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Abstract

MicroRNAs (miRNAs) inhibit expression of target genes by binding to their RNA transcripts.

It has been recently shown that RNA transcripts targeted by the same miRNA could “com-

pete” for the miRNA molecules and thereby indirectly regulate each other. Experimental evi-

dence has suggested that the aberration of such miRNA-mediated interaction between

RNAs—called competing endogenous RNA (ceRNA) interaction—can play important roles

in tumorigenesis. Given the difficulty of deciphering context-specific miRNA binding, and the

existence of various gene regulatory factors such as DNA methylation and copy number

alteration, inferring context-specific ceRNA interactions accurately is a computationally chal-

lenging task. Here we propose a computational method called Cancerin to identify cancer-

associated ceRNA interactions. Cancerin incorporates DNA methylation, copy number

alteration, gene and miRNA expression datasets to construct cancer-specific ceRNA net-

works. We applied Cancerin to three cancer datasets from the Cancer Genome Atlas

(TCGA) project. Our results indicated that ceRNAs were enriched with cancer-related

genes, and ceRNA modules in the inferred ceRNA networks were involved in cancer-associ-

ated biological processes. Using LINCS-L1000 shRNA-mediated gene knockdown experi-

ment in breast cancer cell line to assess accuracy, Cancerin was able to predict expression

outcome of ceRNA genes with high accuracy.

Author summary

CeRNA interaction is a post-transcriptional gene regulation that involves interactions

between RNAs competing for common miRNA regulators. Dysregulation of ceRNA

interactions have been implicated in multiple diseases including cancer. Here we propose

a computational pipeline called Cancerin that infers genome-wide ceRNA interactions in

cancer. Unlike existing ceRNA inference tools that consider miRNAs as the only factor

that regulate gene expression, Cancerin considers other types of gene regulators besides

miRNAs, namely transcription factors, copy number alteration, and DNA methylation.

To identify miRNA regulators for each gene, Cancerin incorporates a LASSO-based vari-

able selection procedure that leverages both sequence-based and gene expression
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information. Then multiple expression-based filtering conditions are employed to select

ceRNA interactions. Cancerin was applied to three cancer datasets from TCGA. Func-

tional analysis indicated that the inferred ceRNAs were enriched with cancer-related

genes, and ceRNAs within ceRNA modules (densely-connected ceRNAs) were involved

in cancer-associated biological processes. Survival analysis showed that compared to non-

ceRNAs, ceRNAs hold better prognostic power to predict survival outcomes. Our results

showed that Cancerin can be used to identify genome-wide and functionally important

ceRNA interactions, which makes it a valuable tool to better understand this recently dis-

covered gene regulation mechanism and its role in cancer biology.

This is a PLoS Computational Biology Methods paper.

Introduction

MicroRNAs (miRNAs) are a family of short non-coding RNA molecules involved in post-tran-

scriptional gene regulation. MiRNAs attach to Argonaute protein to form RNA-induced

silencing complexes (RISCs), which bind to miRNA-response-elements (MREs) located on the

30UTR of messenger RNAs (mRNAs). This binding promotes mRNA degradation or inhibit

their translation into proteins [1]. A typical mRNA contains multiple MREs, which are bind-

ing sites for one or multiple miRNAs. Thus, a mRNA can be targeted by multiple miRNAs,

and a miRNA can target multiple mRNAs [2].

As protein synthesis is impacted by miRNA-mRNA binding, gene regulation by miRNAs

plays an important role in a wide range of biological processes such as cell growth, differentia-

tion, and apoptosis [3–5]. Anomaly in miRNA regulation have been implicated in multiple dis-

eases including cancer [6]. Aberrant changes in miRNA concentration in cells could lead to

dysregulation of tumor suppressors or oncogenic genes, which could trigger cancer develop-

ment and progression [7].

Recent experimental studies suggest a new layer of miRNA-mediated regulation that

involves indirect interactions between RNA molecules via their interactions with common

miRNAs [8, 9]. Such RNAs are called competing endogenous RNAs (ceRNAs), and their indi-

rect interactions are referred as ceRNA interactions [8]. The ceRNA hypothesis [10] posits that

change of expression level in one ceRNA would alter its miRNA regulators’ abundance, which

in turn alters the expression level of other target ceRNAs of these miRNAs. For example, a

highly expressed ceRNA can sequester many miRNA molecules, reducing the total miRNA

abundance and leading to the derepression of other target ceRNAs of these miRNAs. CeRNA

interactions are not only among protein coding RNAs (i.e., mRNAs). Recent studies have

found that non-coding RNAs (e.g., long non-coding RNAs (lncRNAs) [11, 12] and pseudo-

genes [13]) also involve in ceRNA interactions. For the rest of the paper, “RNAs” refers to can-

didate ceRNAs, which includes mRNAs and lncRNAs. CeRNA interactions have been shown

to regulate important biological processes such as muscle differentiation [9], self-renewal capa-

bility of embryonic stem cells [3], and inhibition of cancer cell differentiation [14]. Disruption

of ceRNA interactions has been implicated in multiple types of diseases including cancer [15,

16]. Disruption of ceRNA interactions can repress tumor-suppressor genes and lead to onco-

genic activities [17, 18]. Comprehensive reviews of functions of ceRNA in cancer biology can

be found in [19–21].

Inference of competing endogenous RNA interaction networks
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The existence and strength of ceRNA interactions may vary significantly in different physi-

ological and cellular settings (i.e., normal cells versus tumor cells). As ceRNA interaction is

considered as a new layer of gene regulation, identification and construction of genome-wide

and condition-specific ceRNA interaction networks could facilitate better understanding of

ceRNA regulatory mechanisms and their biological significance. While experimental studies

are of great importance to confirm ceRNA interactions, inference of ceRNA interaction net-

works by only experimental methods would be time- and cost-prohibitive. Thus, computa-

tional tools are needed to infer ceRNA interaction networks and generate new hypotheses for

further experimental validation.

Since ceRNA interactions are mediated via miRNAs, identifying interactions between miR-

NAs and their targets is a prerequisite to infer ceRNA interactions. Sequence-based miRNA

target prediction algorithms such as TargetScan [22] and miRanda [23] have been employed

to search for MREs in 30UTR of mRNAs, and miRNA-mRNA interaction databases such as

starBase [24] and miRWalk [25] store computationally and experimentally verified miRNA-

mRNA interactions. Expression profiles of both mRNAs and miRNAs were also used to iden-

tify condition-specific miRNA-mRNA interactions. As miRNAs were mostly known to repress

the expression of its targets, expression levels of miRNAs and their targets were often required

to be negatively correlated [26, 27].

After predicting miRNA-target gene interactions, existing ceRNA inference methods dif-

fered in how they related expression of miRNAs and their co-regulated genes to decide which

genes can establish ceRNA interactions. Pairwise gene expression correlation was often con-

sidered as the main criterion to select ceRNA interactions. Two ceRNAs were required to have

positively correlated expression, and the ceRNAs and their miRNA regulators were required

to have negatively correlated expression [26, 27]. However, miRNA expression data were also

used to directly model the mediating effect of miRNAs in regulating ceRNA interaction. Par-

tial Pearson correlation (PPC) [28] and conditional mutual information (CMI) [29, 30] met-

rics have been used to measure linear or nonlinear dependence of candidate ceRNAs’

expression on their shared miRNAs’ expression. Applying CMI to identify and construct a

glioblastoma-specific ceRNA interaction network, Sumazin et al. found experimentally vali-

dated interactions between PTEN and their known ceRNAs in the ceRNA network [29]. In

[28], a new metric called sensitivity partial correlation was proposed to quantify the expression

correlation dependency between two ceRNAs conditioned on their shared miRNAs’ expres-

sion. The researchers applied this metric to gene and miRNA expression of normal and tumor

breast samples to construct normal-specific and tumor-specific ceRNA interaction networks.

