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The use of matched molecular series networks for
cross target structure activity relationship
translation and potency prediction

Christopher E. Keefer * and George Chang

Matched molecular series (MMS) analysis is an extension of matched molecular pair (MMP) analysis where

all of the MMPs belong to the same chemical series. An MMS within a biological assay is able to capture

specific structure activity relationships resulting from chemical substitution at a single location in the mole-

cule. Under this convention, an MMS has the ability to capture one specific interaction vector between the

compounds in a series and their therapeutic target. MMS analysis has the potential to translate the SAR

from one series to another even across different protein targets or assays. A significant limitation of this ap-

proach is the lack of chemical series with a sufficient number of overlapping fragments to establish a statis-

tically strong SAR in most databases. This results in either an inability to perform MMS analysis altogether or

a potentially high proportion of spurious matches from chance correlations when the MMS compound

count is low. This paper presents the novel concept of an MMS Network, which captures the SAR relation-

ships between a set of related MMSs and significantly enhances the performance of MMS analysis by re-

ducing the number of spurious matches leading to the identification of unexpected and potentially trans-

ferable SAR across assays. The results of a full retrospective leave-one-out analysis and randomization

simulation are provided, and examples of pharmaceutically relevant programs will be presented to demon-

strate the potential of this method.

Introduction

The pursuit of compounds with a desired activity profile is
the essence of medicinal chemistry and is the motivation for
building structure activity relationships (SARs). Oftentimes,
the SAR reflects an association between a small and structur-
ally similar series of compounds and their pharmacological
activity against one particular therapeutic target (i.e. a local
SAR). The goal of the local SAR is to reveal critical interaction
properties that aid in the rational design of analogs that im-
prove potency.

Given the vast amount of available SAR information across
many targets spanning many years, especially within large
pharmaceutical companies, there has been considerable ef-
fort to extract knowledge from this data for compound design
across series within a target, and even across targets. In re-
cent years, matched molecular pair (MMP) analysis has been
extensively evaluated and has shown some success in
predicting physicochemical properties.1,2

Unfortunately, success in predicting biological activity has
been far more limited. When an MMP transformation in-

cludes activity from multiple targets, the potency change is,
generally, normally distributed around zero.3 Limiting the
transformation to data from a single target may overcome
this issue, however, the number of underlying compounds is
reduced and potentially weakens the conclusions one can
draw. Furthermore, limiting an analysis to data for a single
target focuses on a narrow chemistry space and will ulti-
mately limit the breadth of MMP transformations that will be
generated. Another issue with MMP analysis is the need to
define the appropriate structural context for a transforma-
tion.4 This can be difficult to do a priori and can result in too
few pairs for analysis.

Recently, MMP analysis has been logically extended to
the concept of matched molecular series (MMS) analysis, a
term introduced by Wawer and Bajorath.5 An MMS is a se-
ries of compounds in which all members share the same
core and differ by changes at a single position. By defini-
tion, any two compounds within an MMS are MMPs of one
another. Furthermore, an MMS can be connected to
changes in the activity of its constituent compounds for a
particular assay. The approach of using MMS for biological
SAR transfer has been reported6–11 and is the basis for
methods such as Matsy,12 which begins to address the ques-
tion of “what to make next?”. The attraction of MMS as an
approach for compound design is its intuitively familiar
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concept of extracting trends and knowledge from prior series
and applying them to the design of novel analogs during a
lead optimization process.

The premise of the MMS approach is this: given a suffi-
ciently strong activity correlation, analogs present in one
MMS series that are not present in a second MMS series may
contain candidate fragments worthy of evaluating in the sec-
ond series. This parallel SAR approach is analogous to the
concept of “sub-pocket fingerprints”13,14 where, despite com-
paring two distinct biological targets, there are regions in
their respective binding pockets that are similar. The under-
lying assumption is that the fragments of the two MMSs bind
to their respective sub-pockets via similar binding interac-
tions. An early success of this approach was reported by Mills
et al. for the design of TRPA1 antagonists.15

On the surface, conducting an MMS analysis is fairly
straightforward. Start with a congeneric series of compounds
(Query MMS) and search for other series that possesses an
overlapping set of fragments to the query (Match MMS). If
the activities of the overlapping fragments common to a
Match MMS and the Query MMS are correlated, then we call
that an MMS pair. It is important to note that the two MMS
series could have activity from the same or different assays
and an MMS could correlate with multiple MMS series from
different assays or targets.

