Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 27;74(Pt 8):1168–1172. doi: 10.1107/S2056989018010496

Crystal structure and Hirshfeld surface analysis of (E)-3-[(2,3-di­chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

Mehmet Akkurt a, Gulnara Sh Duruskari b, Flavien A A Toze c,*, Ali N Khalilov b, Afat T Huseynova b
PMCID: PMC6072981  PMID: 30116586

In the crystal, the cations and anions stacked along the b-axis direction are linked by C—H⋯Br and N—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, weak C—H⋯π (ring) inter­actions, which only involve the minor disorder component. Inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π (ring) contacts also help to stabilize the packing.

Keywords: crystal structure; iminium salt; thia­zolidine ring; 2,3-di­chloro­benzene; hydrogen bonding; Hirshfeld surface analysis

Abstract

In the cation of the title salt, C16H14Cl2N3S+·Br, the central thia­zolidine ring adopts an envelope conformation. The phenyl ring is disordered over two sites with a refined occupancy ratio of 0.541 (9):0.459 (9). In the crystal, C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions, which only involve the minor disorder component of the ring, also contribute to the mol­ecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π (ring) contacts. A Hirshfeld surface analysis was conducted to verify the contributions of the different inter­molecular inter­actions.

Chemical context  

Schiff bases of heterocyclic amines and their complexes have attracted attention over the past decades not only due to the relatively easy synthesis, but also in view of their potential biological, pharmacological and analytical applications (Akbari et al., 2017; Gurbanov et al., 2018a ,b ; Hazra et al., 2018; Kvyatkovskaya et al., 2017; Mahmoudi et al., 2016, 2017a ,b , 2018a ,b ; Mitoraj et al., 2018; Shetnev et al., 2017). Non-covalent inter­actions play an important role in the stabilization of coordination or supra­molecular compounds derived from Schiff bases (Mahmudov et al., 2016, 2017a ,b ; Zubkov et al., 2018). Herein we report strong charge-assisted hydrogen bonds and halogen bonding in the structure of (E)-3-[(2,3-di­chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide.graphic file with name e-74-01168-scheme1.jpg

Structural commentary  

In the cation of the title salt (Fig. 1), the central thia­zolidine ring (S1/N2/C1–C3) adopts an envelope conformation with puckering parameters Q(2) = 0.205 (4) Å and φ(2) = 222.1 (12)°. The dihedral angle between the mean plane of the central thia­zolidine ring and the 2,3-di­chloro­benzene ring (C5–C10) is 16.0 (2)° while this plane subtends angles of 79.1 (3) and 86.7 (4)° with the major and minor components (C11–C16 and C11/C12′–C16′), respectively, of the disordered phenyl ring. The dihedral angle between the two disorder components of the ring is 7.6 (4)° and these components are oriented to the 2,3-di­chloro­benzene ring by 64.8 (3) and 72.4 (4)°, respectively. The N2—N1—C4—C5 bridge that links the thia­zolidine and 2,3-di­chloro­benzene rings has a torsion angle of 175.1 (4)°.

Figure 1.

Figure 1

The mol­ecular structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The minor disorder component is omitted for clarity.

Supra­molecular features and Hirshfeld surface analysis  

In the crystal, each cation forms C—H⋯Br and N—H⋯Br hydrogen bonds along with inversion-related Cl1⋯Cl1 halogen bonds and C7—Cl2⋯Cg3iv and C7—Cl2⋯Cg4iv contacts (Table 1; Fig. 2). Chains of cations form along the a-axis direction (Fig. 3). The crystal structure is further stabilized by C13′—H13BCg3ii and C13′—H13BCg4ii inter­actions involving the minor disorder component (Table 1). Overall, cations and anions are stacked along the b-axis direction (Fig. 4)

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centroids of the major and minor disorder components of the C11/C12–C16 and C11/C12′–C16′ phenyl ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1i 0.90 2.51 3.303 (4) 147
N3—H3B⋯Br1 0.90 2.36 3.258 (4) 175
C13′—H13BCg3ii 0.93 2.91 3.596 (12) 132
C13′—H13BCg4ii 0.93 2.99 3.746 (12) 139
C2—H2A⋯Br1iii 0.98 2.87 3.778 (5) 154
C10—H10A⋯Br1i 0.93 2.90 3.796 (5) 161
C7—Cl2⋯Cg3iv 1.73 (1) 3.80 (1) 5.525 (6) 175 (1)
C7—Cl2⋯Cg4iv 1.73 (1) 3.57 (1) 5.299 (6) 175 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

View of the full complement of contacts to an individual cation in the title salt. Only the major disorder component is shown. The symmetry-equivalent position for the cation with the label Cg3 is −x + 1, y − Inline graphic, −z + 3/2.