They observed that multiple cancer hallmarks such as tumor inflammation were only enriched

in the tumor-specific ceRNA network. A detailed review on computational methods to infer

ceRNA interactions can be found in [31].

In existing ceRNA studies, most computational methods consider miRNAs as the only type

of gene regulators, while overlooking other important types of gene regulators such as tran-

scription factors, DNA methylation, and copy number alteration. Not considering other types

of regulators might lead to spurious miRNA-gene interactions, which would cause false posi-

tive predictions of ceRNA interactions. Notably, lack of experimental studies to confirm

ceRNA interactions posed a big challenge to validate the accuracy and significance of inferred

ceRNA interactions.

This study presents a computational pipeline called Cancerin, which infers Cancer-associ-

ated ceRNA iteraction networks. A cancer-associated ceRNA interaction is defined as an inter-

action between two differentially expressed RNAs (between normal and cancer samples), and

the interaction is mediated by some differentially expressed miRNAs that regulate both RNAs.

Besides mRNAs, non-coding RNAs such as long non-coding RNAs (lncRNAs) have been

Inference of competing endogenous RNA interaction networks
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shown to actively participate in functionally important ceRNA interactions in both normal

and cancer cells [19, 21]. Thus, our pipeline considers both mRNAs and lncRNAs as potential

ceRNAs. To infer interaction between miRNAs and their RNA targets (i.e., candidate ceR-

NAs), Cancerin employs knowledge from both putative miRNA-RNA interactions and

miRNA/RNA expression profiles. In addition, Cancerin incorporates other types of gene

expression regulatory factors, namely copy number alteration, DNA methylation, and tran-

scription factors to infer miRNA-RNA interactions, which distinguish Cancerin from existing

ceRNA inference methods. An easy-to-use R software for Cancerin is freely available at

https://github.com/bozdaglab/Cancerin.

Cancerin was applied to three cancer datasets. Our result indicated that the ceRNAs in the

obtained ceRNA interaction networks were significantly enriched with cancer-related genes.

Additionally, we observed that closely connected ceRNAs in the ceRNA networks were associ-

ated with cancer cell formation and development processes. Compared to non-ceRNA genes,

we showed that expression change of predicted ceRNAs had higher association with cancer

survival outcomes. To validate the effect of ceRNA interactions to expression change on an

external dataset, we used the LINCS perturbation dataset [32] and observed that knockdown

of ceRNAs was associated with the expression change of their ceRNA partners.

Materials and methods

Datasets

We used the R Bioconductor package TCGABiolinks [33] to download genomic and clinical

data of normal and solid tumor tissues for three types of cancer from The Cancer Genome

Atlas (TCGA) [34]. Cancer types were breast invasive carcinoma (BRCA), kidney renal clear

cell carcinoma (KIRC), and head and neck squamous cell carcinoma (HNSC). We retrieved

level 3 data for raw count mRNA and miRNA expression (Illumina HiSeq 2000), copy number

alteration (Affymetrix SNP Array 6.0), and DNA methylation level (Infinium HumanMethyla-

tion450 Bead-Chip). The expression of lncRNAs was retrieved from the TANRIC database

[35]. We only kept tissue samples for which all of these genomic data and clinical data were

available. In addition, 30UTR sequences of 18,959 mRNAs and 13,870 lncRNAs were down-

loaded from the GENCODE Release 26 (GRCh38.p10) [36], and sequences of 2,588 mature

miRNAs were downloaded from miRBase release 21 [37]. Putative miRNA-mRNA interac-

tions were retrieved from starBase v2.0 [24] and TargetScan 7.1 [22] databases. Putative

miRNA-lncRNA interactions were retrieved from starBase v2.0 [24], DIANA-LncBase v2 [38],

and LnCeDb [39]. Putative TF-gene interactions were retrieved from the TRED [40] and

TRRUST (version 2) [41] databases.

Data preprocessing

Gene expression processing and differential expression analysis. To filter out low-

count RNAs, we used the R Bioconductor package edgeR [42] to convert raw counts of

mRNAs and miRNAs to CPM (counts-per-million) values. RNAs that were not expressed in

the majority of samples were filtered out. Specifically, across all the samples for each cancer

dataset, an RNA was filtered out if its CPM value was less than 1 in more than t samples, where

t was set to the larger between the tumor and the normal group size.

To identify differentially expressed (DE) mRNAs and DE miRNAs between normal and

tumor samples, we employed the R package edgeR [42]. EdgeR normalizes the raw data using

TMM (trimmed means of M values) method and models count data with negative binomial

(NB) distribution. After normalizing the data and fitting it under NB models, we applied exact

test [42] to identify DE mRNAs and DE miRNAs. As expression of lncRNAs was in RPKM

Inference of competing endogenous RNA interaction networks
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units and was normalized to follow a normal distribution, to find DE lncRNAs, we fitted a lin-

ear model for each lncRNA using the lmFit function in the R package limma [43]. A miRNA,

mRNA, or lncRNA was considered to be differentially expressed if its adjusted Bonferroni-

Hochberg p-value [44] was smaller than 0.01.

To ensure the expression of the DE mRNAs, miRNAs, and lncRNAs is in the same units, we

converted raw counts of DE mRNAs and DE miRNAs to RPKM. We used log2(RPKM+0.001)

to present the expression of all DE RNAs. The expression of those RNAs were z-normalized

across all the tumor samples as we only used the tumor samples in the subsequent steps.

Copy number alteration. Level 3 copy number alteration data from TCGA provided esti-

mated mean copy numbers of chromosomal segments in the whole genome. Using the geno-

mic location information of 22,310 protein coding genes provided by GENCODE Release 26

(GRCh38.p10), we applied the R Bioconductor package CNTools [45] to convert the seg-

mented CNA data into a gene-level data matrix where each entry represented copy number

value of a gene in a specific sample.

DNA methylation. Level 3 DNA methylation data from TCGA samples measured the

methylation level of approximately 450,000 CpG sites genome-wide. The methylation level

of each CpG site (i.e., β value) was estimated as the ratio of the methylated probe intensity to

the overall intensity (sum of methylated and unmethylated probe intensities). Thus β ranges

between 0 and 1, with 0 being hypomethylated and 1 being hypermethylated. Previous studies

[46, 47] indicated that the methylation of CpG sites in promoter regions were associated with

gene expression change. Therefore, we only considered β values of CpG sites in genes’ promoter

regions. Thus, to compute gene-centric methylation values, we used the Bioconductor annota-

tion package IlluminaHumanMethylation450kanno.ilmn12.hg19 [48] to identify the probes

positioned at the upstream 200 to 1500 base pairs from of gene transcription start site. A gene’s

methylation level was estimated as the mean of its associated upstream probes’ β values.

Cancerin pipeline

Cancerin is a computational pipeline to identify genome-wide cancer-associated ceRNA interac-

tion networks. It consists of three main steps. Using putative miRNA-mRNA and miRNA-

lncRNA interactions, the first step aims to construct an interaction network between DE miR-

NAs and DE RNAs. In the second step, only the miRNAs that are associated with their targeted

RNAs’ expression change are kept. In the final step, several filtering layers are applied to infer

ceRNA interactions between RNAs that are targeted by common miRNAs. The entire Cancerin

pipeline is illustrated in Fig 1. The details in each step in Cancerin are described in the following.

