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Molecular dynamics (MD) has become increasingly popular due to the development of hardware and soft-

ware solutions and the improvement in algorithms, which allowed researchers to scale up calculations in

order to speed them up. MD simulations are usually used to address protein folding issues or protein–ligand

complex stability through energy profile analysis over time. In recent years, the development of new tools

able to deeply explore a potential energy surface (PES) has allowed researchers to focus on the dynamic

nature of the binding recognition process and binding-induced protein conformational changes. Moreover,

modern approaches have been demonstrated to be effective and reliable in calculating some kinetic and

thermodynamic parameters behind the host–guest recognition process. Starting from all of these consider-

ations, several efforts have been made in order to integrate MD within the virtual screening process in drug

discovery. Knowledge retrieved from MD can, in fact, be exploited as a starting point to build

pharmacophores or docking constraints in the early stage of the screening campaign as well as to define

key features, in order to unravel hidden binding modes and help the optimisation of the molecular struc-

ture of a lead compound. Based on these outcomes, researchers are nowadays using MD as an invaluable

tool to discover and target previously considered undruggable binding sites, including protein–protein in-

teractions and allosteric sites on a protein surface. As a matter of fact, the use of MD has been recognised

as vital to the discovery of selective protein–protein interaction modulators. The use of a dynamic overview

on how the host–guest recognition occurs and of the relative conformational modifications induced allows

researchers to optimise small molecules and small peptides capable of tightly interacting within the cleft

between two proteins. In this review, we aim to present the most recent applications of MD as an inte-

grated tool to be used in the rational design of small molecules or small peptides able to modulate

undruggable targets, such as allosteric sites and protein–protein interactions.

Introduction

The rational design of new selective chemical entities repre-
sents without any doubt the most important issue in medici-
nal chemistry, which is often referred to as rational drug de-
sign or simply rational design. In silico rational drug design
is based on an early hypothesis of a desired effect due to the
modulation of a specific biological target that is structurally
complementary to the designed molecule. This process is
then characterized by the search of molecules that are di-

rected to a specific target whose biological role within the pa-
thology is known.1 The main goal of a drug discovery process
is the identification of a small molecule responsible for the
modulation of a specific target. The hardest challenge for the
medicinal chemist involved in this process is therefore the
quest for the optimal affinity, selectivity, and stability of the
designed molecules.2

If on the one hand the first step of rational drug design is
target validation, which is intended to elucidate its real and
clear involvement in the biochemical process associated with
the pathology, on the other hand there is a non-negligible as-
pect to be considered for the target: its druggability. This
term has been extensively adopted to explain, in different
contexts, some properties of proteins, ligands or genes. In
medicinal chemistry, it refers to the target capability to bind
to a small molecule for the modulation of its activity,3 and
sometimes the term druggability is substituted by the
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synonyms “ligandability” or “bindability”.4,5 In the past years,
there has been a huge rise in interest in undruggable sites to
be deeply studied in order to find a strategic way to target
them effectively. In 2017, a very interesting perspective on
undruggable sites was published in Nature Reviews, reporting
the experts' opinions on undruggable sites of targets involved
in cancer.6 In this work, Dang, Premkumar, Shokat and
Soucek explain their own point of view on the definition of
undruggable sites. The most curious aspect of this work is
the different points of view presented by the different authors
on the same issue. Dang mainly focuses on protein–protein
interaction (PPI) as one of the main undruggable targets be-
cause of the lack of well-defined and deep pockets.7,8 Reddy
states that the use of the term undruggable is fairly exagger-
ated and it would be more correct to define those sites as dif-
ficult to drug. Actually, analysing the most commonly studied
undruggable sites, during those years several small molecules
have been identified as binders, with several candidates
reaching the clinical trials (e.g. Bcl-2 family members and
transcription factors such as STAT3, MDM2 and others). An-
other important concept concerning undruggable sites is
expressed by Shokat in the same manuscript. He points out
that there are two main aspects that must be considered in
order to classify a binding site as really undruggable. One is
related to the chemical intractability of the target and the
other one focuses on the need to have sufficient data demon-
strating the clinical meaningfulness of a modulator towards
that target. Laura Soucek, also contributes to the same topic
expressing an interesting differentiation between those tar-
gets that have not been yet “drugged” because of structural
difficulties and those difficult to drug because of not being
disease-specific, for example, in normal and cancer cells. In
the latter case, the intervention could produce severe side ef-
fects in normal cells expressing the same target. In recent
years, several methods to assess target druggability have been

created, with the most used mainly based on protein surface
descriptors such as curvature and lipophilicity. These fea-
tures are considered to be fundamental for the recognition
and consequent binding of small molecules.9–11 In the past
years, massive advancements have been completed in the ba-
sic understanding of the biological properties and bio-
chemical role of undruggable sites, thanks especially to the
increase in available structural insights provided both by
X-ray crystallography and nuclear magnetic resonance (NMR).
Nevertheless, working on undruggable targets is not always
possible using only experimental techniques because of diffi-
culties related to time, costs and inappropriate methods
available. For example, the use of X-ray structures provides a
static picture of the protein, without any kind of information
about how the target can structurally evolve in the presence
of a modulator. Meanwhile, NMR presents some other limita-
tions related to the target location, size and characteristics (it
is not always possible to examine the whole protein–ligand
complex with NMR techniques).12 Opportunely, at the same
time, computational methods reveal their usefulness, offering
a valid and supportive alternative to classical experimental
methods.13–17

Recently, the use of computational methods in drug dis-
covery and development has expanded in popularity and im-
plementation, thanks to the good and reliable results
obtained. The implementation of computational methods
within the drug design process, commonly called computer-
aided drug design (CADD), gained its main success, in the
early years of use, due to its capability to increase the hit rate
of novel drug compounds when compared to the classical
high-throughput screening (HTS) approach. The main appli-
cation of these methods is still the rapid use of virtual
screening campaigns to cut the time-to-market for the discov-
ery of new chemical entities. For this purpose, the approach
mostly used is the structure-based one, where the three-
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dimensional structure of the biological target, obtained
through methods such as X-ray crystallography, NMR spectro-
scopy or homology modelling, is used to evaluate the binding
capability of a small molecule library.18,19

In the past years, advances in software and hardware per-
formance allowed researchers to adopt molecular dynamics
(MD) with great success20 to address drug discovery issues
such as protein–ligand interaction stability,21–24 binding
kinetics25–29 and the binding process.30–32 The understanding
of molecular motions is basically the main issue related to
molecular recognition and represents the evolution of the old
idea of “Lock-and-key model” where a frozen receptor can
house a small molecule without mutating its conformation.33

The dynamic nature of the receptor has been, in fact, largely
demonstrated and conformational changes have been related
to ligand binding.34,35 This dynamicity of protein conforma-

tion, which is related to the binding process of small mole-
cules, has represented the key to unveiling some strategies to
target undruggable sites.

In light of these considerations, different approaches have
been developed based on MD with the aim of exploring pro-
tein flexibility and discovering otherwise accessible hidden
binding sites. One of the first methods to unveil undruggable
sites through classical MD simulations was published by Seco
et al.36 In their work, an explicitly restrained MD simulation
was applied in order to evaluate the binding propensities of a
probe interacting with the protein surface. Starting from the
molecular trajectory, free energy calculations were performed
to assess the molecular recognition process.37 More recently,
a similar approach has been adopted by Bakan et al.38 to
demonstrate that the approach of small molecules to pro-
teins produces global and local structural rearrangements of
the protein that represent the starting point for increasing
target druggability.38 Nevertheless, some computational tech-
niques adopted for such kind of study do not always repro-
duce the native milieu in which proteins are normally
plunged into the cells. It is actually important to maintain
the maximum reliable conditions in order to avoid protein
denaturation or wrong folding changes.39 Indeed, the dy-
namic nature of proteins is particularly crucial for some tar-
gets exhibiting active, inactive and intermediate configura-
tion alternation (e.g. GPCRs) and it should be taken into
consideration when evaluating the binding mode of small
molecules, as demonstrated by Ferruz et al. in their recent
publication.40 In their work, the authors used a combination
of MD and Markov state models (MSMs) to analyse the bind-
ing mode and interaction pattern of a dopamine D3 receptor
antagonist (PF-4363467). The use of aggregated MD through
MSMs allowed researchers to unveil an otherwise hidden
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cryptic pocket, created by the positional shift of the highly
conserved residue F3466.52. The discovery of this cryptic
pocket and the pose of the ligand observed by researchers
could not be observed using a canonical static docking
approach.