Figure 3.

Figure 3

C—H⋯Br and N—H⋯Br hydrogen bonds and inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π contacts of the title salt viewed along the b axis. Only the major disorder component is shown.

Figure 4.

Figure 4

Overall packing of the title salt viewed along the b axis. Only the major disorder component is shown.

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) of the title salt was generated by CrystalExplorer3.1 (Wolff et al., 2012), and comprised d norm surface plots and two dimensional fingerprint plots (Spackman & McKinnon, 2002). A d norm surface plot of the title salt is shown in Fig. 5. This plot was generated to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. The dark-red spots on the d norm surface arise as a result of short inter­atomic contacts, while the other weaker inter­molecular inter­actions appear as light-red spots.

Figure 5.

Figure 5

Hirshfeld surface of the title salt mapped with d norm, showing the C—H⋯Br and N—H⋯Br hydrogen bonds.

The d norm surface of the title salt shows a dark-red spot at the N—H hydrogen atom and on the bromide atom, which is the result of the strong N3—H3A⋯Br1i and N3—H3B⋯Br1 hydrogen bonds present in the structure (Fig. 5). Beside these two short inter­molecular contacts, the C—H⋯Br inter­action is shown as light-red spots on the d norm surface. The short inter­atomic contacts in the title salt are given in Table 2.

Table 2. Summary of short inter­atomic contacts (Å) in the title salt.

Atoms marked with an asterisk (*) are from the minor component (C11/C12′–C16′) of the disordered phenyl ring of the cation.

Contact Distance Symmetry operation
(C6)Cl1⋯Cl1(C6) 3.323 (2) 2 − x, −y, 1 − z
(C16′)*H16B⋯H8A(C8) 2.56 2 − x, 1 − y, 1 − z
(C2)S1⋯*H14B(C14′) 3.05 1 − x, Inline graphic + y, Inline graphic − z
(N3)H3B⋯Br1 2.36 x, y, z
(N3)H3A⋯Br1 2.51 1 − x, 2 − y, 1 − z
(S1)C3⋯C3(S1) 3.561 (6) 1 − x, 1 − y, 1 − z
(C1)H1B⋯Br1 3.06 1 − x, 1 − y, 1 − z
(C5)C10⋯*H14B(C14′) 2.89 x, Inline graphic − y, −Inline graphic + z
(C14′)*H14B⋯S1(C2) 3.05 1 − x, −Inline graphic + y, Inline graphic − z
(C14′)*H14B⋯C10(C5) 2.89 x, Inline graphic − y, Inline graphic + z
(C2)H2A⋯Br1 2.87 x, −1 + y, z

A qu­anti­tative analysis of the inter­molecular inter­actions can be made by studying the fingerprint plots that are shown with characteristic pseudo-symmetry wings in the d e and d i diagonal axes [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively]. These represent both the overall two-dimensional fingerprint plots and those that represent H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C and Br⋯H/H⋯Br contacts, respectively (Fig. 6 b-e). The most significant inter­molecular inter­actions are the H⋯H inter­action (25.4%), which appear in the central region of the fingerprint plot with de = di ≃ 1.2 Å (Fig. 6 b). The reciprocal Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with de + di ≃ 2.8 Å and contribute 19.1% to the Hirshfeld surface (Fig. 6 c). The reciprocal C⋯H/H⋯C and Br⋯H/H⋯Br inter­actions with 18.2% and 16.2% contributions are present as sharp symmetrical spikes at diagonal axes d e + d i ≃ 2.7 and 2.4 Å, respectively (Fig. 6 de). The percentage contributions of other inter­molecular contacts are less than 6% in the Hirshfeld surface mapping (Table 3).

Figure 6.

Figure 6

The two-dimensional fingerprint plots of the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C, (e) Br⋯H/H⋯Br and (f) S⋯H/H⋯S inter­actions.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt.

