

120 However, the present applica-
tion does not allow the determination of absolute values of
the off-rates. Unlike free energy based methods, in MSMs ki-
netic rates are directly calculated from a transition matrix.
With an adequate underlying sampling, MFPTs for both un-
bound to bound and for bound to unbound transitions can
be determined from these on- and off-rates, respectively. In
general, while MSMs may gain in efficiency, more mechanis-
tic details about the pathway may result from the application
of free-energy based methods.

Mastering residence time as a novel
tool in drug discovery

Maximising the thermodynamic affinity (i.e. Kd or IC50) of a
drug for its target has been the traditional strategy applied in
the optimisation step of drug discovery programs. However,
it is now well accepted that residence time, rather than affin-
ity, often drives the efficacy of a drug in vivo.7,35,131 Moreover,
the vast majority of drug candidates fail in human clinical tri-
als, owing to a lack of efficacy or an insufficient therapeutic
index, often as a result of limited target engagement or con-
comitant drug binding to off-target receptors.132,133 Currently,
all these critical parameters are not routinely evaluated fully
until late stages of drug discovery. This suggests that a con-
scious mastering of residence time could represent an essen-
tial step in the field. Improving the understanding of phar-
macokinetics (PK) and pharmacodynamics (PD), while at the
same time being aware of kinetic properties throughout the
entire drug discovery process, could lead to an increase in
the success rate of approved new drugs.133,134 Prolonged oc-
cupancy of the designated target by a drug while minimising
binding to off-target proteins (referred to as kinetic selectiv-
ity) is a promising strategy to improve a drug candidate's
therapeutic index. Indeed, a significant fraction of the

marketed drugs dissociate slowly from their targets, empha-
sizing the importance of the drug–target complex lifetime for
in vivo drug activity. Although compelling arguments can be
made for the tuning of drug–target kinetics in a drug discov-
ery campaign, major barriers still exist for the implementa-
tion of this approach, including the lack of prospective tools
that integrate drug–target residence time parameters with PK
models to yield predictions of drug efficacy. Current PD
models typically assume ‘rapid equilibrium’ between the tar-
get and the fraction of the drug in human plasma that is not
protein-bound. Moreover, during drug discovery and optimi-
sation, it is common to characterise compound activity with
steady-state in vitro measurements, although recent advances
in the field have been made to include kinetics in the PD
models. This has been shown in a recently published study
on the LpxC enzyme from Pseudomonas aeruginosa, in which
a detailed analysis of dose response curve prediction for in-
hibitors of the enzyme was carried out in an animal model of
infection.135

On the ligand side, reversible covalent binding to non-
catalytic cysteines may represent a widely applicable method
for obtaining prolonged residence times.136–138 Drugs relying
on intrinsically irreversible chemistry, such as acrylamides,
are more likely to form permanent covalent adducts with off-
target proteins.139,140 These include both closely related tar-
gets (e.g. off-target kinases) and unrelated targets with hyper-
reactive cysteines,141 thus explaining why reversible covalent
drugs are typically preferred. An approach to the discovery of
such inhibitors was recently reported for a kinase-recognition
scaffold.142,143 A residence time of up to several hours was
obtained by means of a covalent, but fully reversible, attach-
ment of a cyanoacrylamide electrophile to cysteine in the ri-
bosomal S6 kinase (RSK2).143 The approach has been recently
applied to research on B-cell chronic lymphocytic leukaemia
and mantle cell lymphoma,144,145 leading to the identification
of inhibitors possessing remarkably slow off-rates, with resi-
dence times reaching one week.

Integrating both theory and experiment can be a success-
ful strategy to gain a full description of the kinetic properties
of a compound.114,118 MD simulations were coupled by Seow
and co-workers to experimental data in order to understand
the peculiar activity of a ligand.146 Three equipotent nano-
molar antagonists (3D53, W54011, JJ47) of the inflammatory
responses to C5a, a pro-inflammatory and chemotactic factor
acting via the C5a receptor 1 (C5aR) on leukocytes, were com-
pared. Surprisingly, the least drug-like antagonist 3D53
maintained potency in cells against higher C5a concentra-
tions. Inhibition of macrophage responses was also much
longer (t1/2 ∼ 20 h), compared to W54011 or JJ47 (t1/2 ∼ 1–3
h). In order to gain the atomic level details of the molecular
features determining such unusually long residence times,
3D53 in complex with its receptor was simulated via MD. A
unique ligand-induced conformational change was revealed,
causing the antagonist to be trapped between specific trans-
membrane helices in the receptor. However, although 3D53
was orally more efficacious than W54011 or JJ47 in
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preventing repeated agonist exposure inducing rat paw oe-
dema over 24 hours, the oral bioavailability of the compound
was negligible.

Conclusions and perspectives

In the present article, we provided a general overview on
protein–ligand binding kinetics to introduce the reader to
the underlying theory and the methods available to investi-
gate this field. We highlighted how the advances in experi-
mental and computational methods allowed a broader ap-
plication of existing techniques and development of new
approaches. Indeed, remarkable progress in technology has
been made over the recent years. As a consequence, an in-
creasing and heterogeneous volume of biological, pharmaco-
logical and structural data is becoming available. In this ex-
tremely dynamic context, big data analysis is emerging as a
novel approach aimed at exploiting such precious informa-
tion for drug discovery.147

We presented the most recent experimental and computa-
tional techniques employed in the characterisation of pro-
tein–ligand binding kinetics and we examined examples of
their application. Recent works that put a strong focus on the
usage of residence time as a therapeutic and functional index
have been also highlighted. Indeed, the importance of includ-
ing kinetics information in the drug discovery process is in-
creasingly being recognized. In particular, since its first pre-
sentation,148 the drug–target residence time model has been
cited more than 600 times in the scientific literature. It has
been applied broadly to drug discovery programmes, across
multiple therapeutic areas, leading to the identification of
numerous clinical-stage drugs.149,150 Significant advances in
the exploration of binding and unbinding mechanisms have
been made and much effort has been focused on
characterising the underlying kinetics. However, the current
understanding of the factors influencing binding rates re-
mains incomplete. Therefore, kinetic descriptors and predic-
tors at the atomic level will likely be the next generation chal-
lenge in the field of drug discovery, as suggested by the
studies reported in the present review. The future design of
drugs possessing optimised binding kinetics will require a
detailed characterisation of the entire drug–receptor binding
pathway, the relevant metastable intermediate states involved
and the binding mode reached inside the binding pocket.
Computational methods based on MD, combined with the
available experimental approaches, are emerging as extremely
promising tools.108,120,128 Indeed, identifying the molecular
features and the relevant intermediate states involved in the
binding process is becoming increasingly feasible. Such a
complete understanding will provide the insights needed to
guide a rational modulation of binding kinetics in the de-
sired manner. For instance, functional groups can be
inserted or modified in proper regions of the scaffold in or-
der to facilitate interaction with specific residues of the pro-
tein along the binding pathway. Notably, such modifications
on the active scaffold should be possibly conceived so that

they do not affect binding affinity. Finally, in an almost or-
thogonal manner, solubilising groups can be properly added
in order to also optimise pharmacokinetic properties.151

Altogether, the aspects discussed in the present review
highlight the importance of considering kinetics, alongside
thermodynamics, in the effort to both identify new drugs and
improve efficacy. As outlined, gathering such information is
becoming increasingly accessible to both the experimental
and computational fields.
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