While this concept is simplistic in its approach, in prac-
tice, many details need to be managed. Given the large
amount of biological data with many possible MMS series,
the potential of finding a highly correlated MMS pair by
chance alone is high, and the likelihood of this chance corre-
lation increases with decreasing number of corresponding
fragments. Clearly, an MMS pair with many corresponding
analogs (i.e. >10 fragments) is desirable as it decreases the
potential for chance correlation and increases the potential
of a true parallel SAR. However, MMS pairs with many
overlapping fragments are not common and pragmatism
leads to the analysis of MMS pairs with a small number of
fragments. Relaxing the required number of corresponding
analogs for the MMS pair (i.e. 5–10 corresponding frag-
ments) greatly increases the number of MMS pairs and sub-
sequent predictions; however many of these MMS pairs are
likely spurious matches, correlated by chance, where a true
parallel SAR may not exist. Kramer et al.16 have performed
an analysis of metrics for determining MMS similarity in or-
der to identify those that result in the best activity
prediction.

In this paper, we describe how an MMS pair can be used
for activity prediction and assess performance on the Pfizer
MMP database. We also assess the likelihood of chance cor-
relations in a typical analysis via a random shuffle experi-
ment. Finally, we introduce the concept of a network
representing the SAR between an interrelated group of
matched molecular series (MMS Network) and show how
this concept can be used to address the issue of chance cor-
relations and identify unexpected and potentially transfer-
able SAR across assays.

Methods
Data set

The data used in this analysis are Pfizer's in-house IC50, Ki,
and EC50 potency endpoints, with some basic filters applied.
All data were transformed to pActivity values (−Log10 (Activ-
ity)). Individual measurements outside the pActivity range 3–
12 were removed from the analysis, as were assays having
less than 10 data points and a pActivity range less than 1.0.
This resulted in 5 350 628 data points spanning 7759 assays.

Identification of MMSs

Matched molecular series were identified from the Pfizer
matched molecular pair (MMP) database described previ-
ously.17 An MMS is defined as a congeneric series with a min-
imum of 5 compounds that are all MMPs of one another.
The variable fragment must have 10 or fewer non-halogen
heavy atoms if it is a substituent (1 bond break) and 12 or
fewer non-halogen heavy atoms if it is a core (2 or 3 bond-
breaks).

Identification of correlated MMS SAR

MMS pairs were identified by a systematic comparison of
MMSs. To ensure robustness of the MMS pairs, each candi-
date MMS was required to have a range of pActivity ≥ 0.5
and a skew ≤3.0. These filters reduce the risk of chance cor-
relations and linear relationships driven by extreme outliers.
The linear relationship between MMS pairs was computed
using orthogonal regression. This method is also called
Deming regression, where δ = 1,18 and is a form of total least
squares (TLS) regression.19 An advantage of orthogonal re-
gression is that it accounts for assay variability in both the x
and y regression dimensions. MMS pairs with an orthogonal
regression slope outside the range of 0.2–5.0 and a squared
Pearson correlation coefficient <0.16 were removed from fur-
ther analysis. It is important to note that these are prelimi-
nary filters applied before additional consideration of the
MMS pairs.

QSAR predictions

To make predictions from one MMS to another, the orthogo-
nal regression relationship is used. Consider, for example, a
query series Q and a matching series M. Given a fragment i
in M, with activity Mi, its predicted activity in Q, Q̂i, can be
computed from the equation:

Q̂i = slope × Mi + intercept

where the slope and intercept are computed from the orthog-
onal regression of all activity data for the fragments Q and M
have in common.

Graph DB

The MMS pair graph database was constructed using Neo4J.20

In this graph database, the nodes represent individual MMSs,
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and the edges between nodes represent the correlation statis-
tics of the MMS pair. Note that not all pairs of nodes have an
edge due to inadequate overlap of fragments or the filtering
of MMSs described previously. The edge correlation statistics
stored are the squared Pearson's correlation coefficient (R2)
and the p-value of the correlation. The p-values are based
upon the null hypothesis that the true correlation coefficient
is 0.0, meaning that smaller p-values represent correlations
that are statistically different from 0.0. The final database
contained ∼281 000 nodes and ∼36 million edges.

MMS network analytics

The support for an individual match (edge) was computed
from the graph database by analyzing all sets of 3 nodes and
edges where two of the nodes (N1 and N2) represent the
MMS pair being analyzed and the third node (N3) represents
a different MMS that is correlated to at least one of N1 and
N2. For this analysis, a pair of nodes is considered to be cor-
related if the square of their Pearson correlation coefficient
(R2) ≥ 0.49. This is an arbitrary value that was chosen based
on empirical observations from our data sets. Cases where
the third node is not correlated (R2 < 0.49) to either of the
first two were not included since they do not add any support
for or against the original SAR correlation. The MMS network
graph scores computed for an MMS pair are the average N1–
N3 and N2–N3 R2 over all sets, and the average N1–N3 and
N2–N3 p-value over all sets. Note that these average values
are MMS network support scores and no longer represent ac-
tual correlations or p-values.

Leave-one-out (LOO) analysis

To evaluate prediction performance, a leave-one-out analysis
was performed by removing every pair of compounds with
the same fragment within a MMS pair one at a time. Correla-
tion metrics and linear regression parameters were then
recomputed on the N-1 remaining fragments and a predic-

tion made for each of the left out compounds. For the net-
work metrics, the compound being predicted was left out of
all MMS network metric calculations.

Results & discussion
Single MMS pair predictions

To illustrate the utility of MMS pair analysis for prospective po-
tency prediction, we first present an example from a compre-
hensive leave-one-out (LOO) analysis performed on the Pfizer
database. The first row of Table 1 contains the SAR of our query
MMS, a series of nine, structurally-diverse phosphodiesterase
2A (PDE2A) inhibitors.21,22 A search of the Pfizer database iden-
tified a series of acyl-CoA:diacylglycerol acyltransferase-1
(DGAT1) compounds23–25 as an MMS match, shown in the sec-
ond row of Table 1. Note that although the scaffold of the two
MMSs is quite different, seven of the nine fragment substitu-
tions are the same. To investigate the relationship between
these two MMSs, their respective activities were plotted. Each
point in Fig. 1 represents the activity data for a pair of com-
pounds bearing the same fragment; DGAT1 activity on the
x-axis and PDE2A activity on the y-axis. The similarity of the
two SARs can be quantified using the square of the Pearson's
correlation coefficient (R2), which in this case is 0.77 and indi-
cates a strong agreement for this MMS pair. The linear fit be-
tween the two MMSs is computed using orthogonal regression
(magenta line). The unity line in Fig. 1 highlights the absolute
activity differences of the two assays, PDE2 activity being higher
than DGAT activity across the board. Both the slope and relative
range of potencies can be different, however this has no bear-
ing on the correlation of the respective SARs.

To leverage the DGAT1 MMS match and identify novel
fragments for the PDE2A MMS, we must first identify addi-
tional compounds from the DGAT1 series that have measured
activity data. These compounds are shown as blue stars in
Fig. 1, plotted on the orthogonal regression line. To predict
the PDE2A activity for these fragments, the linear orthogonal

Table 1 Examples of matched molecular series (MMS) with associated pIC50 data in PDE2A (1), DGAT1 (2), and HCV (3)

Core Assay

1 PDE2A 7.5 8.0 8.1 8.3 8.4 8.5 8.5 8.7 8.8

2 DGAT1 6.7 6.9 7.0 7.0 7.3 7.5 7.4

3 HCV 5.2 5.5 6.2 5.6 6.3
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regression fit can be used. Take, for example, the highlighted
carboxylic acid group as our first LOO fragment. The DGAT1
analog bearing this fragment has a pIC50 of 7.7 (vertical, pur-
ple dashed arrow), which corresponds to a predicted PDE2A
pIC50 of 9.2 (horizontal, purple dashed arrow). The experi-
mentally measured PDE2A pIC50 for this compound is 9.0.

This is an example of an MMS pair with good correlation and
apparent translatable SAR. Fig. 1 also shows many other com-
pounds, with varying degrees of DGAT1 activity, which were
never made or tested in the PDE2A series. All of these repre-
sent potential ideas that could be made for PDE2A depending
on the needs of the project.

Fig. 1 Plot of PDE2A pIC50 values vs. DGAT1 pIC50 values where each orange circle represents the data for a particular fragment in the MMSs. The
line of unity is shown in black and the orthogonal regression line is shown in magenta. Compounds with additional data in the DGAT1 MMS are
shown as blue stars and plotted on the regression line. The regression line can be used to make predictions of PDE2A activity for fragments that
were screened in the DGAT1 assay as shown for the carboxylic acid fragment.