Contact Percentage contribution
H⋯H 25.4
Cl⋯H/H⋯Cl 19.1
C⋯H/H⋯C 18.2
Br⋯H/H⋯Br 16.2
S⋯H/H⋯S 5.9
Cl.·C/C⋯Cl 4.4
N⋯H/H⋯N 2.7
C⋯C 1.9
Cl.·N/N⋯Cl 1.4
C.·N/N⋯C 1.3
Br.·C/C⋯Br 1.0
Cl⋯Cl 0.8
S⋯N/N⋯S 0.7
S⋯C/C⋯S 0.4
Br⋯N/N⋯Br 0.3
Br.·Cl/Cl⋯Br 0.3

Database survey  

A search of the Cambridge Structural Database (CSD Version 5.39, Nov 2017 plus three updates; Groom et al., 2016) yielded six hits for 2-thia­zolidiniminium compounds with four of them reporting essentially the same cation: [WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem’yanova et al., 1993a ), YITCAF (Martem’yanova et al., 1993b ) and YOPLUK (Marthi et al., 1995)]. In all cases, the 3-N atom carries a C substituent, not N as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994) of 3-(2′-chloro-2′-phenyl­eth­yl) −2-thia­zolidiniminium p-toluene­sulfonate. In all three structures, the most disordered fragment of these mol­ecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3): 0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem’yanova et al., 1993a ), is a product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocylic nitro­gen atom, while YITCAF (Martem’yanova et al., 1993b ) is a product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5-chloro-, and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

Synthesis and crystallization  

To a solution of 1 mmol of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide in 20 mL ethanol 1 mmol of 2,3-di­chloro­benzaldehyde was added and the solution refluxed for 2 h. The reaction mixture was cooled down to precipitate the product as colourless single crystals. These were collected by filtration and washed with cold acetone. The title compound was recrystallized from methanol by slow evaporation at room temperature over several days.

Yield 89%, m.p. 521 K. Analysis calculated for C16H14BrCl2N3S (M r = 431.18): C, 44.57; H, 3.27; N, 9.75. Found: C, 44.51; H, 3.23; N, 9.72%. 1H NMR (300 MHz, DMSO-d 6) : 4,62 (k, 1H, CH2, 3 J H–H = 6.9); 4.96 (t, 1H, CH2, 3 J H–H = 8.7); 5.59 (t, 1H, CH—Ar, 3 J H–H = 7.5); 7.38–8.50 (m, 7H, 7Ar—H); 8.35 (s, 1H, CH=); 10.56 (s, 1H, NH=). 13C NMR(75 MHz, DMSO-d 6): 46.62, 55.68, 127.28, 127.99, 128.48, 128.96, 129.11, 132.27, 132.41, 132.51, 133.04, 137.24, 145.89, 168.92. MS (ESI), m/z: 351.24 [C16H14Cl2N3S]+ and 79.88 Br.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The H atoms were positioned geometrically [N—H = 0.90 Å and C—H = 0.93–0.97 Å] and were refined using a riding model, with U iso(H) = 1.2U eq(C,N). The phenyl ring in the cation is disordered over two positions with a site occupancy ratio of 0.541 (9):0.459 (9). Using DFIX, the bond distances in the two disorder components of the phenyl ring were set to 1.40 Å. Corresponding displacement parameters were also held to be the same using EADP.

Table 4. Experimental details.

Crystal data
Chemical formula C16H14Cl2N3S+·Br
M r 431.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.2586 (8), 6.8886 (5), 23.0145 (16)
β (°) 93.678 (2)
V3) 1781.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.73
Crystal size (mm) 0.28 × 0.25 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007)
T min, T max 0.483, 0.546
No. of measured, independent and observed [I > 2σ(I)] reflections 20932, 3651, 2325
R int 0.085
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.123, 1.04
No. of reflections 3651
No. of parameters 182
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.61

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S2056989018010496/sj5561sup1.cif

e-74-01168-sup1.cif (649.8KB, cif)

Supporting information file. DOI: 10.1107/S2056989018010496/sj5561globalsup2.cml

CCDC reference: 1857411

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C16H14Cl2N3S+·Br F(000) = 864
Mr = 431.17 Dx = 1.608 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.2586 (8) Å Cell parameters from 5051 reflections
b = 6.8886 (5) Å θ = 2.5–24.3°
c = 23.0145 (16) Å µ = 2.73 mm1
β = 93.678 (2)° T = 296 K
V = 1781.2 (2) Å3 Block, colourless
Z = 4 0.28 × 0.25 × 0.24 mm

