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3D proteochemometrics: using three-dimensional
information of proteins and ligands to address
aspects of the selectivity of serine proteases†‡
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The high similarity between certain sub-pockets of serine proteases may lead to low selectivity of protease

inhibitors. Therefore the application of proteochemometrics (PCM), which quantifies the relationship be-

tween protein/ligand descriptors and affinity for multiple ligands and targets simultaneously, is useful to un-

derstand and improve the selectivity profiles of potential inhibitors. In this study, protein field-based PCM

that uses knowledge-based and WaterMap derived fields to describe proteins in combination with 2D

(RDKit and MOE fingerprints) and 3D (4 point pharmacophoric fingerprints and GRIND) ligand descriptors

was used to model the bioactivities of 24 homologous serine proteases and 5863 inhibitors in an integrated

fashion. Of the multiple field-based PCM models generated based on different ligand descriptors, RDKit fin-

gerprints showed the best performance in terms of external prediction with Rtest
2 of 0.72 and RMSEP of

0.81. Further, visual interpretation of the models highlights sub-pocket specific regions that influence

affinity and selectivity of serine protease inhibitors.

Introduction

Serine proteases are enzymes known to modulate protein and
peptide degradation by cleavage of peptide bonds and are
involved in a wide range of biological functions such as cell
cycle regulation, digestion, blood coagulation and immune
response.1 The human genome encodes for more than 500
proteases2 and one-third of these constitute serine proteases.1

Serine proteases initiate the cleavage of peptide bonds
through a serine, which forms a part of the catalytic triad
together with histidine and aspartate. Their dysregulation is
known to cause many diseases including cancer, inflamma-
tion, viral infections and cardiovascular diseases.1

Understanding the sub-pocket specificities of proteases is
crucial to design inhibitors that act preferentially on a spe-
cific protease and thereby have limited off-target effects. Ear-
lier studies on proteases have shown that selectivity of prote-
ase binding sites could be best understood by mapping their
substrate sequences that support small molecule recognition
and subsequent prediction of potential off-target effects.3 In
yet another study, sub-pocket specific cleavage entropies were
used to estimate protease selectivity quantitatively4 and in
turn to correlate specificity with descriptors of protein struc-
ture and dynamics.5 Nevertheless, a quantitative approach
such as proteochemometric modelling6–8 that accounts for
polypharmacology and enables quantitative prediction of bio-
activities of protease inhibitors could be useful for drug de-
sign purposes.

To date, proteochemometrics has been used to model the
bioactivities of many target families including G protein-
coupled receptors, kinases, lyases, antibodies, P450s, trans-
port proteins, cyclooxygenases, carbonic anhydrases, PARP,
aromatases as well as proteases.6–14 Previously conducted
proteochemometric studies on serine proteases benchmarked
the application of 21 different sequence-based descriptors in
modelling the bioactivities of 67 serine proteases and 12 625
protease inhibitors.14 Even though most of these descriptors
were efficient in generating models that can predict the bioac-
tivities of external test sets with RMSEPs as low as 0.7, they
had limited interpretability. An important aspect that the
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sequence-based descriptors fail to account for is the 3D orien-
tation of amino acids in the binding pocket, which is crucial
for ligand design. Therefore, generating proteochemometric
models that rely on more informative field-based protein de-
scriptors derived from 3D structural information would sup-
port visual interpretation. We have already shown that field-
based proteochemometrics can be used to generate predictive
and visually interpretable models for kinases.9,10

In this study, we aim to generate a unified
proteochemometric model on a set of 24 human serine prote-
ases and 5863 inhibitors, using field-based descriptors for
proteins and different 2D and 3D ligand descriptors. We have
conducted extensive validations such as leave one target out
(LOTO) and leave one compound cluster out (LOCCO) valida-
tions to assess the credibility of the models and understand
the diversity of target and ligand space. Our PCM models are
not only effective in predicting bioactivities of serine protease
inhibitors, but also highlight protein and ligand features that
contribute to affinity and selectivity.

Materials and methods
Datasets

24 unique human serine proteases were downloaded from PDB
based on their resolution (<3 Å) and completeness. Bioactivity
values (pKi) for 5863 unique compounds were extracted from
publicly available ChEMBL 2015 to generate a dataset with
7908 data points. Confidence score of 5 and above was used
as the criterion to extract data from CHEMBL. The complete
bioactivity matrix for a set of 24 serine proteases and 5863
compounds should include 140 712 (24 × 5863) data points.
On compiling the bioactivity profiles of compounds against
all targets, only 7908 data points were found, thereby leaving
94% of the bioactivity matrix incomplete.