The aim of this review is to present how MD applications
have been used in recent years to treat undruggable sites, in
order to unravel targetable pockets using small molecules.
Particularly, we have focused on the application of MD to two
specific undruggable sites of main interest for medicinal
chemists: allosteric sites and protein–protein interactions
(PPI). The next sections of this review will be dedicated to
each of these two issues. In each part of the work, we will
present the different approaches adopted by researchers in
order to deepen the exploration of binding sites and the de-
sign of selective modulators.

Allosteric sites

Protein functions are strictly correlated to their flexibility and
conformational transition causing cavity shape modifications
and exposure. This dynamic process is fundamental for the
recognition of chemical or biological guests useful to a partic-
ular biological process. As a matter of fact, interest in bio-
chemistry has always been focused on the conformational
changes of proteins related to their biological role with spe-
cific regard to the possible cooperative functionalisation be-
tween different positions on the protein surface. Such a phe-
nomenon is known as allostery and typically occurs when the
protein binding process to a guest molecule transmits some
conformational changes to some other different proximal or
distal sites on the protein surface.41,42 Some recent observa-
tions unveiled that allostery can be facilitated by dynamic
and intrinsically disordered proteins, offering new insights
into the understanding of allosteric functional regulation.43

The structural rearrangements associated with protein activ-
ity modulation can be referred to as small side chains confor-
mational changes as well as important modifications, within
the quaternary structure, of spatial protein motif distribution.
Following the classical model of allostery proposed in the
past years, the real definition should refer to the latter case.44

Molecular modeling, particularly molecular simulations, can
indeed help in the understanding of such functional motif
rearrangement and movements within the protein. Consider-
ing the wide collection of molecular simulations approaches,
it is imperative to underline that not every model is appropri-
ate to completely explore the protein conformational space.
Some classical simulations can in fact be limited to the explo-
ration of only certain energy landscape portions because of
their sampling capabilities.44 When using MD, it is difficult
to correctly and widely sample the useful landscape for struc-
ture transition and it becomes essential to use biased MD
techniques45–47 or other modified approaches such as super-
vised MD.48 Using biased methods allow researchers to ex-
plore a wide landscape of protein motions focusing on the
energetic aspect of the allostery phenomenon. Moreover, the

use of classical MD simulations is not always capable of pro-
viding useful information about conformational changes, un-
less long simulations are used,49 but in the latter case it must
also be considered that the longer the simulation is, the
higher the approximation becomes.50 Practically, the best
way to catch all the useful conformational sampling informa-
tion should be the use of enhanced sampling techniques.51,52

One possible alternative to long simulations could be the use
of multiple shorter simulations which are then analysed
using Markov state models to catch all the quantitative pa-
rameters to analyse.53–55 In the latter, all the processes must
be monitored well in order to explore the structure and re-
build the whole process. In this section, we will present the
most recent approaches based on MD used to deeply study
the allosteric regulation of protein functions related to their
biological role. We will hereby present the most recent ad-
vances grouped based on the approach used (classical MD or
biased MD).

Use of molecular probes in molecular dynamics for novel
allosteric binding site discovery

Some of the studies reported below present noteworthy ap-
proaches to study the structural evolution of allosteric bind-
ing site cavities and conformational shifting in proteins when
targeted with probe molecules, which can act as modification
inducers.

One of the first assays in this field was published by Ba-
kan et al. in 2012.38 In their work, the authors introduced the
definition of druggability as something related to the affinity
of small molecules towards binding sites available on the
protein surface. The use of molecular probes designed on ap-
proved drug scaffolds allowed researchers to effectively evalu-
ate the binding affinity and druggability for some challenging
targets, especially for some hidden allosteric sites. The use of
approved drugs with known experimental binding data con-
stituted the method validation to check if theoretical binding
affinities were correctly estimated. In this work, two main as-
pects were deeply studied, firstly the analysis of the putative
binding mode for several probe ligands towards different pro-
teins, and secondly the consequent identification of the most
druggable sites. Starting from collected data as geometry and
energy parameters of the recognition and binding process, re-
searchers could correctly evaluate the binding affinities. This
methodology has been applied to several targets such as pro-
tein tyrosine phosphatase 1B (PTP1B), lymphocyte function-
associated antigen 1, vertebrate kinesin-5 (Eg5), and p38
mitogen-activated protein kinase (MAPK). One of the most
interesting aspects sharpened by this method is the possibil-
ity to unveil putative interaction spots on the protein surface,
which are otherwise hidden. Remarkably, authors used
probes with different physicochemical properties to harvest
consistently more reliable predictions, which are not biased
in favor of a specific chemotype or physicochemical profile of
ligand, therefore widening the type of putative binding sites
that can be “gathered” within the protein. The use of mixed
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probes highlighted some interesting aspects of the binding
process for the analysed targets, especially on Eg5 and p38
MAPK. On the other hand, using charged probes allowed the
authors to discover some important ligand features useful for
binding phosphatase PTP1B catalytic sites.

Benzene probes have also been used in a similar manner
by Tan et al. in a very recent work.56 In their study, the au-
thors charted putative oncoprotein MDM2 binding sites
using a ligand-mapping molecular dynamics (LMMD) simula-
tion technique. In particular, this method allowed the discov-
ery of two new sites both in the N-terminal domain of the
protein. The first one, situated between Tyr100 and Tyr104,
was mapped in both apo and holo forms of the protein, re-
vealing an interaction region which in the X-ray crystal struc-
ture seemed inaccessible to any ligand. This region had al-
ready been demonstrated to be essential for the nutlin
binding at the p53 cleft.57 The second presumed site, in a re-
gion nearby the p53-Pro27 interaction site, was only identi-
fied during the simulation of the apo protein. In the holo
protein simulation, this region resulted bound to the
C-terminal of the p53 binding partner. The efficacy of the
adopted method was then demonstrated by biophysical as-
says that proved the real existence of one of the predicted
binding sites close to the consensus p53-binding cleft in
MDM2, underlining how molecular simulations can be in-
valuable for the rational design of new drugs. Based on the
simulation outcomes, a series of hydrocarbon stapled pep-
tides were proposed to target the binding sites identified dur-
ing simulations (Fig. 1). The use of these peptides improved
the activity of already known MDM2 ligands because of a co-
operative action of the newly discovered allosteric site with
the canonical orthosteric site. Moreover, the structural knowl-
edge about these new binding sites opened up novel strate-
gies of peptide optimisation, which can improve the binding
mode of other ligands targeted for the MDM2/p53
interaction.

A noteworthy application of molecular probes has been
similarly presented by Luo et al.58 In their work, the authors
focused on a challenging target such as the two-pore domain
potassium channel (K2P). This is a main actor in membrane
potential maintenance presenting a unique structural feature

of an extracellular cap formed by the E1 and E2 helices,
which is not observed in other ion channels. Luo et al.
adopted different computational chemistry techniques, muta-
genesis, and electrophysiology experiments in order to char-
acterise the binding mode of N-(4-cholorphenyl)-N-(2-(3,4-
dihydrosioquinolin-2Ĳ1H)-yl)-2-oxoethyl) methanesulfonamide
(TKDC), used as probe, to study the process of binding to the
extracellular cap of the K2P channel, an allosteric and diffi-
cult site to be targeted. The study underlined important dif-
ferences in the different binding modes of ligands on the dif-
ferent potassium channels (TREK, TRAAK etc.). The first
stage of the computational approach was conducted using
molecular docking on the previously identified putative bind-
ing site. Following the docking outcomes, some mutagenesis
experiments within the binding site were conducted in order
to confirm the residues responsible for the binding mode re-
trieved from docking experiments in the different potassium
channel models. Starting from the binding mode hypothesis,
a chemical probe derived from TKDC was used for molecular
dynamics to explore the extracellular binding site of the dif-
ferent channel models and further validate the proposed
binding mode previously observed. These outcomes have
then been exploited to supervise virtual screening of other
molecules and find new allosteric inhibitors of K2P (Fig. 2A).