Data collection

Bruker APEXII CCD diffractometer 2325 reflections with I > 2σ(I)
φ and ω scans Rint = 0.085
Absorption correction: multi-scan (SADABS; Bruker, 2007) θmax = 26.4°, θmin = 2.5°
Tmin = 0.483, Tmax = 0.546 h = −14→14
20932 measured reflections k = −8→8
3651 independent reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: mixed
wR(F2) = 0.123 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0342P)2 + 3.7192P] where P = (Fo2 + 2Fc2)/3
3651 reflections (Δ/σ)max = 0.001
182 parameters Δρmax = 0.47 e Å3
12 restraints Δρmin = −0.61 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.33815 (4) 0.95208 (8) 0.56902 (2) 0.05678 (19)
Cl1 1.02426 (13) 0.1283 (2) 0.44079 (7) 0.0687 (4)
Cl2 1.12966 (15) 0.2307 (2) 0.32291 (7) 0.0869 (5)
S1 0.52713 (12) 0.4896 (2) 0.61266 (6) 0.0624 (4)
N1 0.7591 (3) 0.5219 (5) 0.49730 (15) 0.0408 (9)
N2 0.6952 (3) 0.4605 (6) 0.54294 (15) 0.0433 (9)
N3 0.5794 (4) 0.7393 (6) 0.53057 (18) 0.0579 (12)
H3A 0.624225 0.782615 0.502288 0.069*
H3B 0.510005 0.793065 0.539518 0.069*
C1 0.7176 (4) 0.2900 (7) 0.5795 (2) 0.0465 (11)
H1A 0.787141 0.310790 0.605841 0.056*
H1B 0.731818 0.177512 0.555530 0.056*
C2 0.6072 (4) 0.2576 (7) 0.6139 (2) 0.0456 (11)
H2A 0.556596 0.159930 0.593684 0.055*
C3 0.6050 (4) 0.5758 (7) 0.5566 (2) 0.0436 (11)
C4 0.8437 (4) 0.4154 (6) 0.48214 (18) 0.0380 (10)
H4A 0.865728 0.304542 0.503231 0.046*
C5 0.9060 (4) 0.4708 (6) 0.43080 (18) 0.0368 (10)
C6 0.9857 (4) 0.3433 (6) 0.40648 (19) 0.0414 (10)
C7 1.0339 (4) 0.3904 (8) 0.3543 (2) 0.0514 (13)
C8 1.0074 (4) 0.5637 (9) 0.3272 (2) 0.0608 (14)
H8A 1.039350 0.593679 0.292068 0.073*
C9 0.9330 (5) 0.6929 (8) 0.3525 (2) 0.0586 (14)
H9A 0.916921 0.812359 0.334891 0.070*
C10 0.8825 (4) 0.6470 (7) 0.4033 (2) 0.0487 (12)
H10A 0.831686 0.735272 0.419627 0.058*
C11 0.6345 (4) 0.1918 (6) 0.67564 (14) 0.0609 (8)
C12 0.6080 (6) 0.0096 (6) 0.6973 (3) 0.0609 (8) 0.541 (9)
H12A 0.571907 −0.083422 0.672760 0.073* 0.541 (9)
C13 0.6355 (8) −0.0337 (10) 0.7556 (3) 0.0609 (8) 0.541 (9)
H13A 0.617773 −0.155583 0.770084 0.073* 0.541 (9)
C14 0.6895 (7) 0.1053 (15) 0.79226 (18) 0.0609 (8) 0.541 (9)
H14A 0.707872 0.076397 0.831271 0.073* 0.541 (9)
C15 0.7160 (6) 0.2875 (13) 0.7706 (2) 0.0609 (8) 0.541 (9)
H15A 0.752105 0.380540 0.795135 0.073* 0.541 (9)
C16 0.6885 (6) 0.3308 (7) 0.7123 (2) 0.0609 (8) 0.541 (9)
H16A 0.706240 0.452706 0.697811 0.073* 0.541 (9)