Identifying putative regulatory interactions between DE miRNAs and DE mRNAs

based on sequence binding. Putative interactions between DE miRNAs and DE mRNAs in

humans were retrieved from the TargetScan 7.1 [22] and starBase v2.0 [24] databases. TargetS-

can assigns an mRNA to be a miRNA’s target if the mRNA contains conserved 8mer, 7mer,

and 6mer sites that are complementary to the seed regions of the miRNA. starBase stores miR-

NA-RNA interactions predicted by analyzing 108 CLIP-seq datasets. After aggregating all

putative interactions from the two databases, we applied the miRanda algorithm [23] to select

only the miRNA-mRNA pairs such that there existed at least one MRE on the 30UTR of the

mRNA that was complementary to the miRNA sequence.

We retrieved putative interactions between DE miRNAs and DE lncRNAs from starBase

v2.0 [24], DIANA-LncBase v2 [38] and LnCeDb [39]. The predicted miRNA-lncRNA interac-

tions in DIANA-LncBase v2 are inferred using DIANA-microT algorithm [49], which is a

machine-learning approach that estimates miRNA-RNA target binding score base on weight-

ing multiple features such as sequence complementarity, free binding energy and conservation

Inference of competing endogenous RNA interaction networks
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profile. The putative miRNA-lncRNA interactions in LnCeDb come from two sources: inter-

actions from Mircode database [50], which used seed complementarity and evolutionary

source to infer interactions, and interactions inferred by its own sequence-based miRNA-RNA

target prediction algorithm.

Selecting miRNAs associated with expression change of their predicted RNA targets.

For each DE RNA and its putative DE miRNA regulators (selected in the previous step), Can-

cerin identified which miRNAs contributed to the RNA’s expression variation. It is well

known that beside miRNA regulation, RNA expression can be controlled by other factors such

as its transcription factors (TFs), copy number alterations (CNA), and DNA methylation

(DM) [51]. A procedure to identify regulatory interactions between miRNAs and its RNA

Fig 1. Cancerin pipeline to infer cancer-associated ceRNA interaction networks. Cancerin consists of three main steps. In step 1, for each DE RNA, Cancerin

selects its candidate DE miRNA regulators based on sequence binding results. In step 2, Cancerin applies a LASSO-based variable selection procedure to select a

subset of miRNA regulators that contribute to the expression variation of the DE RNA. In step 3, Cancerin applies multiple filtering conditions to infer ceRNA

interactions between the RNAs that are regulated by common miRNAs.

https://doi.org/10.1371/journal.pcbi.1006318.g001
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targets should also take other types of gene regulators into account. Thus, our LASSO-based

variable selection procedure to infer cancer-specific miRNA-mRNA interactions incorporated

additional types of gene regulators including TF, CNA, and DM.

LASSO is a regularized regression method that penalizes the sum of absolute value of the

regression coefficients, so that it shrinks some covariates’ coefficients to be exactly zero.

Hence, it can be used for variable selection purposes [52]. LASSO regression was applied for

each RNA. For each mRNA, its expression was used as the response variable’s value and its

CNA, DNA methylation, and the expression of its candidate miRNAs and TFs were used as

independent variables’ values. For each lncRNA, its expression was used as the response vari-

able’s value and its candidate miRNAs’ expression were used as the independent variables’

value. As mentioned in the data preprocessing section, we only used tumor samples in this

(and subsequent) analysis.

Training a LASSO model requires selecting the regularization hyperparameter λ. To select

the optimal λ value, we applied 10-fold cross validation to find the λ value that provided the

simplest model such that its cross-validation error was within one standard error of the mini-

mum cross-validation error. Thus, for each RNAj, out of all of its candidate predictors (inde-

pendent variables), LASSO regression selected a set of non-zero coefficient predictors. We

employed R package HDCI [53] to perform LASSO regression.

However, independent variables selected by LASSO have been shown to be inconsistent

especially when sample size gets large [54]. To address this problem, we ran the LASSO regres-

sion 100 times for each RNA. Only the non-zero coefficient predictors that were selected more

than 75 times were considered as frequently selected regulators of the RNA.

Unlike in linear multiple regression where each independent variable’s regression coeffi-

cient is associated with a p-value testing the null hypothesis that its coefficient is equal to zero,

coefficients of LASSO-selected predictors are not associated with any statistical significance

test. To address this problem, we employed a bootstrap procedure to construct a confidence

interval for the frequently selected predictors that were obtained above. Suppose a regulator Ri

is a frequently selected predictor for RNAj. From the 100 LASSO runs, we used the median of

Ri’s coefficients to represent its regression coefficient and called it �a ij. To estimate the confi-

dence interval of �a ij, for the RNAj, we fitted LASSO regression 500 times, each time to a set of

bootstrapped samples, to generate a bootstrap regression coefficient distribution {αbootstrap_ij}.

Ri would be kept as one of the RNAj’s regulators if its �a ij was within the 95% confidence interval

of {αbootstrap_ij} and the 95% confidence interval did not include 0. As miRNAs are mostly

known to repress the expression level of its RNA target, for each RNA, out of all the kept vari-

ables, we only selected the miRNAs that had negative �a ij coefficients.

Identifying cancer-associated ceRNA interaction network. Using the miRNA-RNA

interactions obtained in the previous step, we generated all possible RNA-RNA pairs such that

the constituent RNAs in each pair share at least one miRNA regulator. Those pairs were con-

sidered as candidate ceRNA pairs. Following the ceRNA hypothesis, we only kept the candi-

date ceRNA pairs with high positive Pearson expression correlation (correlation� 0.5, p-

value < 0.05).

Given the number of miRNAs regulating each RNA, to assess whether the two RNAs in

each candidate ceRNA pair shared a significant number of miRNA regulators, we applied a

hypergeometric test on each of the candidate ceRNA pairs. Let N be the total number of all DE

miRNAs. For a ceRNA pair consisting of RNAi and RNAj, let Ni and Nj be the total number of

miRNAs regulating RNAi and RNAj, respectively, and Nij be the number of common miRNAs

regulating both RNAi and RNAj. The p-value of the hypergeometric test was calculated using

the formula in Eq 1. Based on the hypergeometric test results, a candidate ceRNA pair was

Inference of competing endogenous RNA interaction networks
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selected if its adjusted Bonferroni-Hochberg p-value was smaller than 0.05.

p � value ¼ 1 �
XNij � 1

k¼0

ð
Nj
k Þð

N� Nj
Ni � k Þ

ð
N
Ni
Þ

ð1Þ

To further eliminate potentially spurious ceRNA pairs, we employed the sensitivity correla-

tion (SC) metric proposed in [28] to estimate the ceRNA interaction strength for each ceRNA

pair. Let {miRNAij} be the set of common miRNAs regulating both RNAi and RNAj. Let Corr
(RNAi, RNAj) be the expression correlation between RNAi and RNAj and PC(RNAi, RNAj|{miR-
NAij}) be the partial expression correlation between RNAi and RNAj conditioned on {miRNAij}.