Biased molecular dynamics for the design of allosteric
modulators

In the past years, several MD applications have been used to
better understand the role of allosteric sites within the pro-
teins. One of the most attractive approaches is based on
supervised molecular dynamics (SuMD). In this technique, li-
gand–receptor recognition is well-investigated in a relatively
short time period (ns). The method relies on the use of a spe-
cific algorithm capable of focusing on the binding process
between the protein and the ligand, speeding up the recogni-
tion trajectory. Such an approach allows the investigation of
some crucial aspects of the binding event with special focus

Fig. 1 A stapled peptide (green chain) in complex with MDM2 protein
(PDB ID: 4UE1).

Fig. 2 (A) Allosteric inhibitors of K2P-28NH, allosteric inhibitor of
TREK channels; TKN1 and 2, allosteric inhibitors of TRAAK. (B) Positive
allosteric modulator, LUF6000.
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on the meta-binding sites or allosteric sites.59 In their work,
Deganutti et al. applied SuMD to a GPCR A3 adenosine recep-
tor to study the effect of a positive allosteric modulator
(LUF6000, Fig. 2B).48 This work represents one of the first ap-
plications of MD for studying the allosteric recognition mech-
anism. Indeed, it effectively revealed its importance in the
elucidation of what was experimentally observed, opening up
two different hypotheses of binding and subsequent regula-
tion of LUF6000 on the A3 adenosine receptor. In their experi-
ment, the authors placed the allosteric modulator about 60 Å
away from the orthosteric binding site occupied by the natu-
ral agonist adenosine.

The binding process pathway obtained from the simula-
tion showed two possible ways through which the ligand may
act on the receptor. In the first hypothesis, LUF6000 pro-
duced conformational changes inside the protein,
empowering the adenosine to strengthen interactions previ-
ously formed in the binding pocket. The other mechanism
proposed was the formation of a ternary complex, LUF6000-
receptor-adenosine, where the role of LUF6000 was to act as a
sort of cap stabilising the binding of the other two inter-
acting partners. Another biased MD technique widely used
for the discovery of allosteric modulators is MetaDynamics
(MetaD). The great intuition behind this method relies on
the use of an additive potential applied to the system
analysed in order to overcome some energy barriers of the
potential energy surface (PES), allowing the complete explora-
tion of the energy landscape in the protein conformation
shift.

MetaD was applied by Laio and Parrinello for the first
time and it is usually adopted for molecular simulations in
order to expand the exploration of protein conformational
changes.60 As a matter of fact, the use of this technique is
particularly indicated for allosteric modulation studies be-
cause of its capability to deeply explore all the conforma-
tional changes in a target. In 2015, Grazioso et al. applied
MetaD together with essential dynamics to the Alpha7 nico-
tinic receptor to give a mechanistic hypothesis of the alloste-
ric modulation.61 In detail, the application of these tech-
niques allowed researchers to explore the free energy
landscapes related to the open and closed states of the pro-
tein loop C. In this study, the effect of different modulators
(including an agonist, a positive allosteric modulator, and a
newly reported ago-allosteric modulator) on the conforma-
tional change of the protein was investigated. Every ligand
considered showed a unique particular free energy profile,
and most importantly, the possible interaction between the
orthosteric site in the loop C and M helices within the pro-
tein structure. This specific interaction was evidenced by the
ago-allosteric modulator GAT107. In fact, when bound to the
allosteric binding site, GAT107 induced a loop C
rearrangement typical of a full agonist, thus providing a pos-
sible explication of the experimentally demonstrated ago-
allosteric properties of GAT107. The results obtained from
the computational approach were in perfect agreement with
those observed in the experimental assays and represented

an outstanding advancement in the nicotinic receptor biology
knowledge.

In 2017, Gomez-Gutierrez et al. used accelerated MD for 6
μs to identify putative allosteric modulators for p38α MAP ki-
nase.62 The method63 is based on an enhanced-sampling al-
gorithm for sampling the conformational space by reducing
energy barriers, thus modifying the potential energy profile.
At a fixed, defined energy level, the algorithm does not affect
energy-profile points above this zone, while it rises up wells
that are below the fixed threshold energy level. As a result,
the energy profile barriers are reduced, allowing wider explo-
ration of the entire potential energy surface that is otherwise
not easily scouted. In their work, Gomez-Gutierrez et al.
allowed p38α MAP kinase to undergo a 6 μs accelerated dy-
namics, collecting all the structures during the trajectory and
clustering all the ensembles. Clusters were created using
principal component analysis (PCA) first and Cluster Analysis
after, in order to collect the most representative structures
during the simulation. The collected structures represented
the starting point for hot spot analysis conducted on FTMap.
Through this approach, it was possible to confirm all the ca-
nonical well-known sites of the protein such as the DFG
pocket, lipid binding pocket, DEF site and others. Moreover,
this study unveiled new allosteric binding sites named NP1
and NP10. These two contact areas in particular caused pro-
tein structural rearrangement involving elements responsible
for the protein activation (e.g. the activation loop, the cata-
lytic loop, the glycine-rich loop and others).

Classical molecular dynamics for the design of allosteric
modulators

Classical MD has been widely applied for studying allosteric
modulation of biological targets. One interesting application
of molecular simulation to comprehend the structural mech-
anism associated with signalling pathways of the lymphocyte
function has been recently published by Abdullahi et al.64 In
their work, the authors applied molecular modeling to exam-
ine lymphocyte function activation, through allosteric shape
shifting of the lymphocyte-associated antigen, when it is
bound to a specific modulator (ICAM binding enhancer-667 –

IBE-667). During the simulations, several parameters were
collected in order to deeply study and understand the succes-
sion of events leading to the active conformation of protein.
Particular attention was given to variations in residual dis-
tances, dihedral angles, and triCα angles to evaluate how the
structural rearrangement was related to these variations. The
conformational change between the inactive and active states
of the target was characterised by significant fluctuation in
residue positions and in the energy stability of the complex.
The shape shifting was strictly accompanied by an α7 helix
movement driven by a metal-ion dependent adhesion active
site (MIDAS domain), both synergistically cooperating to the
activation of LFA-1 integrin responsible for the lymphocyte
function. The strength behind this work was the capability to
demonstrate a synergistic interplay between the MIDAS
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domain region and the downward α7 helix motion necessary
for the biological activity.

MD, in the past years, has been widely applied to the iden-
tification of new scaffolds and new chemical entities, inte-
grating the classical virtual screening techniques to prioritise
hit molecules and elucidate their binding mode within the
protein cavity. Some mitotic kinesin Eg5 allosteric modula-
tors have been identified, thanks to MD application by
Makala and Ulaganathan in their work published in 2017.65

Eg5 is a well-known target for cancer therapy, but all the dis-
covered compounds so far were designed for the canonical
orthosteric binding site because of its ease of access for small
molecules and the availability of structural data. In this work,
the authors firstly docked some free available molecular li-
braries on the allosteric site (site 2) of the target and ranked
molecules prioritising them based on the docking score. The
5 best poses retrieved from the docking were then subjected
to MD to evaluate the conformational rearrangement and sta-
bility of the ligand–protein complex. The results obtained
from this study suggested the pyridazine scaffold as an opti-
mal starting point for further development of Eg5 allosteric
modulators.