Fig. 2 Plot of PDE2A pIC50 values vs. HCV pIC50 values where each orange circle represents the data for a particular fragment in the MMSs. The
line of unity is shown in black and the orthogonal regression line is shown in magenta. Compounds with additional data in the HCV MMS are
shown as blue stars and plotted on the orthogonal regression line. The location of the carboxylic acid fragment and its prediction in PDE2A is
shown.
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The PDE2A-DGAT1 example represents only one potential
match for the PDE2A MMS. A second example is the MMS
shown in the third row of Table 1, a series of Hepatitis C vi-
rus RNA polymerase (HCV) data26 with five fragments
matching the PDE query MMS. Fig. 2 shows the data for the
matching fragment compounds (orange circles) and all other
compounds (blue stars) with measured pIC50 values in the
HCV assay. This MMS pair also has good statistics with a cor-
relation R2 of 0.66 and a good range and distribution of activ-
ities in both assays. In the HCV assay, the carboxylic acid an-
alog had a measured pIC50 of 5.1, well below the pIC50 of the
five matching fragments. This corresponds to a predicted
pIC50 of 7.4 in PDE2A, which is significantly lower than the
experimental pIC50 of 9.0. For this particular match, the activ-
ity data for the carboxylic acid compound does not appear to
align with the rest of the SAR in these series. This could oc-
cur for a couple of reasons. One explanation is that the exper-
imental measurements from one or both series are suspect,
leading to a false correlation or a false prediction. Another
possibility is that the data is correct, but that the underlying
SARs are not a true match. This can happen when there are a
limited number of common fragments used to calculate the
correlation. Both of these scenarios can lead to chance (non-
causal) correlations.

A closer examination of the full set of 16 predictions made
for the PDE2A carboxylic acid compound highlights a poten-
tial issue with this approach. Fig. 3 shows a plot of the pre-
dicted vs. experimental pIC50 values for the PDE2A carboxylic
acid compound resulting from the 16 matching MMSs. The
predicted pIC50 values range from 6.9 to 9.8 and 10 of 16 fall
outside of 3-fold error – our definition of an acceptable pre-

diction. For a project team hoping to use this approach pro-
spectively, there would be no means to know which, if any, of
the predictions are accurate.

Overall MMS match prediction performance

To assess the overall performance of predictions using this
simple MMS matching scheme, we performed a full leave-
one-out (LOO) analysis of the MMS pairs in the Pfizer data-
base. We restricted MMS pair matches to those with 6 or
more fragments, then left out one fragment at a time and
computed the correlation statistics for the remaining frag-
ments. The number 6 was arbitrarily chosen to ensure that
there were enough fragments to detect an SAR relationship
while ensuring that there were enough MMS pairs to analyze
in the overall data set. We used the orthogonal regression
line to predict the activity for the leave-out fragment com-
pound in each of the MMS pair assays. This resulted in 569
million LOO predictions. 214 million of those predictions
met a set of minimal filtering criteria, defined as: 1) an MMS
pair squared Pearson's correlation (R2) ≥ 0.16, 2) an activity
range ≥0.5 for both assays, 3) an absolute orthogonal regres-
sion slope between 0.2 and 5.0, and 4) an absolute skew ≤3.0
for the compound activities in both assays. These filters rep-
resent our minimum requirements for a match to be consid-
ered potentially biologically meaningful. To analyze overall
performance, we selected a random 1 million results from
the 214m predictions and then further filtered this set to
those predictions with an R2 ≥ 0.49 to identify those gener-
ated from a strongly correlated match. This filtering resulted
in 363k predictions, or 36.3% of the 1 million randomly

Fig. 3 MMS predicted vs. actual pIC50 values for the carboxylic acid analog in PDE2A. Note the large range of predictions (6.8–9.8).
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selected predictions, which we will call the ‘Analysis Set’.
Fig. 4 shows the proportion of the Analysis Set within 2-fold
(39.9%), 3-fold (56.3%), and 5-fold (71.4%) of the experimen-
tal values.