The distribution of data points for the 24 serine proteases
is compiled in Table S1‡ and the pKi distributions for each
target are illustrated in Fig. S1 of the ESI.‡ The dataset is
highly imbalanced with overrepresentation of some of the ser-
ine proteases like coagulation factor Xa (FXa) and thrombin
(FIIa) that contribute to nearly 70% (5601/7908 data points) of
the dataset. Even though other serine proteases have about
100 data points on average, hepsin (HPN) and the comple-
ment component 1S (C1s) are underrepresented with 1 data
point each. Considering the bioactivity spectra of serine prote-
ases, 26% of the total data points belong to the highly actives
category (pKi: 7 to 11) with FXa, FIIa, plasma kallikrein
(KLKB1) and granzyme B, being the most represented mem-
bers. 63% represent the moderately actives (pKi: 5 to 7) and
10% of the data points fit the less potent category (pKi < 5).
Kallikrein 7 (KLK7) and coagulation factor XII (FXII) have the
highest percentage of compounds with low potencies.

Ligand descriptors

All the compounds were standardised using JChem
Standardizer version 15.0.1 and applying filters such as neu-
tralize, remove explicit hydrogens, clean 2D, clean 3D and

tautomerize. The standardised compounds were employed to
the calculation of 192 physiochemical descriptors using MOE
version 2014 (ref. 16) and 256 circular hashed fingerprints
(radius = 2, bits = 256) using RDkit fingerprint calculator.17

Further, to account for the spatial description of the ligands,
the compounds were subjected to 4-point pharmacophoric
fingerprint (4-PFP) calculations using Canvas.18 The finger-
print precision was set to 32-bit and 1000 informative bits
were considered for each compound. Additionally, 1180 grid-
independent descriptors (GRIND)19 were computed using
pentacle to provide a 3D description of the ligands.

Prior to calculating 4-PFPs and GRIND descriptors, 3D struc-
tures of the ligands were generated by using the Ligprep mod-
ule of Schrödinger,18 with the default settings. In order to ex-
plore the conformational space further, we generated multiple
conformations using ConfGen18 in comprehensive mode by ap-
plying the OPLS-2005 force field for energy minimization. How-
ever, only the conformation with the lowest potential energy
was considered for each ligand and subjected to descriptor cal-
culations. It is possible that some chosen conformations do
not correspond to the bioactive conformations of the ligands.
Since e.g. docking to several protein targets is no sufficient
method to choose a single bioactive conformation, we used the
lowest energy conformation for further analysis.

Protein descriptors

Initially, structures were cleaned by deleting water molecules,
additional protein chains and ligands. For structures with
multiple chains, the more complete chain was used. All struc-
tures were then prepared by using a KNIME20 workflow
which involved the following steps: addition of hydrogen
atoms, modeling of residues with missing atoms, assignment
of protonation states of charged amino acids and optimiza-
tion of the geometry of hydrogen atoms. Following prepara-
tion, all the structures were superimposed on a common ref-
erence protein (Matriptase, PDB id: 1EAX).

Ligand binding pockets of proteases were described by knowl-
edge-based16 and Watermap-derived fields.21 Knowledge-based
contact potentials, which are derived from the structural informa-
tion available in PDB, are expressed as a joint probability density
of interatomic distance, lone-pair interaction angle and out-of-
plane angle. Contact potentials for hydrophilic and hydrophobic
probes were calculated by considering a grid that spans the bind-
ing site of aligned protease structures. The grid was defined by
exploiting the crystallographic pose of the peptide like inhibitor
bound to the activated protein C crystal structure (PDB id: 1AUT)
that extends to all non-prime protease sub-pockets (S1–S4). The
grid spacing was set to 0.5 Å and its boundary limited to 2 Å from
the reference ligand. Following the grid definition, the knowledge-
based contact potentials were calculated for each grid point. How-
ever, only those grid points, for which the polar and lipophilic
contact probabilities exceed 0.9 were considered as significant
and used as protein descriptors in proteochemometric models.

Additionally, the ligand binding sites were described by
fields derived from Schrödinger's Watermap. The Watermaps
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were calculated with the default settings and projected on to
the grid used for knowledge-based field calculations to en-
able easy comparison. Water densities were assigned to each
grid point and those grid points whose density values exceed
0.06 were considered for further Gibb's free energy assign-
ments. Grid points with Gibb's free energy, ΔG > 3 kcal
mol−1 were classified as unstable water field points and those
with ΔG < −1 kcal mol−1 were classified as stable water field
points. Fields derived from Watermaps were used together
with the knowledge-based fields to describe the binding
pockets of proteases in proteochemometric models.

Besides, using the field-based descriptors for proteins, we
also used sequence-based descriptors such as amino acid
and dipeptide composition, autocorrelation descriptors, com-
position, transition and distribution descriptors, quasi-
sequence-order descriptors and pseudo-amino acid composi-
tion. These descriptors were calculated for the amino acid se-
quences extracted from the superimposed protein 3D struc-
tures by using the PROFEAT server.22

Data pre-processing

All protein and ligand descriptors were mean centred and
scaled to unit variance using preProcess() function from Caret
package23 in R. The preProcess method scales the numeric
data between the range [0, 1]. The factorial vectors were
converted to numeric by using dummyvars() function. In order
to remove the predictors with zero variance, nearZeroVar()
method was applied using frequency cut-off of 30/1.

Further, the high dimensionality of protein descriptors
entailed principal component analysis (PCA). PCA24 is a di-
mensionality reduction technique applied to extract relevant
information from big datasets. PCA was applied using
prcomp() method of stat package in R.25 24 principal compo-
nents (PCs) were extracted from 47 354 hydrophilic, hydro-
phobic and unstable water field points to explain as much
variation as possible. Only 18 PCs were generated for 47 354
stable water field points, as the remaining components con-
tributed to less than 1% variance. Similar to the fields, 24
PCs were extracted for each of the sequence-based descriptor
categories mentioned above. The extracted PCs were used as
protein descriptors in proteochemometric modelling. In case
of ligands, the number of descriptors being limited, PCA was
not applied and the ligand descriptors were used as such in
proteochemometric modelling.

Proteochemometric modelling

PCM modelling combines the ligand and protein descriptors
and uses the combination for prediction of bioactivity of li-
gands against multiple protein targets. The complete dataset
was divided into 70% training set and 30% test set using
createDataPartition(). The 70% training set was further 5-fold
divided to optimise the parameters for training the models.

Prior to model building, recursive feature elimination
(RFE) was applied on both the target and compound space of
the training set. This was done to reduce the dimensionality

of the training space further and minimize over-fitting,
resulting from the large number of descriptors. RFE was
conducted by using the 5-fold cross validation parameter in
rfeControl function, as implemented in Caret package. The
number of features that remain after RFE to be used in PCM
modelling is reported in Table S2 of the ESI.‡

PCM models were trained by employing random forests
(RF) as a regression technique, using train() method in Caret
package. The number of variables sampled at each split
(mtry) was set to default value (p/3) where p is the total num-
ber of variables in training set. The total number of trees was
set to the default value of 500. In addition to RF models, par-
tial least squares (PLS) regression models were generated by
using SIMCA.26 PLS, being a linear approach, cross-terms
were included to study non-linear interactions existing be-
tween the proteins and ligands. Cross-terms27 were computed
as the product of protein principal components and ligand
descriptors using SIMCA's inbuilt function. Only the protein
and ligand features that remained after applying RFE were
used for cross-terms computation. The number of cross-
terms used in each PLS model are listed in Table S2 of the
ESI.‡ In PLS models, protein descriptors, ligand descriptors
and cross-terms were considered as separate entities called
blocks and the variables in each block were scaled by setting
the block weights to 1.

Besides PCM modelling, we built global QSAR models,
models with only protein field descriptors and models with
CHEMBL IDs of proteins and ligands as descriptors. Perfor-
mances of these controls were estimated and were later com-
pared with PCM models.

Model validation

K-fold cross validation (K = 5) was employed as an internal
validation on the 70% training set, where the training data
was further split into K-folds. The model was trained on K-1
folds and tested on the remaining fold. 30% of the complete
dataset was held out and was used as test set for external vali-
dation. Model performances were assessed by correlation co-
efficient of the fitted data (R2), predictabilities of the cross-
validated data (Q2), correlation coefficient of the external test
set data (Rtest

2) and root mean square error of the fitted
(RMSEE), cross-validated (RMSEPCV) and external test set
data (RMSEPtest).

In addition to K-fold cross validation, the models were fur-
ther validated by leave one target out (LOTO) and leave one
compound cluster out (LOCCO) validation. LOCCO and LOTO
validations were conducted by using the RDkit fingerprints
and random forest approach, as this descriptor and machine
learning combination gave the overall best performance in
terms of model predictions. In LOTO, the observations corre-
sponding to one target were excluded at a time. RF models on
RDkit fingerprints were built by considering the observations
of the remaining 23 proteases and the excluded target was
used as a test set. This procedure was repeated until all the
targets were predicted at least once. In order to perform
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LOCCO validation, the compounds were first divided into dis-
tinct clusters using the k-means approach. K-means clustering
was performed in R by setting the nstart (number of random
samples) parameter to 50. Clustering was repeated by consid-
ering a range of cluster numbers starting from 2 to 200. The
optimal number of clusters ideal for grouping the compounds
for LOCCO validation was decided by plotting the cluster
numbers against the mean within group sum of squares (see
Fig. S2 in ESI‡). Based on the elbow method, we chose 20 as
the optimal number of clusters. While performing LOCCO,
observations corresponding to one cluster were excluded at a
time and used as the test set. RDkit based RF models built on
the remaining 19 clusters were used to test the excluded sets.

Additionally, RF and PLS models were assessed by
conducting permutation validations/Y-scrambling, which in-
volved re-fitting of the models 20 times with randomly
assigned bioactivity values. The performances of these
models with permuted data were used to measure the degree
of over-fitting based on the intercepts obtained by plotting
the correlation coefficient of the original and random bioac-
tivities against R2 and Q2 obtained from fitted and cross-
validated data, respectively.

Model interpretation

Features related to affinity were assessed by analysing the PLS
coefficients that have positive influence on affinity. Only those
protein and ligand features, whose PLS coefficients were
above 0.1 were considered for interpretation. Protein features,
being the principal components, were interpreted by examin-
ing the top 10 loadings of these principal components. Since
the interpretation of RDkit fingerprints is straightforward, the
ligand features were interpreted by tracing back to the pat-
terns encoded by these fingerprints. On the other hand, fea-
tures that influence the selective binding of an inhibitor to-
wards a specific protease were identified by considering the
cross-terms. The component contribution values computed by
SIMCA were used as the basis to rank the cross-terms. For
practical reasons, the selectivity interpretation was restricted
to the top 10 cross-terms that have a positive impact on the af-
finity of protease-ligand interaction pairs. Details regarding
the distribution of PLS coefficients and cross-terms used for
interpretation are shown in Fig. S3 and S4 of the ESI.‡

Applicability domain

Applicability domain28 (AD) analysis was conducted to examine
the extent to which the models can be applied to a new chemi-
cal space. The extrapolation capabilities of the models to pre-
dict external test set compounds were assessed by using the
K-nearest neighbour approach. Average Tanimoto similarities
of the compounds in the test set were computed by considering
their 5 closest neighbours in the training set. Tanimoto similar-
ities were calculated based on the RDkit fingerprints in order to
find the cut-off suitable for making reliable predictions.

Results and discussion
Field-based PCM modelling

We used partial least squares (PLS) regression and random
forest (RF) approaches to build proteochemometric models
that have the potential to predict pKi values of new protease li-
gands. Performances of PCM models derived from the PCA
scores of protein fields and ligand descriptors are reported in
Table 1. As shown in Table 1, all RF PCM models have nearly
the same performance with R2 consistently above 0.9,
irrespective of the ligand descriptors used. With respect to
internal cross-validation, the predictabilities (Q2) vary from
0.4 for GRIND descriptors to 0.7 for RDkit fingerprints and
MOE descriptors. However, PLS models show varying perfor-
mances with both R2 and Q2 ranging from 0.2 to 0.6,
depending on the ligand descriptors used. Considering exter-
nal predictions, the RMSEPs of RF and PLS models are similar
to those obtained from internal cross-validation. Models
based on RDkit fingerprints have the highest predictive power
with Rtest

2 of 0.72 for RF models (RMSEPtest: 0.81) and 0.56 for
PLS models (RMSEPtest: 1). Overall, RF models perform better
than the PLS models, both in terms of internal cross-
validation and external prediction. Nevertheless, the reason-
able R2 (0.67) and Q2 (0.59) values of the training sets
obtained for RDkit based PLS models makes them valid
enough for further predictions and interpretation. All PLS
models considered in this study, included cross-terms, whose
importance can be ascertained by comparing the perfor-
mances of models with and without cross-terms. Models with-
out cross-terms had a significant drop in performance (R2

and Q2 for models without cross-terms: 0.349 and 0.300;
models with cross-terms: 0.671 and 0.588). Further, the slight
increase in RMSEPtest of models without cross-terms confirms
that cross-terms also have an impact on external predictions.
Additionally, the relevance of cross-terms in PLS models was
assessed by generating models that excluded the protein and
ligand descriptor blocks. The drop in correlation and predict-
abilities together with the increase in RMSEPtest (R

2, Q2 and
RMSEPtest for models without protein and ligand descriptors:
0.598, 0.471 and 1.107; models with protein descriptors, li-
gand descriptors and cross-terms: 0.671, 0.588 and 1.007)
shows that cross-terms can significantly influence the internal
and external predictions, provided they are used in combina-
tion with the original protein and ligand descriptor blocks.