MD as a strategy for unveiling undruggable sites in mem-
brane ion channels was employed by Martin et al. and Guan
et al.66,67 to study pentameric ligand-gated ion-channels and
calcium channels, respectively. In the first work, the authors
presented an extensive point of view on a glutamate-gated
chloride channel (GluCl) responsible for the intercellular syn-
aptic communication. A biochemical mechanism of activa-
tion/deactivation for this target is still not well-recognised
and this work was a first attempt to elucidate the shift from
the open state to the closed state of the channel. The experi-
ment was conducted using the protein in its active state
bound to L-glutamate and the positive allosteric modulator
(PAM) ivermectin. On this system, a μs-long simulation was
run in order to explore the structural relaxation upon PAM
modulator ejection. By analysing the MD trajectory, two dif-
ferent transition states were retrieved, and most importantly,
it was clarified that the structural global twisting observed is
the unique responsible feature for the channel pore closing,
acting on the M2–M3 loop at the interface between the extra-
cellular and transmembrane domains. Further simulations
under equally restrained conditions showed the same struc-
tural rearrangement opening up to a pharmacological mecha-
nism clarification of PAMs in this neurotransmitter receptor
family. The rearranged structure observed during the dynam-
ics simulation was comparable to the X-ray crystal structure
of GluCl, thus enforcing the reliability of the molecular
dynamics-based method. Glutamate receptors (PDB ID:
4OR2, Fig. 3) represent one of the most important targets in-
volved in neurological diseases and, in certain cases, they
show low subtype selectivity for orthosteric modulators. For
this reason, it is necessary to address new investigation strat-
egies such as the allosteric modulation. Starting from this hy-
pothesis, Jiang et al. led a study on the mGluR1 receptor in
order to discover new putative negative allosteric modulators

(NAM) derived from Chinese herbs components.68 In this re-
search work, the authors started from the crystal structure of
the seven-transmembrane domain of mGluR1 to detect the
putative allosteric binding sites and run some
pharmacophore screening. The authors combined the
structure-based interaction pharmacophore with a ligand-
based approach in order to increase the specificity of virtual
screening.

The ligand-based approach exploited different scaffolds of
known NAMs, thus allowing pharmacophore models differen-
tiated into molecular classes. Starting from these first results,
the models were validated using a test set and the most reli-
able model was then used for the prospective screening cam-
paigns. The best ranked compounds based on
pharmacophore feature matching were then docked into the
allosteric binding site of the protein in order to evaluate their
binding pose. Later, the best poses were subjected to MD to
evaluate the effective stability of the ligand–protein complex
and the stability of interactions of the selected molecules.

One of the most important outcomes of this study was the
identification of some key protein residues (Leu757, Asn760,
Trp798, Phe801, Tyr805 and Thr815) that were revealed to be
crucial for NAM selectivity and binding stabilisation.

Another comprehensive view of the possible use of MD to
discover otherwise unrevealed undruggable sites has been
proposed by Pabon and Camacho in a very exhaustive work
published in 2017.69 In this study, the attention was focused
on the apo form of the anticancer target PD1, a particularly
hard-to-drug protein. The use of MD revealed a new hidden
hydrophilic cavity around Asn66 and Ile126 residues partici-
pating in the ligand recognition pattern.

Fig. 3 Metabotropic glutamate receptor 1 in complex with a negative
allosteric modulator (green molecule).
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The use of two PD1 ligands, L1 and L2, permitted the dis-
covery that, while the unbound PD1 presented a hard-to-
target hydrophilic interface to host the ligand, the recogni-
tion of both L1 and L2 induced a complex conformational
shift with the consequent opening up of a hydrophobic cavity
otherwise unreachable by any small molecule. These out-
comes opened up new strategies to rationally design selective
compounds and suggest a possible efficient biophysical ap-
proach to the evaluation of the binding pathways as a means
for targeting undruggable proteins.

As was recently shown in a paper published by Marko
Novinec,70 computational investigations also helped in the
discovery of allosteric effectors active on cathepsin K and
other related endopeptidases. In his work, Novinec presented
for the first time an interesting scenario about allosteric
targeting as a progressively winning strategy in drug discov-
ery, even though not yet well explored mainly because of lack
of structural information. Papain-like cysteine peptidase ca-
thepsin K allosteric modulation was investigated through
MD, together with other peptidases, to catch any putative
conformational shift primarily important for the protein acti-
vation process. In this approach, the MD-derived conforma-
tional space was plotted for different cathepsin endopepti-
dases (L, K, S and V), using principal component analysis in
order to explore possible conformation “clusters”. Proteins of
the same family adopted similar conformations during the
MD trajectories. At a later stage, the author proceeded with a
deeper analysis of cathepsin K to show how some known allo-
steric modulators, NSC13345 and NSC94914, affect conforma-
tional changes. During the simulations, these effectors were
able to influence the active site conformational shift, affect-
ing the region nearby pockets of sites S1 and S2. This portion
is the tightest part of the active site cleft and it is responsible
for specificity in the ligand binding process. Using molecular
docking on structures retrieved from MD, it was supposed
that allosteric modulation starts stabilizing the pre-existing
conformational state prior to influencing the binding of the
substrate to the orthosteric site. Comparison of these results
to those of related enzymes confirmed that this as a possible
mechanism for allosteric modulators, thus demonstrating
the usefulness of MD in unveiling binding sites otherwise dif-
ficult to be recognised and targeted.

Another interesting application of MD to unveiling the al-
lostery phenomenon was published in 2017 by Latallo et al.
In this work, the authors used simulations to predict alloste-
ric mutations responsible for increasing antibiotic resistance
mediated by beta-lactamase.71 This research topic starts from
the evidence that allosteric mutations are really difficult to
predict prospectively. In this work, allosteric mutants of the
CTX-M9 enzyme have been used for MD simulations examin-
ing a wide range of antibiotics. Experimentally, mutated iso-
forms of CTX-M9 showed an increase in their catalytic activity
and efficiency. When the same mutants were studied
“statically”, starting from crystal structures, no differences
were noted in comparison with the wild-type form of the en-
zyme. Based on this outcome, researchers concluded that the

activity increase could be related to conformational changes
within the structure, which are not observable with canonical
static in silico screening, allowing the enzyme to enhance its
activity. The use of machine learning techniques applied to
MD trajectories allowed the discovery of the most important
allosteric mutations influencing the conformational
rearrangement of the catalytic site. This study highlighted
how the conformation shift was important for the increase in
the catalytic activity of the enzyme in developing drug resis-
tance, not affecting the minimum free energy. There are dif-
ferent theories about the conformational change propagation
from the allosteric sites to the core catalytic pocket.72 In their
work, Latallo et al. showed that such mutations substantially
did not affect the catalytic site conformation in the apo form
of the protein, leaving the general structure conformation
unaltered. Thanks to the application of machine learning
techniques to trajectory derived conformations, the authors
found out that the catalytic activity variation could be
connected to a particular set of protein residues involved in
coordinating catalytic water within the substrate binding site
or directly involved in the substrate positioning. These out-
comes open up some interesting hints in the rational design
of new antibiotics.