Likelihood of chance correlations

To assess the likelihood of chance correlations, we performed
a randomization experiment to determine the random proba-
bility of finding matches with a high correlation. The activity
values for each MMS in an MMS pair were randomly shuffled
prior to computing the leave-one-out correlation statistics
and the minimal filtering criteria were applied, leaving 166m
of the 569m total LOO predictions. As with the non-random
case, we sampled 1m of these predictions and applied the R2

≥ 0.49 criteria to select only those having a strongly corre-
lated match. This filtering resulted in 291k predictions, or
29.1% of the 1 million randomly selected predictions, which
we will call the ‘Random Analysis Set’.

One striking observation is that the non-random experi-
ment had 36.3% strongly correlated MMS pairs and the ran-
dom experiment had 29.1% strongly correlated MMS pairs.
This suggests that as many as 80% could be due to chance al-
one. This result is not entirely unexpected considering the
limited number of matching compounds and data underlying
a majority of the correlation calculations, as well as the total
number of calculations being performed. A distribution of
the number of fragments (minimum of 5) per MMS found in
the full Pfizer database is shown in Fig. 5. 57.5% of the
MMSs contain 7 or fewer fragments which limits the number
of MMSs that can be used with high confidence to a smaller
number of series.

MMS network analysis

To better discriminate predictions originating from truly cor-
related SAR from predictions resulting from chance correla-
tion, we returned to the underlying hypothesis of the ap-
proach: correlations exist between series that share the same

Fig. 4 Analysis set prediction performance where orange segments show the proportion of predictions within 2, 3, and 5-fold of their actual
value.

Fig. 5 Distribution of MMS compound counts for all MMS with 5–50 compounds in the Pfizer database.
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underlying SAR at the position where the change is occur-
ring. This led us to consider what additional information
could we learn from other correlations that the MMSs in the
MMS pair being analyzed have in common since they should
also represent the same or similar SAR? This relational con-

cept is depicted in greater detail in Fig. 6. In the case of the
PDE2A-DGAT1 MMS pair (MMS 1 and MMS 2 respectively),
consider the hypothetical MMS containing a third chemical
series, MMS 3, with activity from Assay A, which is correlated
to MMS 1 of PDE2A. If that correlation is due to truly shared

Fig. 6 MMS sets where the strength of the relationships shown in black can be used to determine the support for the initial SAR relationship. If
the black edges represent strong SAR correlations, then it supports the original hypothesis, if they represent poor SAR correlations then they
detract from the original hypothesis. (A) Case where there is another MMS (MMS 3) correlated to the PDE2A MMS (MMS 1). (B) Case where there is
another MMS (MMS 4) correlated to the DGAT1 MMS (MMS 2). (C) Overall MMS network generated from combining all instances of (A) and (B).
Note that additional MMSs can be from different (MMS 3 and 4) or the same (MMS 5 and 6) assay as the original MMSs.

Fig. 7 MMS network for the PDE2A-DGAT1 (left) and PDE2A-HCV (right) examples. The nodes in the center of each plot represent MMSs that are
correlated to either PDE2A and/or DGAT1/HCV.
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SAR, then MMS 3 of Assay A should also be correlated to
MMS 2 of DGAT1, assuming they share overlapping frag-
ments. This relationship is represented graphically in Fig. 6A.
If MMS 3 is also correlated to MMS 2, one could argue that
strengthens the validity of the PDE2A-DGAT1 SAR correlation

since there are now three different MMSs that appear to
share an SAR. If MMS 3 is not correlated to MMS 2, then sup-
port for the PDE2A-DGAT1 match is weakened. Similarly, if a
hypothetical MMS with a fourth chemical series, MMS 4 of
Assay B, is correlated to MMS 2 of DGAT1, then it should also

Fig. 8 Predicted vs. actual pIC50 values for the carboxylic acid analog in PDE2A. Each point is colored by its MMS network average p-value score.
Predictions with greater network support are colored in orange while predictions with lower support are blue.

Fig. 9 Analysis set prediction performance comparison before and after filtering to predictions with MMS network average p-value scores ≤ 0.2
and average R2 scores ≥ 0.49.
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be correlated to MMS 1 of PDE2A (Fig. 6B). If this is the case,
the PDE2A-DGAT1 match is further strengthened, and if not,
the match is further weakened. Note that Assay A and/or As-
say B could be different biological systems relative to PDE2A
or DGAT1. Alternatively, the MMSs correlated to PDE2A or
DGAT1 (MMS 5 and MMS 6) could also be different structural
cores screened within the same PDE2A or DGAT1 assay
(Fig. 6C).