On comparing the RF model performances with respect to
different ligand descriptors, models based on GRIND (Rtest

2:
0.43; RMSEPtest: 1.15) have considerably lower performances as
against the 4-PFPs (Rtest

2: 0.57; RMSEPtest: 0.99) and 2D descrip-
tors such as RDkit fingerprints (Rtest

2: 0.72; RMSEPtest: 0.81) and
MOE (Rtest

2: 0.70; RMSEPtest: 0.84). Similar trends are observed
with respect to the performances of PLS models. Decrease in
Rtest

2 of GRIND models can be attributed to the difficulties in
generating relevant 3D conformations suitable for descriptor
calculations. It is often challenging to find 3D conformations
similar to the bioactive ones, owing to the flexibility of protease
ligands. The calculations of GRIND descriptors are often
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influenced by the starting ligand conformations.29 Incorrect
conformations can have a significant effect on the model perfor-
mances, thereby resulting in poor predictions. Nevertheless,
assessing the model performances based on different ligand
conformations is not within the scope of our present study.

In order to assess the reliability of the models, we also
built models as negative controls. The relevance of including
protein information in PCM modelling was evaluated by
training global QSAR models dependent exclusively on the li-
gand's RDkit fingerprints. Considering the prediction perfor-
mances, the global QSAR models based on RDkit fingerprints
performed worse than the PCM models with increase in
RMSEPtest (RMSEPtest for RF models: 1.11; RMSEPtest for PLS
models: 1.23). Furthermore, models built by considering only
the protein fields with the exclusion of ligand descriptors
performed worse than the global QSAR models (RMSEPtest for
RF models: 1.420; RMSEPtest for PLS models: 1.428). The poor
performances of models based on either ligand or protein de-
scriptors imply that the combination of protein and ligand
descriptors in PCM models is important for improving the
model's overall performance and increasing the accuracies of
the bioactivity predictions of external test sets. As an addi-
tional test case, the relevance of protein and ligand descrip-
tors in PCM modelling was assessed by building models with
CHEMBL IDs of ligands and proteins as descriptors. ID based
models had a significant increase in RMSEPs of external test
sets for both RF (RMSEPtest for ID based models: 1.340;
RMSEPtest for field-based models: 0.810) and PLS models
(RMSEPtest for ID based models: 43.349; RMSEPtest for field-
based models: 1.007). The higher RMSEPtest of ID based
models further confirms that the type of descriptors used in
PCM has an impact on the model's predictive power.

To evaluate whether R2 and Q2 were obtained by pure
chance, we analysed the model performances based on per-
mutation validation experiments. Despite the use of a large
number of ligand descriptors in RF and PLS models and
thousands of cross-terms in PLS models, the models are not
over-fitted, which is evident from the low R2 and negative Q2

intercepts (Table S3 in ESI‡). Results of permutation valida-
tion further confirm the validity of the models and their use-
fulness in making predictions and interpretations.

Sequence-based PCM modeling

In order to compare and assess the predictive powers of PCM
models based on protein fields (3D) and sequences (1D), we
built PCM models that depend on the amino acid sequence
descriptors. Sequence-based PCM models were trained only
by using ligand's RDkit fingerprints and the RF approach, as
this descriptor and machine learning approach had the best
performance in field-based models.

No significant differences in prediction performances are
observed, regardless of the type of sequence descriptors used
(Table 2). Rtest

2 (0.714) and RMSEPtest (0.810) of the sequence-
based models are in line with the field-based models Rtest

2

(0.716) and RMSEPtest: (0.810), thereby showing that both field-
based and sequence-based descriptors have the same impact in
terms of prediction. However, the possibility of visual interpre-
tation of protein and ligand features is a clear advantage of
field-based models more compared to sequence-based models.

Visual interpretation

Interpreting selectivity features based on random forest
models is not straightforward. Therefore, we focus on the

Table 1 Results of PCM using different combinations of ligand descriptors and four protein field descriptors (polar, lipophilic, unstable and stable water
fields)

Ligand descriptors Correlation (R2) Predictability (Q2) RMSEEa RMSEPcv
b RMSEPtest

c Rtest
2d

Random forest models
RDkit 0.957 0.737 0.360 0.799 0.810 0.716
MOE 0.961 0.703 0.360 0.857 0.840 0.695
4-PFP 0.928 0.566 0.480 1.025 0.990 0.569
GRIND 0.951 0.430 0.470 1.175 1.150 0.426
RDkite 0.585 0.429 1.060 1.188 1.110 0.492
Target only models f 0.111 0.107 1.450 1.455 1.420 0.128
ID based modelsg 0.835 0.298 0.660 1.338 1.340 0.276
Partial least squares regression models with cross-terms
RDkit 0.671 0.588 0.884 1.024 1.007 0.557
MOE 0.504 0.433 1.085 1.194 1.129 0.439
4-PFP 0.554 0.451 1.029 1.216 1.136 0.437
GRIND 0.311 0.264 1.278 1.348 1.285 0.273
RDkite 0.349 0.300 1.243 1.295 1.226 0.338
Target only models f 0.103 0.100 1.458 1.461 1.428 0.113
ID based modelsg 0.000 −0.001 45.282 45.307 43.439 0.000
RDkit (no cross-terms) 0.397 0.365 1.196 1.233 1.182 0.386
RDKit (only cross-terms)h 0.598 0.471 0.977 1.144 1.107 0.465

a Root-mean-square error of estimation for observations in the training set. b Root-mean-square error of prediction resulting from 5-fold cross-
validation. c Root-mean-square error of prediction calculated using the external test set. d Correlation between the observed and predicted
values of the external test set. e Global QSAR models. f Models based on protein fields with exclusion of ligand descriptors. g Models with
CHEMBL ids of compounds and targets used as descriptors. h Models based on cross-terms with exclusion of protein and ligand descriptors.
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interpretation of the best performing PLS models based on
RDkit fingerprints. Protein field points and ligand features
related to affinity and selectivity was interpreted by consider-
ing their PCA scores and cross-terms respectively (for details
see Materials and methods). The identified field points were
then visualized in MOE using our in-house SVL scripts.

Fig. 1 shows the protein field points and ligand RDKIT
fingerprints features to be important for the interactions of
ZK-807834 with FXa. Polar field points near the catalytic ser-
ine contribute to commonly observed hydrogen bond interac-
tions in many serine proteases. Additionally, the lipophilic
field points near S1 and S4 sub-pockets might influence the
affinity of all inhibitors that bind to FXa and show clear over-
lap with the chemical features of ligand ZK-807834 (Fig. 1a).
The selective binding of ZK-807834 to FXa is influenced by
polar field points in S1 sub-pocket that interact with the
amidinium group of ZK-807834 (Fig. 1b). The importance of
this region for selectivity is illustrated by the formation of a
salt bridge with Asp189 in a FXa crystal structure (PDB id:
1FJS).30 This is also in agreement with the peptide substrate
data for FXa, where a clear preference for positively charged
amino acids (Arg, Lys) at position P1 has been described.31

Additionally, the presence of alanine at position 190 has been
shown to influence the selectivity of tissue plasminogen acti-
vator (tPA) and FXa.32 The polar field points in close proxim-
ity to Ala190 confirm their relevance for the selectivity of FXa,
although small molecule inhibitors binding to the S1 via hy-
drophobic halogen–pi interactions have been reported.33 We
also speculate that the imidazole moiety of ZK-807834 en-
hances selectivity by displacing unstable water in the S4 sub-
pocket (a region commonly exploited for protease selectivity
known as “aromatic box”34 in FXa) (Fig. 1, right panel).

We have also conducted a systematic analysis to identify
the proteases in which the field points discussed above are
present (Fig. 2). The regions relevant for affinity are com-
monly found in many protease families, for instance FIIa,
FXa, HPN, KLK7, coagulation factor IXa (FIXa), matriptase
(MT-SP1), complement component 1R (C1r), chymase
(CMA1), kallikrein 1 (KLK1) and kallikrein 3 (KLK3), thereby
suggesting that these features are important for the binding
of any ligand towards these proteases (Fig. 2a). Whereas, the
regions important for selectivity (Fig. 2b) are restricted to cer-
tain proteases namely FXa, tryptase alpha/beta (TPSAB1) and
tPA. The combination of these selectivity related field points
could be considered as regions that have increased prefer-
ence for FXa selectivity over other proteases.