Molecular dynamics simulations were also applied to ad-
dress the problem of allosteric modulation in the A2A adeno-
sine receptor. Recently, an interesting work has been pro-
duced by Caliman et al.73 as a follow-up to a previous one
where the same authors had already explored the conforma-
tional analysis of the apo A2A adenosine receptor through
MD.74 In the previous work, molecular dynamics analysis
allowed the identification of different non-orthosteric sites
on the active conformations, on both two intermediate con-
formations observed and on the inactive conformations of
the protein. In this more recent work, the authors started
from different structures retrieved from the previous dynam-
ics simulations and 20 different X-ray structures of the same
protein family, in order to map the previously retrieved allo-
steric sites using the fragment-based approach accessible via
FTMap software.73 This software, which is usually used to
identify available non-orthosteric sites, was revealed to be es-
pecially helpful for transmembrane proteins and especially
for compounds that cannot target the extracellular part of the
protein but go to the lipid bilayer of the membrane. The use
of MD combined with FTMap allowed them to mainly iden-
tify five allosteric binding sites that are present in both ac-
tive, intermediate and inactive protein conformations. We
here report a table of the five sites identified, as was reported
in the original paper (Table 1). Such kind of study represents
invaluable help for designing new allosteric modulators for
difficult targets where selectivity is difficult to reach. As in
the previous case, the Bartuzi research group extensively
adopted MD on a GPCR receptor to simulate the activation
and the interplay between allosteric sites in the human
μ-opioid receptor (MOR).75,76

In their first work, the authors started from evidence on
negative modulators of the μ-opioid receptor, a GPCR
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receptor, for the identification of allosteric sites and modula-
tion mechanisms. In detail, starting from homology model-
ing, known compounds were docked into the allosteric sites
and then conformations and complex stability was evaluated
using MD. In particular, salvinorin A, a negative allosteric
MOR modulator, was used to evaluate key residues in the
binding process using site-directed mutagenesis. According
to what was reported in the literature, as experimentally
proved, the residues Ile316 (7.39), Tyr320 (7.43), Gln115
(2.60), Tyr312 (7.35), Tyr313 (7.36), and Tyr119 (2.64) were
demonstrated to be essential for the recognition and binding
of allosteric modulators in the κ-opioid receptor. From the re-
sults obtained, the authors suspected possible overlapping re-
gions between the salvinorin A interacting portion (TM I-TM
II-TM VI interface) and orthosteric binding site. The main
mechanism of action underlined for salvinorin A consists in
interfering with orthosteric ligands. The same authors went
deeply in order to better understand the possible interplay
between two allosteric sites and the agonist binding process.

This time, 200 ns replica molecular simulations were run
using a positive modulator, BMS986122 (BMS), to evaluate its
influence on the binding process of the agonist (R)-metha-
done (RME) and Na+. The simulations were able to differenti-
ate between BMS and Na+ orientations within TM VII. On the
different trajectories, PCA was applied to investigate on possi-
ble clusters of common conformations and TM
rearrangements. From the simulation analysis, it was de-
duced that the agonist binding process was negatively
influenced by the presence of the sodium ion interacting
with conserved Asp2.50, as was already proposed both experi-
mentally77 and computationally.78,79 Focusing on the BMS, it
was noted that its role was the stabilisation of the target–ago-
nist interaction, whereas the allosteric binding of the Na+

was instead disrupted. These data were in complete agree-
ment with experimental findings, that is, a BMS-induced in-
crease in the affinity of full agonists towards MOR.80 More-
over, these results highlighted a possible binding mode of
RME involving Asp3.32 with a consequent rearrangement of
the TM VII position. This conformational change seems to be
driven by an influence on Trp7.35 in the binding pocket,
causing the rotation of TM VII. This hypothesis was then con-
firmed by adding BMS, which stabilised the RME binding
through direct interaction with Trp7.35.

Furthermore, during the revision process, we found a “just
published” work by Meng et al.,81 where a great approach
based on the use of the MD/MSM approach combined with a

multi-source seeding strategy was used to explore different
possible conformations and transition states of Abl tyrosine
kinase. The use of a multi-source seeding strategy consists in
using different source protein conformations (X-ray, homo-
logs, “piecewise-mixing” conformations from different crystal
structures, previous MSM retrieved conformations). The use
of such an approach allowed researchers to widely explore
the conformational space of Abl tyrosine kinase, including
the myristoyl-binding pocket situated at the C-terminus of
the protein. This portion was identified as an allosteric site
responsible for modulating conformational transitions be-
tween active and inactive states of the protein. From MSM
outcomes, researchers found a specific conformational state
of the allosteric site, promoting the DFG-out conformation
and maintaining the protein in the inactive state. These find-
ings represent a great value in the design of possible Abl allo-
steric inhibitors.

Protein–protein interactions as undruggable targets

In the past decades, PPI drew the attention of the scientific
research community across academia and industry, because
of the increasing knowledge about their relevant role in cells
for signalling and regulation of cellular life cycle and vital
functions (e.g. cellular growth, differentiation and apoptosis).
The PPI target space is consistently larger than that of classi-
cal protein targets, with putative relevant PPIs comprising be-
tween 130 000 and 650 000.82–85 Such a huge amount of po-
tential targets is associated with biological implications in
several diseases, for example cancer and neurodegenerative
disorders. Unfortunately, to date, less than 0.01% of PPIs be-
longing to the human interactome present approved modula-
tors.86 Protein–protein interactions are particularly complex
targets, usually labelled as undruggable, and thus there are
few discovery programs as these are considered high-risk fail-
ure therapies.82 Actually, cells are crowded environments
where proteins behave as promiscuous macromolecules, i.e.
able to take part in interaction networks, binding more than
one partner, and in this way making it difficult to achieve
specificity during a drug design process. Hence, targeting bi-
molecular complexes requires an interdisciplinary approach
to identify binding determinants at PPI interfaces and over-
come issues tightly linked to the intrinsic nature and struc-
tural features of protein–protein interactions.87,88 Indeed, PPI
interfaces are often shallow and lack deep grooves able to ac-
commodate a ligand and recognise its shape in a

Table 1 Data taken from original paper73

Site Location Regions Residues

1 Intracellular crevice TM3/TM4/TM5 I3.40, F3.41, L3.44, A3.45, D3.49 (TM3); I4.45, I4.48, C4.49 (TM4); Y112 (ICL1); C5.46, P5.50 (TM5)
2 G protein coupling

site
TM2/TM3/TM6/TM7 N39 (ICL1); T2.39, N2.40 (TM2); D3.49, R3.50 (TM3); H6.32, S6.36, F6.44 (TM6); Y7.53 (TM7); I292

(C-term)
3 The lipid interface TM5/TM6 P5.50, M5.54 (TM5); V6.41, F6.44, W6.48 (TM6)
4 C-Terminus cleft TM1/TM7 L1.45, G1.49, L1.52 (TM1); V7.47, P7.50, F7.51 (TM7)
5 Extracellular cleft TM3/TM4 C3.30, F3.31, V3.34 (TM3); L4.58, G4.57, F4.54 (TM4)
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complementary manner. While in a classical receptor–ligand
interaction the first one presents a well-defined pocket with
clear complementary binding recognition motifs, a protein–
protein interaction occurs when both protein partners estab-
lish few high-affinity contacts through the so-called “hot
spots” residues, exploiting complementary regions as well as
several weaker interactions. However, hot spots are residues
widely deployed within protein surfaces, and are thus sequen-
tially not connected among them within the same protein,
creating a discontinuous epitope.87,89 Another consideration
is related to the size of a PPI interface, which is wider (on av-
erage 1500 to 3000 Å2) than receptor–ligand contact areas of
classical targets (about 300 to 1000 Å2) (Table 2).87 Further-
more, if a protein target takes part in the interaction with an-
other protein, mainly providing protrusions and not just
pockets for accommodation, managing the design of a small
molecule able to cover a protrusion of the protein target ap-
pears rather unlikely.82

Despite the above difficulties and the shortage of struc-
tural information about protein–protein complexes, PPIs are
becoming more accepted and popular targets,90 thanks to
promising computational techniques, such as MD. Here, we
provide an overview of some case studies where molecular dy-
namics techniques proved their usefulness to the drug design
and discovery process for thoroughly studying protein–pro-
tein interactions but above all facing the intrinsic difficulties
of this type of target.