The network graph for the PDE2A-DGAT1 match is shown
in the left side of Fig. 7. In this network, the nodes are col-
ored by assay and the edges are colored by the p-value of the
correlation between the nodes (null hypothesis that correla-
tion is zero). Orange colored lines represent edges with a low
p-value (good correlation), while blue colored lines represent
edges with a high p-value (bad correlation). There are 15
MMSs with activities in other assays that are correlated to
both the PDE2A and DGAT1 MMSs, as shown in the upper
half of the plot. In addition, there are 16 MMSs that are cor-
related to either the PDE2A or DGAT1 MMSs, but not both.
These are shown in the bottom half of the plot. If we com-
pare the PDE2A-DGAT1 network graph to the PDE2A-HCV
network graph, shown in the right side of Fig. 7, we observe
a striking difference. Only 8 MMSs are highly correlated to
both the PDE2A and HCV MMSs and 18 MMSs are highly cor-
related to only one. For these 2 cases, we would qualitatively
argue that the MMS network support for the PDE2A-DGAT1
match is stronger than the MMS network support for the
PDE2A-HCV match.

To quantify this difference, we can compute a set of MMS
network scores. For this, we use the mean R2 and p-value for

all of the edges between the original MMS pair and addi-
tional matching MMSs as scores for the match. Note that
these values can no longer be interpreted as correlation coef-
ficients or p-values, but simply as MMS network support
scores for the edge being analyzed.

Scoring predictions

Using the MMS network approach, we can now score the set
of predictions for the carboxylic acid analog in the PDE2A ex-
ample. For the DGAT1 prediction, the MMS network average
p-value and R2 are 0.18 and 0.50, respectively. For the HCV
prediction, the MMS network average p-value is higher at
0.23 and the average R2 is lower at 0.46, which is consistent
with the qualitative interpretation of the MMS network im-
ages in Fig. 7.

Fig. 8 shows all of the predictions shown in Fig. 3, now
colored by their average MMS network p-value scores. This
shows that most of the predictions with greater than 3-fold
error have higher scores (lower network support) than the
predictions with lower than 3-fold error. In practice, to iden-
tify the predictions with the highest likelihood of success,
one could filter the predictions using the network scores,
chose the prediction with the best network score, or perform
a weighted average prediction where each prediction is
weighted by its MMS network support.

Overall network match performance

To assess the overall prediction performance when taking
MMS network scores into account, we filtered the original

Fig. 10 Predicted vs. actual values for analysis set predictions. Right plot shows the results after filtering to predictions with MMS network
average p-value scores ≤ 0.2 and average R2 scores ≥ 0.49. Points are colored by the MMS network average R2 score. Solid line is line of unity
and dashed lines represent ±3 fold error.
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Fig. 11 Plots of MMS network average p-value distributions (bar chart) and average prediction error vs. MMS network average p-value (black
curve) for the analysis (top) and random analysis (bottom) predictions with a match correlation R2 ≥ 0.49.
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Analysis Set by removing predictions with an average network
p-value score > 0.2 and an average network R2 < 0.49. After
filtering, 58k (16%) of the original 363k predictions with a
high R2 remained. Fig. 9 shows the proportion of predictions
within 2, 3, and 5 fold of the actual values. For all cases, the
proportions increased compared to the full set: from 38.0%
to 47.7% for 2-fold, 54.6% to 66.1% for 3-fold and 69.9% to
80.8% for 5-fold. It is clear that removal of predictions with
no or poor MMS network support results in significantly in-
creased prediction accuracy. Fig. 10 shows the predicted vs.
actual plots before and after network filtering. The points are
colored by their average MMS network R2 value.

False discovery rate using MMS network approach

To confirm that the use of MMS network scoring helps to dis-
criminate between real and chance correlations, we built an
MMS network for the randomly shuffled data set that showed
a high number of good correlations even after shuffling the
activities. We then computed MMS network average p-value
and R2 scores for the predictions in the Random Analysis Set.
Fig. 11 shows a comparison of the MMS network p-value
score distributions for the Analysis Set and Random Analysis
Set. There is a significant right shift of the p-value score dis-
tribution for the Random Analysis Set with only 0.97% of pre-
dictions falling below the 0.20 threshold, compared to 45.8%
of predictions falling below that same threshold for the Anal-
ysis Set. This demonstrates that although a large proportion
(29%) of chance correlations was found in the full random
analysis data set, they are almost completely eliminated
(0.28%) by the MMS network filtering.