C12' 0.5874 (10) 0.0071 (10) 0.6850 (4) 0.0609 (8) 0.459 (9)
H12B 0.540937 −0.050445 0.654817 0.073* 0.459 (9)
C13' 0.6064 (10) −0.0955 (17) 0.7373 (4) 0.0609 (8) 0.459 (9)
H13B 0.575083 −0.219058 0.741912 0.073* 0.459 (9)
C14' 0.6746 (10) −0.0036 (19) 0.7822 (5) 0.0609 (8) 0.459 (9)
H14B 0.690965 −0.069494 0.817074 0.073* 0.459 (9)
C15' 0.7188 (10) 0.1846 (18) 0.7762 (4) 0.0609 (8) 0.459 (9)
H15B 0.758883 0.247056 0.807429 0.073* 0.459 (9)
C16' 0.7016 (9) 0.2771 (16) 0.7221 (3) 0.0609 (8) 0.459 (9)
H16B 0.735675 0.398420 0.716985 0.073* 0.459 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0494 (3) 0.0517 (3) 0.0702 (4) 0.0042 (3) 0.0114 (2) 0.0059 (3)
Cl1 0.0778 (9) 0.0476 (8) 0.0840 (10) 0.0186 (7) 0.0307 (8) 0.0078 (7)
Cl2 0.0899 (11) 0.0856 (11) 0.0910 (12) 0.0098 (9) 0.0511 (9) −0.0178 (9)
S1 0.0564 (8) 0.0674 (9) 0.0669 (9) 0.0151 (7) 0.0308 (7) 0.0139 (7)
N1 0.041 (2) 0.044 (2) 0.039 (2) −0.0015 (17) 0.0120 (16) −0.0025 (17)
N2 0.045 (2) 0.046 (2) 0.041 (2) 0.0077 (18) 0.0128 (17) 0.0048 (18)
N3 0.052 (2) 0.057 (3) 0.067 (3) 0.019 (2) 0.025 (2) 0.011 (2)
C1 0.049 (3) 0.049 (3) 0.042 (3) 0.007 (2) 0.009 (2) 0.004 (2)
C2 0.043 (3) 0.051 (3) 0.044 (3) −0.001 (2) 0.008 (2) 0.003 (2)
C3 0.042 (2) 0.045 (3) 0.044 (3) 0.002 (2) 0.009 (2) 0.001 (2)
C4 0.038 (2) 0.039 (3) 0.037 (2) −0.0026 (19) 0.0010 (19) −0.0036 (19)
C5 0.033 (2) 0.040 (2) 0.037 (2) −0.0042 (19) 0.0035 (18) −0.005 (2)
C6 0.039 (2) 0.039 (3) 0.046 (3) −0.004 (2) 0.002 (2) −0.002 (2)
C7 0.048 (3) 0.059 (3) 0.049 (3) −0.004 (2) 0.015 (2) −0.012 (3)
C8 0.051 (3) 0.084 (4) 0.048 (3) −0.004 (3) 0.012 (2) 0.004 (3)
C9 0.055 (3) 0.061 (3) 0.060 (3) 0.005 (3) 0.007 (3) 0.015 (3)
C10 0.047 (3) 0.050 (3) 0.049 (3) 0.006 (2) 0.008 (2) 0.000 (2)
C11 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)
C12 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)
C13 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)
C14 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)
C15 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)
C16 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)
C12' 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)
C13' 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)
C14' 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)
C15' 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)
C16' 0.0495 (16) 0.090 (2) 0.0436 (16) 0.0106 (16) 0.0043 (12) 0.0150 (15)