Molecular dynamics simulations for the identification of
potential pockets and binding hot spots

To date, many theoretical and computational tools have been
developed to map a potential protein–protein binding site;
some examples are AnchorQuery™91 and FTMap.92 The limi-
tation of these techniques relies on the static structures to be
analysed. In this context, MD can represent a valuable tool.
Actually, it has been used by numerous research groups to
identify hot spots responsible for the interaction between two
proteins.93

The hot spots within a PPI interface represent less than
50% of the contact area between proteins and they are de-
fined as those amino acid residues replaced with alanine by
alanine scanning mutagenesis which provoke a decrease in
binding free energy of at least 2 kcal mol−1.94,95 The hot spots
more frequently found in PPI interfaces are the amino acids
Tyr, Trp and Arg.95,96 All these three residues take part in hy-

drophobic interactions, since the main driving force of pro-
tein–protein complex formation is precisely the
hydrophobicity.88

In a work published in 2014, Sing Tan et al. showed how
MD simulations present a remarkable potential for detecting
hydrophobic hot spots and for ligand-mapping. Indeed, these
computational techniques allowed the unveiling of cryptic
binding sites on specific protein (RAD-51 and MDM2) sur-
faces by MD simulations of 5 ns and 20 ns. The authors sug-
gest the use of shorter simulations (5 ns) for mapping pro-
tein X-ray crystal structures and simulations of 20 ns for
NMR-resolved structures to ensure careful exploration of pro-
tein cavity.

While shorter simulations allowed the identification of
pockets buried by amino acid side chains and the protein
backbone in MDM2 and RAD-51, respectively, those of 20 ns
were able to unveil the hot spot Leu26, which is the most
buried of the three MDM2 residues responsible for p53-bind-
ing. Furthermore, in the same paper, the authors focused on
the capacity of MD techniques to unveil hydrophobic regions
able to bind hydrocarbon-stapled peptides at interfaces of
proteins, such as MCL-1 and BH3 α-helices of Bcl-2 family
proteins.93 The hydrocarbon-stapled peptides are peptides
folded as an α-helix, which present all-hydrocarbon “braces”
(staples) that make them suitable pharmacological candi-
dates for disrupting protein–protein interactions.101 For this
purpose, small molecule probes (benzene, propane and iso-
propanol) were used to mimic most of the protein residue in-
teractions between hydrocarbon-stapled peptides. In particu-
lar, by exploiting the ligand-mapping MD simulations, it was
possible to detect a new binding site previously unexplored
and design a peptide inhibitor (SAHB8–12) of the hydrophobic
interactions between two protein partners.93

Another example of MD application to PPI modulator de-
sign is reported in the work of Saez and co-workers published
in 2015. They carried out MD studies concerning the investi-
gation of hot spots involved in the interaction of the acid-
sensing ion channel 1a (ASIC1a) and its selective inhibitor
psalmotoxin-1 (PcTx1), a peptide extracted from spider
venom. ASIC1a is a member of the degenerin/epithelial so-
dium channel family,102,103 which is involved in several dis-
eases including chronic pain104 and ischaemic stroke.105 To
date, the most potent and selective inhibitor discovered for
this ion channel is precisely the peptide psalmotoxin-1,
which binds and fixes the desensitized state of ASIC1a.106,107

Saez et al. analysed the interaction of these two protein

Table 2 Data from original paper88

Host–guest interaction pocket attributes

Protein–ligand Protein–protein
Shape Deep Shallow, flat
Size ∼300 to 1000Å2 1150–1200 Å2 small interfaces97,98

1200–2000 Å2 medium interfaces
2000–4660 Å2 large interfaces97,99,100

Types of
interaction

Electrostatic interactions, hydrogen bonds,
hydrophobic contacts, π-stacking

Hydrophobic contacts (for protein–protein complexes formation) and
electrostatic interactions (for PPI stabilization)
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partners to elucidate the nature of the binding contacts and
to identify the crucial hot spots.108 Starting from a crystal
structure resolved by Dawson et al. in 2012,109 the authors
observed that the two protein partners established 57 inter-
molecular contacts, which the authors defined as “pairwise
interactions <5 Å”. The bulk of this network was reduced by
MD simulations of 30 ns carried out using GROMACS 3.3.3
(GROMOS54a7 force field). The interaction network rate was
analysed out of 600 frames for each simulation, setting a cut-
off of 5 Å for non-bonded interactions and 2.5 Å for hydrogen
bonds. The MD trajectory analysis halved the pairwise inter-
actions to almost 31 intermolecular contacts. These outcomes
were further examined in depth by alanine scanning muta-
genesis, which led to the identification of a smaller number
of hot spots, thus paving the way to the design of novel selec-
tive compounds for ASIC1a.108

Furthermore, in a recent article, Biswas et al. presented a
study on TRAF6/Basigin interaction implicated in melanoma
metastasis. Basigin (BSG) protein is able to stimulate the
overexpression of matrix metalloproteinases (MMPs), which
contribute to cancer development, and to interact with tu-
mour necrosis factor receptor-associated factor 6 (TRAF6),
promoting the invasiveness of melanoma cells.110–113 Biswas
and collaborators performed MD simulations of individual
proteins and complexes using the GROMACS 5.0.5 (ref. 114)
package with the CHARMM force field. The simulation times
were 70 ns (BSG), 50 ns (TRAF-6), and 120 ns (BSG-TRAF6
complex). MD results allowed them to observe a conforma-
tional change in the BSG transmembrane region participating
in the PPI, which as a consequence of TRAF6 binding, ac-
quired a helical conformation. Besides, these simulations
provided information about the interacting hot spots of
TRAF6; recognizing residues contributing more to binding
free energies, MD proved to be a useful instrument for
recognising residue contacts previously not identified be-
tween protein partners, as a compelling aid for drug design
and development.

Another interesting work published in 2017 by Xue and
collaborators concerns the use of a recent MD technique,
steered molecular dynamics (SMD). This work aimed at
obtaining information about an interaction between two
chaperones, Hsp70 (also called Hsc70) and Hsp40 (or
auxilin).115 These two proteins take part in a cellular ATP-
consuming network, which ensures the correct folding of pro-
teins, membrane translocation and protein
degradation.115–117 In order to extensively analyse the Hsp70
nucleotide-binding domain (NBD) and Hsp40 J domain inter-
action, SMD turned out to be useful. SMD is a methodology
which involves an unequilibrated system and consists in ap-
plying external forces to the system under consideration forc-
ing the protein complex dissociation.115,118–121 During the
simulations, binding energy changes were registered and
values were plotted into a curve against the simulation time.
In an early phase, starting from a PDB file (1Q2G) containing
the Hsc70–auxilin complex, Xue et al. equilibrated the system
performing a classical MD simulation of 20 ns at pH 7.0 and

300 K (using the GROMACS 4.5 program,115,122 under con-
stant NPT and periodic boundary conditions). The RMSD
(root-mean-square deviation) was calculated and the system
allowed the extrapolation of the stabilised structure at 7 ns of
simulation as a starting point for SMD studies. Later, the
equilibrated system was subjected to a SMD simulation of 2
ns, applying a spring constant of 300 kJ mol−1 nm−2. This
value was chosen as it was more suitable for the complex un-
der consideration, given that it produced reliable and detect-
able rupture forces responsible for Hsc70–auxilin complex
dissociation. The binding energies (kJ mol−1 nm−2) against
simulation time (ps) were reported in two curves according to
the different types of interaction involved (electrostatic inter-
actions and van der Waals interactions) and the sums of all
the points of these two curves were plotted into another
curve. This plot suggested that, in the early phases of SMD
simulation, electrostatic interactions out-numbered van der
Waals (VdW) interactions; in contrast, in the second part of
the simulation, VdW interactions dominated. At the end of
SMD simulation, the binding energies of the complex
achieved the value of zero, revealing a complete protein com-
plex dissociation. Furthermore, in order to deeply study
which residues and how much these affect electrostatic and
VdW interactions within the complex, Xue and co-workers
also reported the residues involved in binding domains of
proteins and the related binding energies. In this way, it was
possible to identify key residues in the J domain of auxilin
and in NBD of Hsc70. In view of the above, a host–guest com-
plex dissociation process using SMD is not intended to be
the opposite of the binding process between two interacting
partners. Instead, this technique represents an aid to deeply
study the nature of established interactions and the related
effect within a given complex.115 A very recent and modern
approach based on MD, together with MSMs has been
presented by Martinez-Rosell et al.123 In their work, the au-
thors adopted a MD-driven approach for fragment screening
on CXCL12, a “hard-to-drug” chemokine because of its partial
shallowness. The interesting and innovative point of view
presented by the authors consists in using combined
methods for targeting CXCL12 and not its receptor CXCR4,
as was already done by others.124 In their work, Martinez-
Rossell et al. used a series of short MD simulations on the
target to explore possible conformations. On the obtained
conformations, docking was run using fragment libraries.
Then, different cycles of short MD–MSM-adaptive
respawning, based on the use of the target and solvated li-
gands, were run to produce putative binding poses to be
analysed. One of the strengths of the method used is based
on the short simulations as starting points for an adaptive
sampling scheme, consisting of their concatenation using the
MSM approach in order to enhance the sampling capability.
The use of a stochastic method such as MSM allows the re-
duction of single timescale simulations and at the same time
opens up the possibility of deeply studying a wide landscape,
allowing the creation of aggregate simulations of 29 to 45 μs.
Furthermore, the use of MSM in this work permitted the
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observation of unbound and different bound states for the li-
gands screened, together with probabilities of complex crea-
tion and associated free energies. Besides, this approach
allowed researchers to evaluate the kinetics parameters (kon
and koff) for the unbound/bound state of the ligands
screened.