Sensitivity correlation SC(RNAi, RNAj|{miRNAij}) is defined in Eq 2:

SCðRNAi;RNAj j miRNAijÞ ¼ CorrðRNAi;RNAjÞ

� PCðRNAi;RNAj j fmiRNAijgÞ
ð2Þ

The R package bnlearn [55] was used to compute partial correlation (PC) for each candi-

date ceRNA pair. Since PC(RNAi, RNAj|{miRNAij}) computed the correlation of the RNAs’

expression while controlling/eliminating the effect of their shared miRNAs’ expression, SC
(RNAi, RNAjj{miRNAij}) quantifies the contribution of the shared miRNAs to the linear rela-

tion between the expression of the two RNAs. A high SC value signifies a strong indirect

interaction between the two RNAs mediated by shared miRNA regulators. Thus, we selected

the ceRNA pairs with positive SC values and their p-values from partial correlation test

smaller than 0.05. Additionally, to estimate the statistical significance of SC, we computed

the SC empirical p-value for each candidate ceRNA pair. For the pair (RNAi,RNAj), suppose

the {miRNAij} was of size Nij, then we randomly selected Nij miRNAs to compute the pair’s

sampled SC value. For each ceRNA pair, the resampling procedure was repeated 1000 times.

An empirical SC p-value was assigned as the percentage of iterations in which the sampled

SC value exceeded the original SC value. A ceRNA pair was kept if its empirical SC p-value

was smaller than 0.05.

Results

Cancerin pipeline leveraged multidimensional cancer genomics data to infer cancer-associated

ceRNA interaction networks. In order to assess Cancerin, we used Cancerin to infer ceRNA

networks in three cancer types, namely breast (BRCA), kidney (KIRC), and head and neck

cancer (HNSC). We obtained the RNAseq, miRNAseq, DNA methylation, and CNA datasets

for BRCA, KIRC and HNSC samples from TCGA [34]. The numbers of normal/tumor tissue

samples in each cancer type were 47/193 (BRCA), 20/243 (KIRC), and 20/413 (HNSC).

Putative interactions between DE miRNAs and DE RNAs

The first step in Cancerin involved aggregating the putative interactions between miRNAs and

RNAs from various data sources. The candidate miRNA-mRNA interactions were down-

loaded from the starBase and the TargetScan databases. Using mRNAs’ and miRNAs’ FASTA

sequences, we selected only the mRNAs whose 30UTR sequences and the miRNAs whose

mature sequences were specified. To further refine those putative interactions, the miRanda

algorithm was used to check for the existence of MRE(s) on the mRNAs’ 30UTR and to esti-

mate the thermodynamic folding energy between the miRNAs and their predicted mRNA tar-

gets. The lower the energy, the higher chance that an interaction will actually occur [56]. A

miRNA-mRNA interaction was kept if there existed at least one MRE on the mRNA as

Inference of competing endogenous RNA interaction networks
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miRNA’s binding site and the miRNA-mRNA interaction’s folding energy was lower than 140

kcal/mol (default value). After applying miRanda, there remained 465,049 interactions

between 473 miRNAs and 13,932 mRNAs. Putative miRNA-lncRNA interactions were aggre-

gated from starBase v2.0, DIANA-LncBase v2, and and LnCeDb, resulting in 3,961,135 inter-

actions between 2,695 miRNAs and 24,215 lncRNAs.

Given all the putative miRNA-RNA interactions, we only kept the interactions between DE

miRNAs and DE RNAs. Table 1 summarizes the number of DE miRNA—DE RNA interac-

tions in each cancer type.

To identify cancer-associated ceRNA interactions, Cancerin employed the putative miR-

NA-RNA interactions and the RNA expression as input data for the next two steps, which

included applying a LASSO-based variable selection procedure to select cancer-specific miR-

NA-RNA interactions and using that information to identify ceRNA interactions.

Analysis of miRNA-RNA interactions obtained from the LASSO-based

variable selection procedure

The LASSO-based variable selection procedure (see Materials and methods) was applied to

identify cancer-specific miRNA-RNA interactions while also taking into account the other

types of gene regulators including TF, DNA methylation, and CNA. Table 2 summarizes the

number of miRNA-RNA interactions selected by the variable selection procedure in each can-

cer type. Details of the selected miRNA-RNA interactions could be found in S1 File.

Many miRNA-RNA interactions were only identified when different types of gene

expression regulators were taken into account. Cancerin pipeline was constructed under

the premise that different types of gene regulators were important to correctly infer miR-

NA-RNA interactions. Out of all the RNA targets that were found to have at least one miRNA

regulator (3,024 (BRCA), 3,062 (KIRC), and 3,195 (HNSC)), we computed the percentage of

those targets that were also under regulation of at least one additional regulatory factor such as

CNA, DNA methylation, or TF (Table 3). Not surprisingly, those additional regulatory factors,

especially CNA, were observed to be associated with the expression change in majority of the

target RNAs.

To check the impact of those additional regulators in inferring miRNA-RNA interactions,

we performed a comparative analysis between the miRNA-RNA interactions that were selected

in two different cases depending on whether the different regulatory factors besides miRNA

(i.e., CNA, DNA methylation, and TF) were present or not in the LASSO-based variable selec-

tion procedure. In the first case when those regulators were incorporated, we referred it as

“Cancerin (original)”. The second case, in which miRNAs were the only type of regulators to

Table 1. Number of putative DE miRNA-DE RNA interactions and number of DE miRNAs and DE RNAs

included in those interactions (output for Cancerin—Step 1).

BRCA KIRC HNSC

No. of putative DE miRNA—DE mRNA interactions 153,465 107,348 94,980

No. of DE miRNAs 1 215 164 201

No. of DE mRNAs 1 7,502 6,690 5,005

No. of putative DE miRNA—DE lncRNA interactions 60,935 18,589 17,350

No. of DE miRNAs 2 215 164 201

No. of DE lncRNAs 2 3,111 1,335 896

1: included in putative DE miRNA—DE mRNA interactions.
2: included in putative DE miRNA—DE lncRNA interactions.

https://doi.org/10.1371/journal.pcbi.1006318.t001
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be considered, was refereed as “Cancerin (only_miRNA)”. Table 4 shows the number of miR-

NA-RNA interactions and their constituent miRNAs and RNA targets selected in the two

cases.

While the two cases selected similar miRNAs that have at least one RNA target (row 2 in

Table 4), many miRNA-RNA interactions and RNA targets could only be found in “Cancerin

(original)” (row 1 and 3 in Table 4). To check how the additional regulatory factors besides

miRNAs played a role in that distinction, we looked at the common RNA targets that were

included in both “Cancerin (original)” and “Cancerin (only_miRNA)”, and compared them

with the RNA targets that were uniquely found in “Cancerin (original)”. Among the common

RNA targets, the percentage of RNAs that had at least one additional regulator in “Cancerin

(original)” results was 78.2% (BRCA), 83.8% (KIRC), and 85.2% (HNSC). Among the RNA

targets unique to “Cancerin (original)”, the percentage values increased to 97.6% (BRCA),

96.7% (KIRC), and 97.1% (HNSC). These results suggest that while “Cancerin (only_miRNA)”

could still discover some RNA targets that were regulated by an additional regulatory factor

besides miRNAs, there were RNAs that could only be found to be regulated by miRNAs when

different types of regulatory factors were incorporated in the variable selection step.