Fig. 11 also shows a plot of the average prediction error
vs. MMS network p-value score for both analysis sets (black
line). For the Analysis Set, there is a strong positive relation-
ship between the average prediction error and p-value score,
whereas, for the Random Analysis Set, there is essentially no
relationship between the MMS network prediction error and
p-value scores. It is also apparent in Fig. 11 that for predic-
tions in the analysis set with MMS network average p-value
scores below 0.2, the average prediction error quickly falls be-
low 3-fold (horizontal dashed line).

Conclusion

MMS pair analysis is a powerful approach to find meaningful
SAR correlations between chemical series and, potentially,
across different therapeutic targets. A serious limitation with
MMS analysis is a scarcity of overlapping chemical series
with an adequate number of fragments to derive meaningful
statistical relationships, resulting in a high probability of
spurious matches due to chance correlation. An approach to
overcome this limitation has been developed to account for
all of the possible matched chemical series shared by any
MMS pair. This concept, the MMS Network, can be analyzed
to identify those MMS pairs that have strong supporting SAR
across a number of network relationships. In our case, we
were able to reduce the proportion of spurious matches from

29.1% to 0.28% in our random shuffle simulation, a 98.8%
reduction.

The use of MMS network analysis is not limited to cross
assay SAR inference, but can also be utilized within a single
assay endpoint to identify series with substitution vectors
that are interacting in a similar way with the same target pro-
tein. This would facilitate series alignment for scaffold re-
placement and design prioritization. MMS analysis is also a
data-driven alternative to traditional QSAR methods and
more costly computational approaches for potency predic-
tion. MMS network analysis can be applied to ADMET end-
points as well, eliminating the need to identify the appropri-
ate context for structural changes in MMP analysis.

This work further extends the application of pairwise data
in the pharmaceutical setting from the averaging of MMPs
changes with limited contextualization, to attempts to add
appropriate fragment contextualization in MMPs, to the use
of MMS analysis where the context of multiple changes
within the same series is considered, to this work which de-
scribes the use of an MMS network that takes into account
not just a single MMS pair, but considers the full set of SAR
relationships that exist around a correlated SAR. Each ad-
vancement in this field has incorporated an increasing
amount of data, adding to the contextualization of fragment-
based SAR. We believe that the MMS network approach intro-
duced in this paper opens new avenues of thinking about the
use of pairwise data analysis in drug discovery.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors would like to acknowledge Gregory S. Steeno for
statistical discussions, Daniel Ziemek for discussions about
network analysis, and Adam Gilbert for helpful discussions
on the application of MMS SAR predictions in a project
setting.

References

1 A. G. Leach, H. D. Jones, D. A. Cosgrove, P. W. Kenny, L.
Ruston, P. MacFaul, J. M. Wood, N. Colclough and B. Law,
J. Med. Chem., 2006, 49, 6672–6682.

2 C. Tyrchan and E. Evertsson, Comput. Struct. Biotechnol. J.,
2017, 15, 86–90.

3 P. J. Hajduk and D. R. Sauer, J. Med. Chem., 2008, 51,
553–564.

4 G. Papadatos, M. Alkarouri, V. J. Gillet, P. Willett, V.
Kadirkamanathan, C. N. Luscombe, G. Bravi, N. J.
Richmond, S. D. Pickett, J. Hussain, J. M. Pritchard, A. W.
Cooper and S. J. Macdonald, J. Chem. Inf. Model., 2010, 50,
1872–1886.

5 M. Wawer and J. Bajorath, J. Med. Chem., 2011, 54,
2944–2951.

MedChemComm Research Article

Pu
bl

is
he

d 
on

 1
1 

O
ct

ob
er

 2
01

7.
 D

ow
nl

oa
de

d 
by

 R
SC

 I
nt

er
na

l o
n 

06
/0

6/
20

18
 1

4:
04

:3
1.

 
View Article Online

http://dx.doi.org/10.1039/c7md00465f


2078 | Med. Chem. Commun., 2017, 8, 2067–2078 This journal is © The Royal Society of Chemistry 2017

6 J. E. J. Mills, A. D. Brown, T. Ryckmans, D. C. Miller, S. E.
Skerratt, C. M. Barker and M. E. Bunnage, MedChemComm,
2012, 3, 174–178.