Conformational shift analysis as starting point for the design
of PPI modulators

The structures obtained by X-ray crystallography do not per-
mit deep exploration of each protein's cavity, especially those
transient, which could be responsible for protein–protein in-
teractions. Furthermore, X-ray crystal structures do not ac-
count for flexibility and adaptation induced by both proteins
that often result in complementarity between two protein
partners.125 In this case, starting from PDB files or homology
models, the MD methodology provides a dynamic trajectory
over time of the positions and the velocities of all atoms in a
system, allowing the investigation of the protein surface, re-
producing conformational changes occurring in the cellular
environment, and detecting potential shallow pockets able to
accommodate ligands.88

In 2015, Cau et al. reported a study on the g14-3-3 protein
of the protozoan parasite Giardia duodenalis, which colonises
the upper regions of small intestines in mammals, causing
severe consequences to the host's health.126,127 At present,
there are no vaccines available and the number of useful
drugs is rather limited, presenting refractory cases as
well.127,128 As a consequence, targeting the interaction be-
tween g14-3-3 protein, which is responsible for triggering the
invasive activity of the parasite, and host protein partners
(phosphorylated Ser and Thr proteins – pSer/pThr proteins)
represents a priority solution to address this unmet medical
need. G14-3-3 protein is able to explicate its activity only
upon phosphorylation on the Thr214 residue, producing con-
version from the “open” conformation of the apo form to the
“closed” one of the phosphorylated form.127,129,130 In early
phases, Cau and co-workers conducted SGLD (self-guided
Langevin dynamics) simulations using SANDER on nine
tripeptides belonging to the phosphorylation region. At a
later time, classical MD studies were performed using the
PMEMD (particle mesh Ewald molecular dynamics) module
of AMBER12 with the AMBER force field ff12SB in an explicit
water solvent on wild-type g14-3-3 protein, pThr214-g14-3-3
protein (g14-3-3 protein with phosphorylated Thr214) and
T214E-g14-3-3 protein (with phosphomimetic T214E muta-
tion). The authors concluded that in the closed protein con-
formation (i.e. the phosphorylated form) the structural
rearrangement at the expense of the α8–α9 flexible loop
containing Thr214 is stabilised not so much by interaction
between the loop and neighbouring residues but rather by a
steric hindrance of side chains, which provokes a dihedral
angle restraint, allowing the protein to interact with its part-
ners. These results were fundamental to permit the authors
to investigate the chemical and physico-chemical properties

of the interaction region through X-ray crystallographic stud-
ies, and finally identify the key hot spot residues of g14-3-3
protein.127

In an article released in December 2017, Vin Chan et al.
reported a MD study on murine double minute 4 protein
(MDMX) and tumour suppressor protein p53 interaction.
MDMX is a regulation factor of protein p53, which under cel-
lular stress conditions undergoes phosphorylation on the ty-
rosine 99 (Tyr99 or Y99) residue and releases protein p53,
resulting in cell cycle arrest and apoptosis.131–133 In their
work, MD is applied to integrate a study previously carried
out by Zuckerman et al.134 This study suggested that the re-
lease of protein p53 from MDMX was caused by a steric
bump produced by the phosphate group of pTyr99 in the
p53-binding site. This assumption didn't take into account
the negative feedback mechanism, which occurs upon Tyr99
phosphorylation, whereby another phosphorylation on Tyr55
brings MDMX back to a conformation able to rebind protein
p53 and inhibit its activity. Through MD simulations on
MDMX-pTyr99 and MDMX-pTyr99–pTyr55, Vin Chan and co-
workers suggested that, in addition to a steric clash, there is
a MDMX region, the N-terminal lid, which takes part in pro-
tein p53 release through a salt bridge formation between
pTyr99 (phosphorylated Tyr99) and Arg18 (or R18) of the lid.
Indeed, this salt bridge stabilises the lid in a “closed state”,
preventing MDMX–p53 interaction.133 Such results were vali-
dated by mutagenesis studies using a glutamate residue, as a
phosphomimetic.133,135,136 At the same time, MD simulations
on MDMX–pTyr99–pTyr55 unveiled the formation of electro-
static interactions between the phosphate group of pTyr55
and three residues of the N-terminus of the lid (Met1, Thr2,
and Ser3), resulting in a shift of the lid towards an “open
state” (away from the p53-binding site). The starting structure
for MD simulations was built with homology modelling using
a PDB file of MDMX (missing N-terminal lid) as the template.
200 ns MD simulations were performed as the NPT ensem-
ble, using the PMEMD module of AMBER14 with the ff99SB
force field.137,138 These studies turned out to be a valuable
support, because they highlighted likely interactions not yet
experimentally discovered, paving the way to further studies
for digging out MD information and efficiently designing po-
tential drugs.133

Unlike classical targets, such as membrane receptors or
enzymes, the complex nature of PPIs impacts on designing
modulators and their chemical and physicochemical features.
In most cases, protein–protein interactions do not have natu-
ral ligands or known active compounds to be exploited as
templates for drug design, rendering the hit identification
phase of PPI modulators (PPIMs) complementary to receptor
binding pocket difficult in terms of shape and chemical attri-
butes.87,88 Besides, classical virtual screening of drug-like
compound libraries against a protein–protein binding site is
not always able to provide reliable results both for structure-
and fragment-based approaches. Successful PPI modulators,
in fact, usually have molecular weights two or three times
larger than those of traditional drugs, and hence they have
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wider sizes.86,139 In addition, due to shallowness and quite
broad solvent exposure of PPI binding clefts, generally hits
show low affinities for protein–protein interactions, with a Kd

value of 0.1–5 mM.86,140,141 Generally, PPIMs are classified
according to their mechanism of action in disruptor or stabi-
liser modulators. PPI disruptors are able to compete in bind-
ing one of the two protein partners (orthosteric disruptors) or
destabilise a protein–protein interaction through an interac-
tion with a distal or proximal site on the protein surface (allo-
steric disruptors), eliciting a decrease in PP affinity. In con-
trast, PPI stabilisers increase the protein complex binding
affinity and stability either by acting directly at the interac-
tion interface (orthosteric stabilisation) or by binding to a re-
mote site of the protein and causing an increase in PP affin-
ity142 (Fig. 4). MD has become a valuable tool for validating
the stability of a protein–protein-modulator complex and for
unveiling the binding modes of PPIMs. An example of com-
plex stability validation can be found in a recent paper. In
this article, Gupta and collaborators143 showed how MD
came to support other techniques, confirming the virtual
screening results. In particular, the target under consider-
ation is an NHĲ3)-dependent nicotinamide adenine dinucleo-
tide synthetase protein (GEM_3202 or NadE144) involved in a
protein–protein interaction network responsible for the infec-
tive activity of the opportunistic Burkholderia cepacia patho-
gen complex.143,145–148 Gupta et al. exploited MD simulations
to check the stability of the interaction between the drug tar-
get and two potential hits (ZINC83103551 and ZINC38008121)
identified through virtual screening. MD simulations were
performed in triplicate on a validated homology model of the
protein, using the GROMACS 4.5.5 package.

The radius of gyration (Rg) fluctuations were calculated for
both NadE-ZINC83103551 and NadE-ZINC38008121 interac-
tions and revealed that both complexes showed high struc-
tural solidity, obtaining on average 1.87–1.95 nm. Moreover,
the measured RMSD values of protein with ligands were low
(∼0.41–0.45 nm for NadE-ZINC83103551 and ∼0.15 nm for
NadE-ZINC38008121), confirming the high stability of the
complexes.143 In December 2017, another interesting work on
PPI modulator design was published by Nath Jha et al.149

It concerns α-synuclein (α-syn) protein, which is responsi-
ble for the death of dopaminergic neurons in Parkinson's dis-
ease. Recent studies demonstrated that the decrease of oligo-
meric α-synuclein species and the acceleration of amyloid
fibril formation represent a potential entry point target strat-
egy for the design of novel drugs.149–152 Based on this hypoth-

esis, Nath Jha et al. conducted MD studies on three
hexapeptides in the presence of full-length α-synuclein. The
three peptides were designed on the basis of the hydrophobic
region of α-synuclein responsible for self-association and ag-
gregation, the non-amyloid-β component (NAC) region (α-syn-
71-82).153

The rationally designed peptide sequences were VAQKTV
(or peptide C, corresponding to amino acids 77–82 of NAC),
VRQKTV (called R78, due to the mutation of A78R), and
VPQKTV (named P78, due to the mutation of A78P). MD sim-
ulations for all three hexapeptides were performed in an ex-
plicit solvent (TIP3P), keeping the ratio at 1 : 5 (8 full-length
α-synuclein molecules and 40 hexapeptides) and a random
orientation without interactions between proteins. After an
early step of minimization and equilibration of 20 ns, MD
simulations were performed for 100 ns under NPT condi-
tions. The results suggested that the hexapeptide-containing
arginine (VRQKTV) showed a major capacity to establish hy-
drogen bonds with α-synuclein, with a larger number of
H-bond interactions and a higher occupancy of contacts than
the other two peptides. Furthermore, MD trajectory analysis
brought about the identification of contact areas between
full-length α-synuclein and peptide R78, i.e. the negatively
charged C-terminus of α-syn and the positively charged Arg78
of peptide R78. These results paved the way to the further
study and design of novel specific peptide ligands able to
stimulate α-syn oligomer aggregation and prevent their cyto-
toxic activity.149 Besides the PPI disruptors and stabilisers, Fi-
scher et al.142 provided a further category of PPI modulators,
which are the modulators of protein dynamics (or interfacial
dynamic modulators). These, in fact, do not necessarily affect
the binding affinity of a protein–protein complex, but they
bind to clefts produced through homo- or hetero-
oligomerisation, modifying the dynamic properties of the in-
dividual protein partners.

An example of an MD application to support the identifi-
cation of these types of modulators was provided by
Hammoudeh et al.154 in an article released in 2014. The tar-
get considered was the dimeric form of the bacterial enzyme
dihydropteroate synthase (DHPS), which is implicated in a
key step of the folate biosynthetic pathway. The most com-
monly used drugs for this target are now beginning to show
an antimicrobial resistance phenomenon and for this reason,

Fig. 4 Mechanism of action of PPI modulators.
Fig. 5 Compound 11 (on the left); binding mode of compound 11
(green molecule) at the dimeric DHPS interface (on the right).
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targeting DHPS became a health emergence. Hammoudeh
et al. were able to discover an allosteric PPI inhibitor (com-
pound 11, Fig. 5), which at low micromolar concentrations
reduces the enzyme Km and Vmax. In this study, MD simula-
tions were used to observe the fluctuations of loop1 and
loop2 involved in the active site in four different situations:
without any binder, in the presence of a natural substrate,
with compound 11, and in the presence of both a natural li-
gand and an inhibitor. MD simulations highlighted that com-
pound 11 was able to bind the dimeric interface of DHPS
and loop7 through its distal half.

This interaction causes a conformational change which is
transmitted to the enzyme active site, thus considerably re-
ducing loop1 and loop2 fluctuations responsible for natural
substrate binding.

An interesting work concerning analysis of the thermody-
namics and kinetics of protein–protein association was pub-
lished by Plattner et al. in 2017.155 The authors carried out a
cutting-edge study using all-atom MD simulations and MSMs
to explore the states and properties, unlikely to be experimen-
tally captured, of two proteins known to form a tightly bound
complex, namely, barnase and barstar. Plattner et al.
performed a large number of aggregate MD simulations of 2
milliseconds overall, consisting of 1.7 milliseconds of indi-
vidual trajectories and 0.30 milliseconds of multiple parallel
adaptive MD runs. One of the main advantages of adaptive
MD runs is that they allow the speeding up of biological pro-
cesses presenting high energy barriers, decomposing them
into smaller paths with relative lower energy barriers. Starting
from the unbound state of the two proteins, the hidden Mar-
kov model (HMM) was used to explore the states of proteins
(early intermediates, late intermediates, pre-bound and
bound states), the related interacting contacts, the binding
free energies and the transition rates, to obtain the bound
complex of the two protein partners. The latter was a complex
formed under equilibrium conditions between “loosely
bound” (5% population) and “tightly bound” states (95%
population), with the last one being consistent with the crys-
tal structure in the PDB database (PDB ID: 1BRS). The aver-
age heavy atom RMSD values between the PDB crystal struc-
ture and the “loosely bound” form were 0.3 nm and 0.21 nm
in comparison with the “tightly bound” form. These results
are remarkably important for medicinal chemists, demon-
strating the good reliability of the Markov modelling method
in reproducing information potentially consistent with exper-
imental data and in exploring the conformational space of a
finite number of biological molecule states and the related
transition rates.

Conclusions and future perspectives

The main goal of medicinal chemistry is identifying chemical
entities with optimal affinity, selectivity and safety for pa-
tients. Nowadays, computational techniques applied to drug
discovery represent an invaluable tool for rationally designing
novel chemical entities. Indeed, at present these methodolo-

gies have allowed researchers to discover small molecules or
small peptides with good drug-like properties,2 speeding up
the drug discovery process and decreasing research-
associated costs. However, research activities in the field of
medicinal chemistry have not yet been able to drug a wide
range of biological targets responsible for the aetiology of
several diseases, labelling them as undruggable. Neverthe-
less, in the past years, there has been a huge rise in interest
in these pharmacological targets together with the increased
use of molecular dynamics simulations to explore related
binding sites. Medicinal chemists were thus able to deeply in-
vestigate shallow and/or buried grooves, particularly those
transient, which are impossible to detect through only the
observation of NMR and X-ray crystal data.12 In this review,
we have provided an overview of successful MD techniques
mainly adopted in the last decade, to deeply study
undruggable target-related drug discovery issues, such as
protein–ligand/protein–protein interaction stability,21–24 bind-
ing kinetics25–29 and interaction mode.30–32 In particular, we
have focused on the application of MD to two specific types
of considerably important undruggable targets, allosteric
sites and protein–protein interactions.

In this work, we have reported several case studies,
whereby MD techniques resulted in the identification of
binding cavities, contact areas, or ligand binding modes. In
conclusion, we would like to underline an important point of
view as a future perspective, which was recently presented by
Jiménez et al. in their latter current opinion paper.156 In this
work, a scenario about the use of MD in synergism with ma-
chine learning (ML) approaches is presented. The combina-
tion of these two methods seems to be crucial in order to im-
prove the accuracy of predictions and speed up the MD
analysis process. The ML/MD combined approach, together
with a continuously increasing simulation timescale, as was
observed by Martinez-Rosell et al.157 in their recent overview,
depicts without any doubt an encouraging landscape for re-
searchers, paving the way for “drugging the undruggable
targets”.
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