Geometric parameters (Å, º)

Cl1—C6 1.720 (5) C9—H9A 0.9300
Cl2—C7 1.730 (5) C10—H10A 0.9300
S1—C3 1.712 (5) C11—C12 1.3900
S1—C2 1.834 (5) C11—C16 1.3900
N1—C4 1.269 (5) C11—C16' 1.399 (2)
N1—N2 1.377 (5) C11—C12' 1.400 (2)
N2—C3 1.342 (5) C12—C13 1.3900
N2—C1 1.457 (6) C12—H12A 0.9300
N3—C3 1.299 (6) C13—C14 1.3900
N3—H3A 0.9000 C13—H13A 0.9300
N3—H3B 0.9001 C14—C15 1.3900
C1—C2 1.533 (6) C14—H14A 0.9300
C1—H1A 0.9700 C15—C16 1.3900
C1—H1B 0.9700 C15—H15A 0.9300
C2—C11 1.503 (6) C16—H16A 0.9300
C2—H2A 0.9800 C12'—C13' 1.400 (2)
C4—C5 1.463 (6) C12'—H12B 0.9300
C4—H4A 0.9300 C13'—C14' 1.400 (2)
C5—C10 1.386 (6) C13'—H13B 0.9300
C5—C6 1.398 (6) C14'—C15' 1.399 (2)
C6—C7 1.388 (6) C14'—H14B 0.9300
C7—C8 1.370 (7) C15'—C16' 1.400 (2)
C8—C9 1.376 (7) C15'—H15B 0.9300
C8—H8A 0.9300 C16'—H16B 0.9300
C9—C10 1.371 (7)
C3—S1—C2 92.3 (2) C8—C9—H9A 119.7
C4—N1—N2 118.1 (4) C9—C10—C5 120.9 (5)
C3—N2—N1 115.9 (4) C9—C10—H10A 119.5
C3—N2—C1 116.6 (4) C5—C10—H10A 119.5
N1—N2—C1 127.4 (3) C12—C11—C16 120.0
C3—N3—H3A 120.2 C16'—C11—C12' 117.1 (6)
C3—N3—H3B 114.9 C12—C11—C2 125.1 (4)
H3A—N3—H3B 124.4 C16—C11—C2 114.9 (4)
N2—C1—C2 107.4 (4) C16'—C11—C2 131.6 (6)
N2—C1—H1A 110.2 C12'—C11—C2 111.2 (5)
C2—C1—H1A 110.2 C13—C12—C11 120.0
N2—C1—H1B 110.2 C13—C12—H12A 120.0
C2—C1—H1B 110.2 C11—C12—H12A 120.0
H1A—C1—H1B 108.5 C12—C13—C14 120.0
C11—C2—C1 114.2 (4) C12—C13—H13A 120.0
C11—C2—S1 110.4 (3) C14—C13—H13A 120.0
C1—C2—S1 106.2 (3) C13—C14—C15 120.0
C11—C2—H2A 108.7 C13—C14—H14A 120.0
C1—C2—H2A 108.7 C15—C14—H14A 120.0
S1—C2—H2A 108.7 C16—C15—C14 120.0
N3—C3—N2 123.6 (4) C16—C15—H15A 120.0
N3—C3—S1 122.6 (3) C14—C15—H15A 120.0
N2—C3—S1 113.8 (3) C15—C16—C11 120.0
N1—C4—C5 118.6 (4) C15—C16—H16A 120.0
N1—C4—H4A 120.7 C11—C16—H16A 120.0
C5—C4—H4A 120.7 C11—C12'—C13' 123.5 (9)
C10—C5—C6 118.5 (4) C11—C12'—H12B 118.3
C10—C5—C4 120.6 (4) C13'—C12'—H12B 118.3
C6—C5—C4 120.8 (4) C14'—C13'—C12' 117.0 (10)
C7—C6—C5 119.7 (4) C14'—C13'—H13B 121.5
C7—C6—Cl1 119.8 (4) C12'—C13'—H13B 121.5
C5—C6—Cl1 120.4 (3) C15'—C14'—C13' 121.8 (10)
C8—C7—C6 120.7 (4) C15'—C14'—H14B 119.1
C8—C7—Cl2 119.2 (4) C13'—C14'—H14B 119.1
C6—C7—Cl2 120.1 (4) C14'—C15'—C16' 118.7 (10)
C7—C8—C9 119.5 (5) C14'—C15'—H15B 120.6
C7—C8—H8A 120.2 C16'—C15'—H15B 120.6
C9—C8—H8A 120.2 C11—C16'—C15' 121.7 (8)
C10—C9—C8 120.6 (5) C11—C16'—H16B 119.2
C10—C9—H9A 119.7 C15'—C16'—H16B 119.2
C4—N1—N2—C3 −178.7 (4) C8—C9—C10—C5 0.7 (8)
C4—N1—N2—C1 4.3 (6) C6—C5—C10—C9 2.1 (7)
C3—N2—C1—C2 16.1 (6) C4—C5—C10—C9 −174.5 (4)
N1—N2—C1—C2 −166.9 (4) C1—C2—C11—C12 −112.2 (5)
N2—C1—C2—C11 −141.6 (4) S1—C2—C11—C12 128.3 (4)
N2—C1—C2—S1 −19.8 (4) C1—C2—C11—C16 69.0 (5)
C3—S1—C2—C11 140.2 (3) S1—C2—C11—C16 −50.4 (4)
C3—S1—C2—C1 15.9 (4) C1—C2—C11—C16' 58.9 (10)
N1—N2—C3—N3 −2.2 (7) S1—C2—C11—C16' −60.6 (9)
C1—N2—C3—N3 175.2 (5) C1—C2—C11—C12' −117.4 (7)
N1—N2—C3—S1 178.8 (3) S1—C2—C11—C12' 123.1 (7)
C1—N2—C3—S1 −3.8 (5) C16—C11—C12—C13 0.0
C2—S1—C3—N3 173.2 (4) C2—C11—C12—C13 −178.7 (5)
C2—S1—C3—N2 −7.8 (4) C11—C12—C13—C14 0.0
N2—N1—C4—C5 175.1 (4) C12—C13—C14—C15 0.0
N1—C4—C5—C10 7.4 (6) C13—C14—C15—C16 0.0
N1—C4—C5—C6 −169.2 (4) C14—C15—C16—C11 0.0
C10—C5—C6—C7 −3.5 (6) C12—C11—C16—C15 0.0
C4—C5—C6—C7 173.1 (4) C2—C11—C16—C15 178.9 (4)
C10—C5—C6—Cl1 176.6 (3) C16'—C11—C12'—C13' −1.5 (15)
C4—C5—C6—Cl1 −6.8 (6) C2—C11—C12'—C13' 175.4 (9)
C5—C6—C7—C8 2.2 (7) C11—C12'—C13'—C14' 1.2 (16)
Cl1—C6—C7—C8 −177.9 (4) C12'—C13'—C14'—C15' 2.0 (16)
C5—C6—C7—Cl2 −178.4 (3) C13'—C14'—C15'—C16' −4.9 (16)
Cl1—C6—C7—Cl2 1.6 (6) C12'—C11—C16'—C15' −1.5 (15)
C6—C7—C8—C9 0.6 (8) C2—C11—C16'—C15' −177.6 (7)
Cl2—C7—C8—C9 −178.8 (4) C14'—C15'—C16'—C11 4.6 (16)
C7—C8—C9—C10 −2.1 (8)