7 B. Zhang, A. M. Wassermann, M. Vogt and J. Bajorath,
J. Chem. Inf. Model., 2012, 52, 3138–3143.

8 B. Zhang, Y. Hu and J. Bajorath, J. Chem. Inf. Model.,
2013, 53, 1589–1594.

9 P. Hunt, M. Segall, N. O'Boyle and R. Sayle, Future Med.
Chem., 2017, 9, 153–168.

10 A. Ghosh, D. Dimova and J. Bajorath, MedChemComm,
2016, 7, 237–246.

11 A. de la Vega de Leon, Y. Hu and J. Bajorath, Mol. Inf.,
2014, 33, 257–263.

12 N. M. O'Boyle, J. Bostrom, R. A. Sayle and A. Gill, J. Med.
Chem., 2014, 57, 2704–2713.

13 M. Bartolowits and V. J. Davisson, Chem. Biol. Drug Des.,
2016, 87, 5–20.

14 C. Kramer, J. E. Fuchs and K. R. Liedl, J. Chem. Inf. Model.,
2015, 55, 483–494.

15 J. E. Mills, A. D. Brown, T. Ryckmans, D. C. Miller, S. E.
Skerratt, C. M. Barker and M. E. Bunnage, MedChemComm,
2012, 3, 174–178.

16 E. S. R. Ehmki and C. Kramer, J. Chem. Inf. Model., 2017, 57,
1187–1196.

17 C. E. Keefer, G. Chang and G. W. Kauffman, Bioorg. Med.
Chem., 2011, 19, 3739–3749.

18 W. E. Deming, Statistical adjustment of data, John Wiley &
Sons, New York, 1943.

19 G. H. Golub and C. F. Van Loan, SIAM J. Numer. Anal,
1980, 17, 883–893.

20 Neo4j Graph Database (Community Edition 3.1.1), Neo4J Inc.,
San Mateo, CA 94401.

21 C. J. Helal, T. A. Chappie and J. M. Humphrey, US Pat.,
8829010, 2014.

22 C. J. Helal, E. P. Arnold, T. L. Boyden, C. Chang, T. A.
Chappie, K. F. Fennell, M. D. Forman, M. Hajos, J. F.
Harms, W. E. Hoffman, J. M. Humphrey, Z. Kang, R. J.
Kleiman, B. L. Kormos, C. W. Lee, J. Lu, N. Maklad, L.
McDowell, S. Mente, R. E. O'Connor, J. Pandit, M.
Piotrowski, A. W. Schmidt, C. J. Schmidt, H. Ueno, P. R.
Verhoest and E. X. Yang, J. Med. Chem., 2017, 60, 5673–5698.

23 R. L. Dow, J. C. Li, M. P. Pence, E. M. Gibbs, J. L. LaPerle, J.
Litchfield, D. W. Piotrowski, M. J. Munchhof, T. B. Manion,
W. J. Zavadoski, G. S. Walker, R. K. McPherson, S. Tapley, E.
Sugarman, A. Guzman-Perez and P. DaSilva-Jardine, ACS
Med. Chem. Lett., 2011, 2, 407–412.

24 R. L. Dow, M. P. Andrews, J. C. Li, E. Michael Gibbs, A.
Guzman-Perez, J. L. Laperle, Q. Li, D. Mather, M. J.
Munchhof, M. Niosi, L. Patel, C. Perreault, S. Tapley and
W. J. Zavadoski, Bioorg. Med. Chem., 2013, 21, 5081–5097.

25 R. L. Dow, M. P. Andrews, J.-C. Li, E. M. Gibbs, A. Guzman-
Perez, J. L. LaPerle, Q. Li, D. Mather, M. J. Munchhof and M.
Niosi, Bioorg. Med. Chem., 2013, 21, 6855.

26 R. Pracitto, J. F. Kadow, J. A. Bender, B. R. Beno, K. A. Grant-
Young, Y. Han, P. Hewawasam, A. Nickel, K. E. Parcella and
K. S. Yeung, US Pat., 8198449, 2012.

MedChemCommResearch Article

Pu
bl

is
he

d 
on

 1
1 

O
ct

ob
er

 2
01

7.
 D

ow
nl

oa
de

d 
by

 R
SC

 I
nt

er
na

l o
n 

06
/0

6/
20

18
 1

4:
04

:3
1.

 
View Article Online

http://dx.doi.org/10.1039/c7md00465f

	crossmark: 