In order to verify the fingerprints identified as important
for the selectivity of CHEMBL73193 towards FXa, we com-

pared the features of CHEMBL73193 and CHEMBL315014
that act on FXa with different potencies. Structural replace-
ments or absence of the fragments highlighted in Fig. 3a
have led to a 800-fold decrease in potency of CHEMBL315014.
The methyl group that is likely to bind by displacing unstable
water molecules in S4 sub-pocket and the carboxyl group that
participates in polar interactions contribute to the high po-
tency of CHEMBL73193. Further, the observed decrease in
binding affinities of CHEMBL315014 towards Thrombin and
Trypsin, when compared to CHEMBL73193 confirms that
these fragments affect the overall potency and selectivity of
these ligands towards serine proteases (For Ki differences,
see Table S4 in ESI‡).

Leave one target out (LOTO) validation

In order to assess the model's extrapolation power in terms
of the target space, we performed LOTO validation (see Table
S5 in ESI‡). The average correlation and predictabilities of
the models trained by excluding one target at a time (R2:
0.957, Q2: 0.749) remains fairly close to the models, where all
targets are included (R2: 0.957, Q2: 0.737). However, the aver-
age RMSEP resulting from LOTO (RMSEPtest: 1.302 ± 0.443)
remains slightly higher than the model's overall RMSEP
(RMSEPtest: 0.810). Increase in prediction errors of the LOTO
models can be attributed to the diverse structural nature of
the proteases present in the dataset. The field-based similar-
ity of the proteases in our data set is less than 50% (see Fig.
S5 in ESI‡), which in turn makes it difficult to predict the
bioactivities of the excluded targets. In case of FXa and FIIa,
the prediction errors are quite high (RMSEPtest for FXa: 2.13;
FIIa: 1.61), despite the presence of some closer homologues.
Since nearly 70% of the data points correspond to either FIIa
(2822) or FXa (2779), excluding them completely makes it
challenging for the models to predict those observations. An-
other reason for increase in RMSEPs could be the sparse dis-
tribution of the data points, in terms of targets. Only 30% of
the data points (2307/7908) belong to proteases other than
FXa and FIIa. The prediction errors for these proteases with
few data points increase dramatically, after complete elimina-
tion. Overall, the model's extrapolative power is limited to
the proteases with some closer homologues and a consider-
able number of data points.

Leave one compound cluster out (LOCCO) validation

To test the robustness of the models in terms of ligand space,
we performed LOCCO validation on the entire dataset (7908
data points). R2, Q2 and RMSEPs of LOCCO validation based

Table 2 Results of PCM using different protein sequence descriptors and ligand's RDkit fingerprints

Protein descriptors Correlation (R2) Predictability (Q2) RMSEE RMSEPcv RMSEPtest Rtest
2

Random forest models
Amino acid + dipeptide composition 0.956 0.740 0.360 0.795 0.810 0.713
Autocorrelation descriptors 0.956 0.739 0.360 0.796 0.810 0.714
Composition, transition + distribution 0.956 0.742 0.360 0.792 0.810 0.717
Sequence order + pseudo amino acid composition 0.955 0.739 0.360 0.795 0.810 0.710
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on RDkit fingerprints are summarized in Table S6 of the
ESI.‡ In contrast to LOTO validation, excluding compound
clusters results in a significant drop in model performances
with R2 and Q2 as low as 0.50 and 0.25. The average
RMSEPtest of the 20 compound clusters is 1.550 ± 0.269,
which is comparatively higher than the models trained by
random splitting (RMSEPtest: 0.810). On analysing the com-
pound clusters, we found that there is a significant overlap
in compound space between the different clusters, except C3,
C4 and C17 (Fig. S6 in ESI‡). Cluster C9 that has high inter
cluster similarity and includes compounds with polycyclic
ring systems linked to chlorine or fluorine has the lowest
RMSEPtest of 1.080. Cluster C17 that mostly includes com-
pounds with pyrazopyrimidines, has the highest RMSEPtest
value of more than two pChembl units, which is in agree-
ment with the low inter cluster similarity shown in Fig. S3.‡

With respect to other compound clusters, no significant cor-
relation was observed between the inter cluster similarity and
RMSEPtest values. Altogether, the high RMSEPs of LOCCO val-
idation reveal that it is challenging to extrapolate in terms of
chemical space from the serine protease dataset.

Challenges in LOCCO and LOTO validation

Despite the presence of many similar compound clusters, it is dif-
ficult to predict the excluded compound clusters in LOCCO valida-
tions. The same is the case with LOTO validation, where the pre-
diction errors are higher even for excluded targets with closer
homologues. The low performances with respect to LOTO and
LOCCO validations can be mainly attributed to the sparse activity
space and imbalance in data point distribution, resulting from
over or under representation of some of the targets/compounds.
Yet, another reason could be conformational variation of protein

Fig. 1 Protein field points and ligand RDkit fingerprints relevant for the interactions of ZK-807834/CHEMBL73193 (green) and FXa (grey). Dotted
circles mark ligand features related to affinity and selectivity. (a) Features relevant for affinity: cyan and orange coloured spheres correspond to the
polar and lipophilic field points that influence affinity. (b) Features relevant for selectivity: dark blue, yellow and red coloured spheres correspond
to the polar, lipophilic and unstable water field points that might contribute to the selective binding of ZK-807834 to FXa.

Fig. 2 Protein regions which contribute to affinity and selectivity for protease ligands, mapped on bound ZK-807834. (a) Regions relevant for
affinity: polar protein field (cyan), lipophilic protein field (orange). (b) Regions relevant for selectivity: polar field points (blue), lipophilic protein field
(yellow), unstable water sites (red). Gene names of the proteases, in which these field points are present, are marked with the respective colors, as
that of the fields.
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structures affecting field calculations. With the majority of the ser-
ine protease inhibitors being large and flexible, their binding is
likely to induce conformational changes in protease sub-pockets.
For instance, in prostasin, binding of an inhibitor opens the S1
sub-pocket that was closed in the apo/ligand-free state.35 Similarly,
binding of different inhibitors can lead to conformational
changes, which will be reflected in the field calculations. These
variations in fields could make it difficult to predict the bioactiv-
ities of ligands that bind and induce conformations differently
and will have an impact on the LOTO and LOCCO validation per-
formance. However, this issue could be resolved by calculating
fields based on an ensemble of protein conformations that ac-
count for protein flexibility as demonstrated by Waldner et al.36

Applicability domain (AD)

We conducted AD analysis to identify the similarity thresholds
above which the compounds can be predicted with minimal
errors. As shown in Fig. 4a, the cumulative errors decrease
with increase in Tanimoto similarities; thereby justifying that
test set compounds whose chemical space overlaps with the
training space can be predicted with the lowest error rate. Of
the 1709 compounds in the test set, 1339 have Tanimoto simi-
larities over 0.7. Nearly 84% of these compounds have predic-
tion errors of 1 or less. Despite having high Tanimoto similari-
ties, the remaining 16% compounds have prediction errors of

1.5 on average. High error rate could be due to the sparse ac-
tivity space used for modelling. Among these 16% of com-
pounds, there are two outliers (CHEMBL 118494 and CHEMBL
288071 – structures shown in Fig. S7 of the ESI‡) whose predic-
tion errors exceed 3.5 pChembl units (Fig. 4b). The large differ-
ences in predictions of one of the outliers is due to the lack of
structurally similar compounds in the training set, while for
the other compound structurally similar compounds exist, but
they lie in a very different activity range.

Conclusions

We have shown that field-based proteochemometrics can be
used to model the protease-ligand interaction space effectively,
which is evident from the model's potential to predict new li-
gands with RMSEPs as low as 0.8. Field-based PCM models
outperform global QSAR models, thereby proving the need to in-
clude explicit target information for predictive modelling. How-
ever, the models have limited extrapolative power in terms of
target and chemical space, probably due to the sparse bioactivity
matrix, diverse nature of ligands and proteases in the dataset
and field calculation errors driven by conformational shifts in
protease sub-pockets. Nevertheless, visually interpretable PCM
models provide rapid access to key affinity and selectivity hot
spots, which overlap well with published data on serine

Fig. 3 Fingerprints that contribute to the selectivity of ligands binding to FXa. Features contributing to the potency differences of the 2 ligands are
highlighted with dotted circles. (a) CHEMBL73193 (b) CHEMBL315014.

Fig. 4 (a) Tanimoto similarity of the test set ligands based on RDkit fingerprints plotted against the cummulative errors. Dotted lines represent the
cut-offs for predictions of external ligands. (b) Predicted error distributions of the compounds with Tanimoto similarities above 0.7. Outliers are
highlighted in red.
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proteases. Additionally, proteochemometric models derived
from fields for proteases have similar performances as previ-
ously published sequence-based models, but with the advantage
of visual interpretation that is in line with the scientific
literature.
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