Hub miRNA regulators were known to be associated with cancer. In all three cancer

types, there were miRNAs that regulated many RNA targets, which made those miRNAs com-

mon mediators in multiple ceRNA interactions. The miRNA regulators with highest number

of RNA targets in each cancer type were let-7a-5p (BRCA), miR-106b-5p (KIRC), and miR-9-

5p (HNSC), which contributed to 2.5%, 3.6%, and 2.5% of total miRNA-RNA interactions,

respectively. Let-7a-5p was downregulated in the BRCA dataset (log fold change (FC) = -0.42,

False Discovery Rate (FDR) = 7e-4). Known as a tumor-suppressor, let-7a-5p downregulation

was shown to cause disruption of crucial signaling pathways including Janus protein tyrosine

kinase (JAK) and signal transducer [57], which can lead to tumor cell migration and invasion

in breast cancer [58, 59]. In the KIRC dataset, miR-106b-5p was upregulated (logFC = 1.5,

FDR = 6e-19). Upregulation of this miRNA can enhance activation of PI3K signaling pathway

and promote tumor cell metastasis in KIRC [60]. In the HNSC dataset, miR-9-5p was highly

Table 2. Number of selected miRNA-RNA interactions obtained after applying the variable selection procedure

(output of Cancerin—Step 2).

BRCA KIRC HNSC

No. of miRNA-mRNA interactions 6,616 8,408 9,893

No. of miRNAs 1 196 154 190

No. of mRNAs 1 2,814 2,971 3,020

No. of miRNA-lncRNA interactions 502 217 467

No. of miRNAs 2 134 93 141

No. of lncRNAs 2 210 91 175

1: included in the selected miRNA—mRNA interactions.
2: included in the selected miRNA—lncRNA interactions.

https://doi.org/10.1371/journal.pcbi.1006318.t002

Table 3. Percentage of RNA targets regulated by miRNAs and also by at least one additional type of regulators.

BRCA KIRC HNSC

Percentage of RNA targets under CNA regulation 76.2% 69.2% 77.2%

Percentage of RNA targets under DNA Methylation regulation 30.4% 26.3% 35.0%

Percentage of RNA targets under TF regulation 54.1% 59.3% 48.0%

https://doi.org/10.1371/journal.pcbi.1006318.t003
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upregulated (logFC = 3.37, FDR = 5e-06). Upregulation of miR-9 family was known to activate

oncogenic pathways in multiple cancers such as leukemia, breast, and colon cancer [61]. Inter-

estingly, miR-130-3p was among the top five miRNAs that had highest number of RNA targets

in all the three cancer types. Aberration in gene regulation by miR-130 family was known to

drive tumorgenesis in many cancer types including BRCA, KIRC, and HNSC [62].

Selected miRNA-mRNA interactions included cancer-associated miRNA-mRNA inter-

actions. To test if our variable selection procedure to identify miRNA-mRNA interactions

was able to detect known cancer-associated miRNA-mRNA interactions, we retrieved 2,259

cancer-related miRNA-mRNA interactions from the oncomiRDB database [63]. Each

miRNA-target interaction curated in oncomiRDB meets two conditions: (1) the miRNA is

involved in at least one cancer-related phenotype or cellular process (2) the mRNA is a known

oncogene or tumor-suppressor. As our method only used DE miRNAs and DE mRNAs as

input, we only selected the interactions in oncomiRDB in which both miRNAs and mRNAs

were also DE miRNAs and DE mRNAs.

We observed that several miRNA-mRNA interactions in the oncomiRDB database were

also included in the miRNA-mRNA interactions inferred by Cancerin (step 2). We performed

a hypergeometric test between the oncomiRDB interactions and inferred miRNA-mRNA

interactions to test whether they shared a significant number of interactions. For each cancer

type, the background sets in the hypergeometric test consisted of all possible pairs between DE

mRNAs and DE miRNAs. The numbers of overlapping interactions and their p-values from

the hypergeometric test in BRCA, KIRC, and HNSC were 50 (p-value = 1.75E−39), 40 (p-

value = 4.6E−24), and 49 (p-value = 1.7E−32), respectively. We also performed the same hyper-

geometric test between the sequence-based miRNA-mRNA interactions (Cancerin—step 1)

and the oncomiRDB interactions. The sequence-based interactions also had significant enrich-

ment in oncomiRDB interactions (p-values� 0 in all three cancer types).

Analysis of inferred ceRNA networks

In Cancerin (step 3), given all the miRNA-RNA interactions obtained after applying the

LASSO-based variable selection procedure, we identified all the candidate ceRNA interactions

in which both the constituent RNAs were regulated by at least one common miRNA. Then we

applied several filtering layers to select the final ceRNA interactions out of those candidate

ceRNA pairs. Two RNAs were considered to have a ceRNA interaction if they had a significant

number of shared miRNAs, and their expression profiles were both significantly correlated

(correlation� 0.5, p-value < 0.05) and had significantly positive sensitivity correlation

(empirical p-value< 0.05). Table 5 summarizes the number of ceRNA interactions and the

constituent ceRNAs in those interactions for each cancer type. Details of the selected ceRNA

interactions could be found in S1 File.

Overall, the selected ceRNA interactions were very specific to each cancer type. We found

only one common ceRNA interaction in all the three cancer types. The number of common

ceRNA interactions between any two cancer types was also very low (9 between BRCA and

Table 4. Number of miRNA-RNA interactions and their constituent miRNAs and RNAs selected in “Cancerin

(original)” and “Cancerin (only_miRNA)”. The first, second, and third value in each cell refers to the results from

“Cancerin (original)”, “Cancerin (only_miRNA)”, and the common results between the two cases, respectively.

BRCA KIRC HNSC

No. of miRNA-RNA interactions 7,118/4,071/3,242 8,625/6,524/5,085 10,360/8,648/6,619

No. of miRNAs 204/201/198 155/153/153 195/196/195

No. of RNAs 3,024/1,763/1,523 3,062/2,219/2,068 3,195/2,520/2,404

https://doi.org/10.1371/journal.pcbi.1006318.t004
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KIRC, 22 between BRCA and HNSC, and 32 between KIRC and HNSC). In all three cancer

types, almost all ceRNA interactions were between mRNAs (84% (BRCA), 99% (KIRC), and

95% (HNSC)). In BRCA and HNSC, many lncRNAs that were involved in lncRNA-lnRNA

ceRNA interactions also participated in mRNA-lncRNA ceRNA interactions. Specifically, out

of 57 lncRNAs (BRCA) and 20 lncRNAs (HNSC) involved in lncRNA-lncRNA ceRNA inter-

actions, 41 (BRCA) and 14 (HNSC) of those lncRNAs also participated in mRNA-lncRNA

ceRNA interactions.

Inferred ceRNA networks were scale-free and independent from protein-protein inter-

actions (PPI) and TF-gene interactions. Biological networks usually exhibit scale-free prop-

erty [64]. To check if the inferred ceRNA networks were scale-free, we computed the degree

probability distribution function of each ceRNA network. Following the power-law rule [65],

we fitted linear regression of log(ceRNA’s degree probability) to log(ceRNA’s degree). Log-log

plots of all three ceRNA networks had negative slope with high fitness, which clearly indicated

that the inferred ceRNA networks were scale-free (Fig 2).

Two genes can interact and thereby regulate each other via different regulatory layers (e.g.,

protein-protein interactions (PPIs) and TF-gene interactions). To test the specificity of Can-

cerin to identify ceRNA interactions, we checked whether the inferred ceRNA interaction net-

works also contained TF-gene interactions or PPIs. We collected 410,337 PPIs from BioGrid

database version 3.4.159 [66]. Within the total number of inferred ceRNA interactions in each

cancer network, very few interactions were PPI (0.85% (BRCA), 0.63% (KIRC), and 0.73%

(HNSC)). Similarly, we also found very few ceRNA interactions that were also TF-gene inter-

actions (0.78% (BRCA), 0.09% (KIRC), and 0.18% (HNSC)).

CeRNAs were significantly associated with cancer-related genes. To test if the ceRNAs

in the inferred ceRNA networks were enriched in cancer-associated genes, we compiled a list

of cancer-related genes (oncogenes and tumor-suppressor genes) from the Cancer Gene Cen-

sus in COSMIC v83 [67], the Bushman lab’s Cancer Gene List v3 [68], and the Network of

Cancer Genes 5.0 [69]. It resulted 2,944 cancer-related genes in total. We performed a hyper-

geometric test between the inferred ceRNAs in each cancer type with the cancer-related gene

list. The results showed that ceRNAs were significantly enriched in the cancer-related genes

(p-values were 4.3e-4 (BRCA), 5.0e-3 (KIRC), and 1.9e-5 (HNSC)). We also performed a

hypergeometric test between the DE RNAs that were not predicted to be ceRNAs (i.e., non-

ceRNAs) and the cancer-related genes. In all the three cancer types, unlike the ceRNAs, the

non-ceRNAs did not show significant enrichment with the cancer-related genes (p-values� 1

in all three cancer types).

Table 5. Number of inferred ceRNA interactions and number of ceRNAs in those interactions (output of Can-

cerin—Step 3).

BRCA KIRC HNSC

No. of all ceRNA interactions 4,115 4,639 2,725

No. of mRNA-mRNA ceRNA interactions1 3,674 4,614 2,589

No. of mRNA-lncRNA ceRNA interactions1 394 25 121

No. of lncRNA-lncRNA ceRNA interactions1 47 0 15

No. of all ceRNAs 1,593 1,081 1,110

No. of mRNAs as ceRNAs2 1,491 1,071 1,063

No. of lncRNAs ceRNAs2 102 10 47

1: subset of all ceRNA interactions (Row 1)
2: subset of all ceRNAs (Row 5)

https://doi.org/10.1371/journal.pcbi.1006318.t005
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To explore the significance of lncRNAs which were ceRNAs, we analyzed the degree of con-

nection of lncRNAs in the ceRNA networks. A hub ceRNA in the network was defined as the

ceRNAs which had high degree (i.e., top 90% degree) in the ceRNA network. Within of hub

ceRNAs in each cancer, we found a small number of hub lncRNAs (11 (BRCA), 0 (KIRC), and

2 (HNSC)). Interestingly, MAGI2-AS3 was a hub lncRNA in both BRCA and HNSC, and it

was also the lncRNA with the highest degree in both the BRCA and HNSC ceRNA interaction

networks. Among the MAGI-AS3’s ceRNA partners, 25% (BRCA) and 35% (KIRC) of them

were cancer-associated genes. Recently, MAGI2-AS3 was shown to play an important role in

tumorigenesis and tumour progression in breast cancer [70]. These result suggests that while

lncRNAs contributed to a small number of ceRNA interactions, the hub lncRNAs may hold

important functions in cancer biology.

CeRNAs were potential biomarkers for cancer prognosis. In order to assess the prog-

nostic power of the ceRNAs, we tested if the ceRNAs were better than the non-ceRNAs (i.e.,

DE genes not in the ceRNA network) at predicting survival status of cancer patients. Univari-

ate Cox proportional hazard model was fit for each DE RNA, which was either a ceRNA or a

non-ceRNA. The response variable was the number of days till death for each patient. The

patients who were alive or had no death record were censored and their last follow-up dates

were used.

After hazard model fitting, each DE RNA was associated with a hazard ratio and a p-value

(from testing the null hypothesis that its hazard ratio equals to 1). A hazard ratio> 1 implies that

an increase of expression of the gene increases the risk of death, while a hazard ratio< 1 implies

that an increase of the gene expression decreases the risk of death. Thus, the prognostic power of

a gene is reflected through how much its hazard ratio is deviated from 1 (i.e., jhazard ratio—1j).

Fig 2. Degree distribution and power-law statistics. (A) Degree distribution of ceRNAs for each cancer type. Linear regression statistics between log

(ceRNA’s degree) and log(ceRNA’s degree probability) in (B) BRCA, (C) KIRC, and (D) HNSC cancer types.

https://doi.org/10.1371/journal.pcbi.1006318.g002
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A DE RNA was considered as a potential prognostic biomarker if its Cox proportional haz-

ard ratio’s p-value was smaller than 0.05. Fig 3 shows the hazard ratio distribution of the prog-

nostic ceRNAs versus the prognostic non-ceRNAs for each cancer type. The Wilcoxon rank-

sum test was applied to test whether the hazard ratio of prognostic ceRNAs and non-ceRNAs

came from the same distribution. In BRCA, we observed a marginal Wilcoxon p-value (0.10).

However, the median ceRNAs’ hazard ratio was high (1.54), signifying that an increase of

BRCA ceRNAs’ expression was associated with increased risk of death. The Wilcoxon p-values

for KIRC (1.4e-35) and HNSC (0.03) were both significant. Notably, in all the three cancer

types, compared to the non-ceRNAs’ hazard ratios, the ceRNAs’ hazard ratios were deviated

from 1 with higher magnitude, which suggests that the ceRNAs hold higher prognostic power

than the non-ceRNAs. We observed that the median hazard ratio of prognostic ceRNAs in

KIRC was smaller than 1 whereas the median hazard ratios of prognostic ceRNAs in BRCA

and HNSC were higher than 1. This result indicates that the prognostic ceRNAs in KIRC were

more likely to be involved in tumor suppressor-related activities, while the prognostic ceRNAs

in BRCA and HNSC were more likely to be involved in oncogene-related activities.

CeRNA modules were enriched with cancer processes. To examine the biological signifi-

cance of the inferred ceRNA networks, we clustered each ceRNA network into modules and

performed functional enrichment on each module. A ceRNA module was defined as a sub-net-

work of densely connected ceRNAs. We hypothesized that the ceRNA modules, which were

extracted from the inferred ceRNA networks, may act as functional units and play an impor-

tant role in cancer development. To identify ceRNA modules in each ceRNA network, we

employed the R package igraph [71] to implement the multilevel graph clustering algorithm

[72]. The algorithm identifies densely-connected modules within a network by using a greedy

approach that aims to maximize the module’s modularity, which measures the density of con-

nections inside the modules as compared to connections between the modules. In each itera-

tion, each vertex is assigned/reassigned to a module to maximize the module’s modularity.

When no vertex can be reassigned, each module is considered as a vertex. The process is

restarted and will be stopped when only a single vertex is left or when the modularity can not

be increased. Therefore, the algorithm does not require users to specify the number of modules

in advance. When applied to large networks (>100k nodes), the algorithm was able to return

modules of high modularity without over-merging or over-dividing those modules [72].

To functionally annotate the modules, we performed enrichment analysis between the ceR-

NAs in each ceRNA module and Cancer Hallmark (CH) terms, Gene Ontology (GO) terms,

and KEGG/REACTOME pathways. To make the enrichment test statistically feasible, only

modules with at least 10 ceRNAs were used for this analysis. The R package clusterProfiler [73]

was used to perform the enrichment analysis.

The number of ceRNA modules containing more than 10 ceRNAs for each cancer type was

18 (BRCA), 11 (KIRC), and 14 (HNSC). The average number of ceRNAs in each module was

74 (BRCA), 87 (KIRC), and 55 (HNSC). Table 6 lists the CH terms that were enriched with the

ceRNA modules in each cancer type. Notably, the CH term “Epithelial To Mesenchymal Tran-

sition” was enriched in all the three cancer types. The CH terms that were enriched in at least

two cancer types included “G2M checkpoint”, “E2F targets”, “TGF beta signaling”, and “MYC

Targets V1”. In all the three cancer types, there were several ceRNA modules that were associ-

ated with multiple CH terms (i.e., modules 3 and 7 in BRCA, modules 4 and 11 in KIRC, and

modules 4 and 7 in HNSC). The same ceRNA modules were also enriched in GO terms and

pathways related to regulation of cell division, development, and activation processes (see

S2 File). Interestingly, while some ceRNA modules that were not enriched in any CH term,

they were enriched in GO terms and pathways associating with disease development and pro-

gression processes. For instance, module 15 in BRCA was enriched in the KEGG pathways
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Fig 3. Hazard ratio distribution of prognostic ceRNAs and non-ceRNAs in each cancer type. A prognostic RNA was defined as a DE RNA whose p-

value from the univariate Cox regression was smaller than 0.05. For each cancer type, the prognostic RNAs were categorized into ceRNAs and non-

ceRNAs. The p-values shown in the plot were from the Wilcoxon rank-sum test between hazard ratios of prognostic ceRNAs and non-ceRNAs.

https://doi.org/10.1371/journal.pcbi.1006318.g003

Table 6. Cancer hallmark terms that were enriched in the ceRNA modules.

Cancer type Cancer hallmark geneset Description Enriched Module

BRCA Epithelial Mesenchymal Transition Genes defining epithelial-mesenchymal transition, as in wound healing, fibrosis and metastasis 2, 4, 14

E2F Targets Genes encoding cell cycle related targets of E2F transcription factors 3, 7, 13

Estrogen Response Early Genes defining late response to estrogen 1, 11

G2M Checkpoint Genes involved in the G2/M checkpoint, as in progression through the cell division cycle 3, 7

TGF Beta Signaling TGF-beta signaling pathway 6

Spermatogenesis Genes up-regulated during production of male gametes (sperm), as in spermatogenesis 7

IL-6/JAK/STAT3 Signaling Genes up-regulated by IL6 via STAT3, e.g., during acute phase response 12

Interferon Gammaresponse Genes up-regulated in response to IFNG 12

UV Response Up Genes up-regulated in response to ultraviolet (UV) radiation 17

KIRC Epithelial Mesenchymal Transition Genes defining epithelial-mesenchymal transition, as in wound healing, fibrosis and metastasis 4

UV Response DN Genes down-regulated in response to ultraviolet (UV) radiation 4

Oxidative Phosphorylation Genes encoding proteins involved in oxidative phosphorylation 11

MYC Targets V1 A subgroup of genes regulated by MYC—version 1 (v1) 11

Adipogenesis Genes up-regulated during adipocyte differentiation (adipogenesis) 11

HNSC Epithelial Mesenchymal Transition Genes defining epithelial-mesenchymal transition, as in wound healing, fibrosis and metastasis 4, 5

TGF Beta Signaling TGF-beta signaling pathway (UV) radiation 4

MYC Targets V1 A subgroup of genes regulated by MYC—version 1 (v1) 6

G2M Checkpoint Genes involved in the G2/M checkpoint, as in progression through the cell division cycle 7

E2F Targets Genes encoding cell cycle related targets of E2F transcription factors 7

https://doi.org/10.1371/journal.pcbi.1006318.t006
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related to Parkinson, Alzheimer, and Huntington diseases and module 2 in KIRC was enriched

in GO Terms involving in negative regulation of metabolic process and molecular function.

The list of ceRNAs in each ceRNA module and the list of enriched GO Terms and KEGG/

REACTOME pathways for each ceRNA module could be found in S2 File.

Modification of individual steps in Cancerin pipeline substantially changed

the selected ceRNA interactions

In this section, we examine the technical importance of the two major steps in the Cancerin

pipeline. The LASSO-based variable selection to select miRNA-mRNA interactions (step 2)

and sensitivity correlation-based filtering to select ceRNA interactions (step 3) were two key

components in Cancerin. To assess the importance of those two steps, we modified/deacti-

vated those steps to see how it would alter the final ceRNA interaction network topology. Spe-

cifically, we kept steps 1 and 3 in Cancerin, but in step 2, we replaced the LASSO-based

variable selection procedure by ordinary least square (OLS) multiple regression. For each

RNA, its candidate miRNA regulators were selected if their coefficients from OLS were nega-

tive and p-values < 0.05. We termed this method “Cancerin (OLS regression)”. We also kept

steps 1 and 2 in Cancerin, but in step 3, we deactivated the ceRNA filtering criterion based

on sensitivity correlation. We termed this method “Cancerin (sensitivity correlation filtering

step deactivated)”. The Cancerin pipeline with no modification is referred to as “Cancerin

(original)”.

To compare Cancerin to other existing methods, we replicated the method used in [26, 27],

which inferred ceRNA interactions based on negative expression correlation between miRNA

and RNA targets and positive expression correlation between RNA targets. We referred to this

method as “Correlation-based” method. The method did not consider the other types of regu-

lators besides miRNA (i.e., TF, CNA, and DNA methylation) as potential regulators of gene

expression and it also did not take into account the additive effects of multiple regulators on

controlling gene expression.

Table 7 summarizes the number of selected ceRNA interactions obtained by applying the

“Cancerin (original)”, “Cancerin (OLS regression)”, “Cancerin (sensitivity correlation filtering

step deactivated)”, and “Correlation-based method”. As expected, using only expression corre-

lation to infer ceRNA interactions resulted in many ceRNA pairs. Compared to Cancerin, the

number of correlation-based ceRNA interactions was more than 6-fold higher in BRCA,

10-fold higher in KIRC, and 6-fold higher in HNSC. All ceRNA interactions found by “Can-

cerin (original)” were included in the “Correlation-based” method. There were also more

ceRNA interactions found by “Cancerin (OLS regression)” than by “Cancerin (original)” but

the increased size was smaller compared to the “Correlation-based” method. There is a low

overlap between the ceRNA interactions found in “Cancerin original” and the those from

“Cancerin (OLS regression)”. Specifically, with respect to interactions found in “Cancerin

(original)”, the percentages of common interactions that were also found in “Cancerin (OLS

regression)” were 26.8% (BRCA), 40% (KIRC), and 33.2% (HNSC). Compared to “Cancerin

Table 7. Number of selected ceRNA interactions by applying different methods.

BRCA KIRC HNSC

Cancerin (original) 4,115 4,639 2,725

Cancerin (OLS regression) 6,039 19,202 6,262

Cancerin (sensitivity correlation filtering step deactivated) 7,018 18,976 8,179

Correlation-based method 25,853 46,518 16,908

https://doi.org/10.1371/journal.pcbi.1006318.t007
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(original)”, deactivation of sensitivity correlation filtering step also increased the number of

ceRNA interactions. The fold-change increase in each cancer type was 1.7 (BRCA), 4.1

(KIRC), and 3.0 (HNSC). In overall, this comparative analysis indicated that due to several fil-

tering layers used in “Cancerin (original)”, the pipeline is more selective than other methods

in selecting ceRNA interactions.

We also checked the number of PPIs and TF-gene interactions that were also inferred

ceRNA interactions obtained by modifying particular steps in Cancerin or using the “Correla-

tion-based” method. As expected, compared to ceRNA interactions obtained by “Cancerin

(original)”, with other methods we observed an increase of ceRNA interactions that were also

PPI or TF-gene interactions. Especially the ceRNA interactions inferred by the “Correlation-

based” method contained consistently higher percentage of PPI and TF-gene interactions (see

S1 Table). These results suggest that the ceRNA interaction predictions obtained from pairwise

expression correlation methods could have high false positive rate.

Inferred ceRNA interactions were able to predict gene expression change

To assess the accuracy of the inferred ceRNA interactions to predict gene expression change,

we employed shRNA-mediated perturbation assays data obtained from the Library of Inte-

grated Network-based Cellular Signature (LINCS) database [32]. In the LINCS-L1000 shRNA-

perturbation database, gene knockdown experiments using shRNAs were conducted on multi-

ple disease cell lines, making the database a valuable resource to assess gene-gene interactions

inferred from computational methods. Each experiment reported gene expression changes of

978 genes as response to the knockdown of a specific gene, which was targeted by a specific

shRNA. We referred to the knocked down genes as upstream genes and to the 978 expression-

profiled genes as downstream genes. Details of how we used the LINCS-L1000 dataset to evalu-

ate the accuracy of inferred ceRNA interactions in predicting gene expression change were

described in S1 Text. In brief, if an upstream ceRNA is silenced, the upstream ceRNA’s

miRNA regulators become more available to bind and thereby downregulate the downstream

ceRNA partners. Thus, given a downstream ceRNA, its expression level should be lower in

response to the silencing of upstream ceRNA partners in comparison to the silencing of other

upstream genes. Ratio Fold Change (RFC) of a downstream ceRNA is defined as ratio of its

expression fold change following the knockdown of its ceRNA partners to its expression fold

change following the knockdown of upstream genes that are not its ceRNA partners. A down-

stream ceRNA’s RFC was expected to be smaller than 1. Lower value of RFC indicated better

prediction of gene expression change due to ceRNA interactions.

Recently, Chiu et al. [74] used the LINCS shRNA-mediated perturbation assays to assess

Hermes algorithm, their genome-wide ceRNA interaction prediction tool [29]. We also used

the same LINCS dataset (L1000-MCF7) that had been used in [74] to validate our results and

to compare accuracy of Cancerin with Hermes. We defined the accuracy of a ceRNA network

as the percentage of downstream ceRNAs whose RFCs were smaller than 1. As gene expression

in the MCF7 dataset was measured in two different time points (96h and 144h), our analysis

was applied on each time point (Table 8). At 96h, out of all downstream ceRNAs (77 in Can-

cerin and 22 in Hermes), the number of ceRNAs whose RFC was smaller than 1 was 55 in Can-

cerin (accuracy 71.4%) and 17 in Hermes (accuracy 77.2%). At 144h, out of all downstream

ceRNAs (46 in Cancerin and 15 in Hermes), the number of ceRNAs whose RFC was smaller

than 1 was 32 in Cancerin (accuracy 69.6%) and 9 in Hermes (accuracy 60%). While overall

accuracy (i.e., percentage of total downstream ceRNAs whose RFC was smaller than 1 at both

time points) between Cancerin and Hermes was approximately equal (70.7% in Cancerin and

70.2% in Hermes), Cancerin showed consistent accuracy values at both time points. We also
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computed the RFC values for the downstream ceRNAs obtained when the individual steps in

Cancerin pipeline were modified and when only miRNAs were used as potential regulators in

the variable selection step (i.e., Cancerin (only_miRNA)). Cancerin outperformed those meth-

ods based on the overall accuracy (see Table 8).

Discussion

In this study, we developed Cancerin, a tool to infer genome-wide cancer-associated ceRNA

interaction networks and applied it to three types of cancer. Unlike existing ceRNA inference

tools that considered miRNAs as the only type of gene regulator, Cancerin considered other

types of gene regulators besides miRNAs, namely transcription factors, copy number alter-

ation, and DNA methylation. In addition, using the sensitivity correlation metric proposed in

[28], our method directly modeled the ceRNA hypothesis, which posited that the expression

profiles of two ceRNAs should be positively correlated and that correlation was conditioned

on the expression of their shared miRNA regulators.

The inferred ceRNA networks in all the three cancer types were scale-free networks as the

ceRNAs’ degree distribution followed power-law with high fitness. There were very few overlap-

ping interactions between the inferred ceRNA interactions and the PPIs or TF-gene interactions.

Only a subset of input DE RNAs were selected as ceRNAs in the final ceRNA networks. In

all three cancer types, the ceRNAs were significantly enriched with cancer-related genes

whereas DE RNAs that were not in the ceRNA networks did not have a significant

enrichment.

To further explore the biological importance of our inferred ceRNA networks, we clustered

ceRNA networks into modules and performed functional enrichment on each module. Vari-

ous cancer hallmark terms, biological processes, and pathways were enriched in the ceRNA

modules across all the three cancer types. In addition, some ceRNA modules were associated

with multiple cancer hallmark terms, making the ceRNAs in such modules valuable biomark-

ers to be further investigated.

To examine the prognostic capability of the inferred ceRNA networks, we performed uni-

variate Cox proportional hazard models for each ceRNA and non-ceRNA. In all the three can-

cer types, compared to non-ceRNAs, ceRNAs exhibited higher association with cancer

outcome. We also observed that KIRC ceRNAs had low hazard ratios indicating that they

might act as tumor-suppressors.

We also examined the functional importance of the miRNAs that mediated ceRNA interac-

tions. The miRNAs that mediated the highest number of ceRNA interactions (i.e., let-7a-5p,

miR-106b-5p, and miR-9-5p) are well-known in cancer literature; however, their prevalent

roles in mediating ceRNA interactions could suggest a novel role in cancer pathogenesis.

Validation of computationally predicted ceRNA interactions is challenging due to the low

number of experimentally-validated ceRNA interactions. To address this challenge, we

Table 8. Accuracy of the ceRNA networks inferred by different methods based on LINCS-L1000 (MCF7) dataset.

Accuracy (96h) Accuracy (144h) Overall Accuracy (96h + 144h)

Cancerin (original) 71.4% 69.6% 70.7%

Hermes 77.2% 60.0% 70.2%

Cancerin (only_miRNA) 67.1% 73.9% 69.6%

Cancerin (OLS regression) 66.1% 58.1% 62.9%

Cancerin (sensitivity correlation filtering step deactivated) 66.3% 66.1% 66.2%

Correlation-based method 62.8% 68.2% 65.0%

https://doi.org/10.1371/journal.pcbi.1006318.t008
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employed the LINCS-MCF7 dataset [32] to check whether the knockdowns of ceRNAs would

cause downregulation of their predicted ceRNA partners. We also compared Cancerin’s accu-

racy with that of Hermes [29], a ceRNA inference tool based on mutual information criterion.

Based on the prediction of gene expression change using the inferred ceRNA interactions,

Cancerin achieved approximately equal accuracy as Hermes; however the accuracy values

from Cancerin at different experimental time points were more consistent.

In summary, we present Cancerin, a computational method that integrates genomic, tran-

scriptomic, and epigenetic regulatory factors to infer genome-wide ceRNA interactions in can-

cer. Analysis of the inferred ceRNA networks constructed by Cancerin would provide novel

insights on the biological functions of this novel layer of gene regulation, especially on how it

contributes to cancer pathogenesis.
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