Hydrogen-bond geometry (Å, º)

Cg3 and Cg4 are the centroids of the major (C11-C16) and minor (C11/C12'–C16') disorder components, respectively, of the phenyl ring.

D—H···A D—H H···A D···A D—H···A
N3—H3A···Br1i 0.90 2.51 3.303 (4) 147
N3—H3B···Br1 0.90 2.36 3.258 (4) 175
C13′—H13B···Cg3ii 0.93 2.91 3.596 (12) 132
C13′—H13B···Cg4ii 0.93 2.99 3.746 (12) 139
C2—H2A···Br1iii 0.98 2.87 3.778 (5) 154
C10—H10A···Br1i 0.93 2.90 3.796 (5) 161
C7—Cl2···Cg3iv 1.73 (1) 3.80 (1) 5.525 (6) 175 (1)
C7—Cl2···Cg4iv 1.73 (1) 3.57 (1) 5.299 (6) 175 (1)

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y−1, z; (iv) −x+2, −y, −z+1.

Funding Statement

This work was funded by Baki Dövl\#601;t Universiteti grant .

References

  1. Akbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. [DOI] [PubMed]
  2. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
  6. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.
  7. Hazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 197–200.
  8. Kvyatkovskaya, E. A., Zaytsev, V. P., Zubkov, F. I., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 515–519. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408. [DOI] [PubMed]
  11. Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
  12. Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017a). Inorg. Chem. 56, 9698–9709. [DOI] [PubMed]
  13. Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
  14. Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017b). CrystEngComm, 19, 3322–3330.
  15. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763–4772.
  16. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54–72.
  17. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121–10138. [DOI] [PubMed]
  18. Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. [DOI] [PubMed]
  19. Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.
  20. Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.
  21. Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.
  22. Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.
  23. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  24. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  25. Shetnev, A. A. & Zubkov, F. I. (2017). Chem. Heterocycl. C. 53, 495–497.
  26. Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  27. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  28. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
  29. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.
  30. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S2056989018010496/sj5561sup1.cif

e-74-01168-sup1.cif (649.8KB, cif)

Supporting information file. DOI: 10.1107/S2056989018010496/sj5561globalsup2.cml

CCDC reference: 1857411

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES