In the crystal, the cations and anions stacked along the b-axis direction are linked by C—H⋯Br and N—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, weak C—H⋯π (ring) interactions, which only involve the minor disorder component. Inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π (ring) contacts also help to stabilize the packing.
Keywords: crystal structure; iminium salt; thiazolidine ring; 2,3-dichlorobenzene; hydrogen bonding; Hirshfeld surface analysis
Abstract
In the cation of the title salt, C16H14Cl2N3S+·Br−, the central thiazolidine ring adopts an envelope conformation. The phenyl ring is disordered over two sites with a refined occupancy ratio of 0.541 (9):0.459 (9). In the crystal, C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π interactions, which only involve the minor disorder component of the ring, also contribute to the molecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π (ring) contacts. A Hirshfeld surface analysis was conducted to verify the contributions of the different intermolecular interactions.
Chemical context
Schiff bases of heterocyclic amines and their complexes have attracted attention over the past decades not only due to the relatively easy synthesis, but also in view of their potential biological, pharmacological and analytical applications (Akbari et al., 2017 ▸; Gurbanov et al., 2018a
▸,b
▸; Hazra et al., 2018 ▸; Kvyatkovskaya et al., 2017 ▸; Mahmoudi et al., 2016 ▸, 2017a
▸,b
▸, 2018a
▸,b
▸; Mitoraj et al., 2018 ▸; Shetnev et al., 2017 ▸). Non-covalent interactions play an important role in the stabilization of coordination or supramolecular compounds derived from Schiff bases (Mahmudov et al., 2016 ▸, 2017a
▸,b
▸; Zubkov et al., 2018 ▸). Herein we report strong charge-assisted hydrogen bonds and halogen bonding in the structure of (E)-3-[(2,3-dichlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide.
Structural commentary
In the cation of the title salt (Fig. 1 ▸), the central thiazolidine ring (S1/N2/C1–C3) adopts an envelope conformation with puckering parameters Q(2) = 0.205 (4) Å and φ(2) = 222.1 (12)°. The dihedral angle between the mean plane of the central thiazolidine ring and the 2,3-dichlorobenzene ring (C5–C10) is 16.0 (2)° while this plane subtends angles of 79.1 (3) and 86.7 (4)° with the major and minor components (C11–C16 and C11/C12′–C16′), respectively, of the disordered phenyl ring. The dihedral angle between the two disorder components of the ring is 7.6 (4)° and these components are oriented to the 2,3-dichlorobenzene ring by 64.8 (3) and 72.4 (4)°, respectively. The N2—N1—C4—C5 bridge that links the thiazolidine and 2,3-dichlorobenzene rings has a torsion angle of 175.1 (4)°.
Figure 1.
The molecular structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The minor disorder component is omitted for clarity.
Supramolecular features and Hirshfeld surface analysis
In the crystal, each cation forms C—H⋯Br and N—H⋯Br hydrogen bonds along with inversion-related Cl1⋯Cl1 halogen bonds and C7—Cl2⋯Cg3iv and C7—Cl2⋯Cg4iv contacts (Table 1 ▸; Fig. 2 ▸). Chains of cations form along the a-axis direction (Fig. 3 ▸). The crystal structure is further stabilized by C13′—H13B⋯Cg3ii and C13′—H13B⋯Cg4ii interactions involving the minor disorder component (Table 1 ▸). Overall, cations and anions are stacked along the b-axis direction (Fig. 4 ▸)
Table 1. Hydrogen-bond geometry (Å, °).
Cg3 and Cg4 are the centroids of the major and minor disorder components of the C11/C12–C16 and C11/C12′–C16′ phenyl ring, respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N3—H3A⋯Br1i | 0.90 | 2.51 | 3.303 (4) | 147 |
| N3—H3B⋯Br1 | 0.90 | 2.36 | 3.258 (4) | 175 |
| C13′—H13B⋯Cg3ii | 0.93 | 2.91 | 3.596 (12) | 132 |
| C13′—H13B⋯Cg4ii | 0.93 | 2.99 | 3.746 (12) | 139 |
| C2—H2A⋯Br1iii | 0.98 | 2.87 | 3.778 (5) | 154 |
| C10—H10A⋯Br1i | 0.93 | 2.90 | 3.796 (5) | 161 |
| C7—Cl2⋯Cg3iv | 1.73 (1) | 3.80 (1) | 5.525 (6) | 175 (1) |
| C7—Cl2⋯Cg4iv | 1.73 (1) | 3.57 (1) | 5.299 (6) | 175 (1) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 2.
View of the full complement of contacts to an individual cation in the title salt. Only the major disorder component is shown. The symmetry-equivalent position for the cation with the label Cg3 is −x + 1, y −
, −z + 3/2.
Figure 3.
C—H⋯Br and N—H⋯Br hydrogen bonds and inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π contacts of the title salt viewed along the b axis. Only the major disorder component is shown.
Figure 4.
Overall packing of the title salt viewed along the b axis. Only the major disorder component is shown.
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009 ▸) of the title salt was generated by CrystalExplorer3.1 (Wolff et al., 2012 ▸), and comprised d norm surface plots and two dimensional fingerprint plots (Spackman & McKinnon, 2002 ▸). A d norm surface plot of the title salt is shown in Fig. 5 ▸. This plot was generated to quantify and visualize the intermolecular interactions and to explain the observed crystal packing. The dark-red spots on the d norm surface arise as a result of short interatomic contacts, while the other weaker intermolecular interactions appear as light-red spots.
Figure 5.
Hirshfeld surface of the title salt mapped with d norm, showing the C—H⋯Br and N—H⋯Br hydrogen bonds.
The d norm surface of the title salt shows a dark-red spot at the N—H hydrogen atom and on the bromide atom, which is the result of the strong N3—H3A⋯Br1i and N3—H3B⋯Br1 hydrogen bonds present in the structure (Fig. 5 ▸). Beside these two short intermolecular contacts, the C—H⋯Br interaction is shown as light-red spots on the d norm surface. The short interatomic contacts in the title salt are given in Table 2 ▸.
Table 2. Summary of short interatomic contacts (Å) in the title salt.
Atoms marked with an asterisk (*) are from the minor component (C11/C12′–C16′) of the disordered phenyl ring of the cation.
| Contact | Distance | Symmetry operation |
|---|---|---|
| (C6)Cl1⋯Cl1(C6) | 3.323 (2) | 2 − x, −y, 1 − z |
| (C16′)*H16B⋯H8A(C8) | 2.56 | 2 − x, 1 − y, 1 − z |
| (C2)S1⋯*H14B(C14′) | 3.05 | 1 − x, + y, − z
|
| (N3)H3B⋯Br1 | 2.36 | x, y, z |
| (N3)H3A⋯Br1 | 2.51 | 1 − x, 2 − y, 1 − z |
| (S1)C3⋯C3(S1) | 3.561 (6) | 1 − x, 1 − y, 1 − z |
| (C1)H1B⋯Br1 | 3.06 | 1 − x, 1 − y, 1 − z |
| (C5)C10⋯*H14B(C14′) | 2.89 |
x, − y, − + z
|
| (C14′)*H14B⋯S1(C2) | 3.05 | 1 − x, − + y, − z
|
| (C14′)*H14B⋯C10(C5) | 2.89 |
x, − y, + z
|
| (C2)H2A⋯Br1 | 2.87 | x, −1 + y, z |
A quantitative analysis of the intermolecular interactions can be made by studying the fingerprint plots that are shown with characteristic pseudo-symmetry wings in the d e and d i diagonal axes [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively]. These represent both the overall two-dimensional fingerprint plots and those that represent H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C and Br⋯H/H⋯Br contacts, respectively (Fig. 6 ▸ b-e). The most significant intermolecular interactions are the H⋯H interaction (25.4%), which appear in the central region of the fingerprint plot with de = di ≃ 1.2 Å (Fig. 6 ▸ b). The reciprocal Cl⋯H/H⋯Cl interactions appear as two symmetrical broad wings with de + di ≃ 2.8 Å and contribute 19.1% to the Hirshfeld surface (Fig. 6 ▸ c). The reciprocal C⋯H/H⋯C and Br⋯H/H⋯Br interactions with 18.2% and 16.2% contributions are present as sharp symmetrical spikes at diagonal axes d e + d i ≃ 2.7 and 2.4 Å, respectively (Fig. 6 ▸ d–e). The percentage contributions of other intermolecular contacts are less than 6% in the Hirshfeld surface mapping (Table 3 ▸).
Figure 6.
The two-dimensional fingerprint plots of the title salt, showing (a) all interactions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C, (e) Br⋯H/H⋯Br and (f) S⋯H/H⋯S interactions.
Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt.
| Contact | Percentage contribution |
|---|---|
| H⋯H | 25.4 |
| Cl⋯H/H⋯Cl | 19.1 |
| C⋯H/H⋯C | 18.2 |
| Br⋯H/H⋯Br | 16.2 |
| S⋯H/H⋯S | 5.9 |
| Cl.·C/C⋯Cl | 4.4 |
| N⋯H/H⋯N | 2.7 |
| C⋯C | 1.9 |
| Cl.·N/N⋯Cl | 1.4 |
| C.·N/N⋯C | 1.3 |
| Br.·C/C⋯Br | 1.0 |
| Cl⋯Cl | 0.8 |
| S⋯N/N⋯S | 0.7 |
| S⋯C/C⋯S | 0.4 |
| Br⋯N/N⋯Br | 0.3 |
| Br.·Cl/Cl⋯Br | 0.3 |
Database survey
A search of the Cambridge Structural Database (CSD Version 5.39, Nov 2017 plus three updates; Groom et al., 2016 ▸) yielded six hits for 2-thiazolidiniminium compounds with four of them reporting essentially the same cation: [WILBIC (Marthi et al., 1994 ▸), WILBOI (Marthi et al., 1994 ▸), WILBOI01 (Marthi et al., 1994 ▸), YITCEJ (Martem’yanova et al., 1993a ▸), YITCAF (Martem’yanova et al., 1993b ▸) and YOPLUK (Marthi et al., 1995 ▸)]. In all cases, the 3-N atom carries a C substituent, not N as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994 ▸) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994 ▸) of 3-(2′-chloro-2′-phenylethyl) −2-thiazolidiniminium p-toluenesulfonate. In all three structures, the most disordered fragment of these molecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enantiomers at each site in the ratio 0.821 (3): 0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem’yanova et al., 1993a ▸), is a product of the interaction of 2-amino-5-methylthiazoline with methyl iodide, with alkylation at the endocylic nitrogen atom, while YITCAF (Martem’yanova et al., 1993b ▸) is a product of the reaction of 3-nitro-5-methoxy-, 3-nitro-5-chloro-, and 3-bromo-5-nitrosalicylaldehyde with the heterocyclic base to form the salt-like complexes.
Synthesis and crystallization
To a solution of 1 mmol of 3-amino-5-phenylthiazolidin-2-iminium bromide in 20 mL ethanol 1 mmol of 2,3-dichlorobenzaldehyde was added and the solution refluxed for 2 h. The reaction mixture was cooled down to precipitate the product as colourless single crystals. These were collected by filtration and washed with cold acetone. The title compound was recrystallized from methanol by slow evaporation at room temperature over several days.
Yield 89%, m.p. 521 K. Analysis calculated for C16H14BrCl2N3S (M r = 431.18): C, 44.57; H, 3.27; N, 9.75. Found: C, 44.51; H, 3.23; N, 9.72%. 1H NMR (300 MHz, DMSO-d 6) : 4,62 (k, 1H, CH2, 3 J H–H = 6.9); 4.96 (t, 1H, CH2, 3 J H–H = 8.7); 5.59 (t, 1H, CH—Ar, 3 J H–H = 7.5); 7.38–8.50 (m, 7H, 7Ar—H); 8.35 (s, 1H, CH=); 10.56 (s, 1H, NH=). 13C NMR(75 MHz, DMSO-d 6): 46.62, 55.68, 127.28, 127.99, 128.48, 128.96, 129.11, 132.27, 132.41, 132.51, 133.04, 137.24, 145.89, 168.92. MS (ESI), m/z: 351.24 [C16H14Cl2N3S]+ and 79.88 Br−.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. The H atoms were positioned geometrically [N—H = 0.90 Å and C—H = 0.93–0.97 Å] and were refined using a riding model, with U iso(H) = 1.2U eq(C,N). The phenyl ring in the cation is disordered over two positions with a site occupancy ratio of 0.541 (9):0.459 (9). Using DFIX, the bond distances in the two disorder components of the phenyl ring were set to 1.40 Å. Corresponding displacement parameters were also held to be the same using EADP.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C16H14Cl2N3S+·Br− |
| M r | 431.17 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 296 |
| a, b, c (Å) | 11.2586 (8), 6.8886 (5), 23.0145 (16) |
| β (°) | 93.678 (2) |
| V (Å3) | 1781.2 (2) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 2.73 |
| Crystal size (mm) | 0.28 × 0.25 × 0.24 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2007 ▸) |
| T min, T max | 0.483, 0.546 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 20932, 3651, 2325 |
| R int | 0.085 |
| (sin θ/λ)max (Å−1) | 0.625 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.051, 0.123, 1.04 |
| No. of reflections | 3651 |
| No. of parameters | 182 |
| No. of restraints | 12 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.47, −0.61 |
Supplementary Material
Crystal structure: contains datablock(s) global. DOI: 10.1107/S2056989018010496/sj5561sup1.cif
Supporting information file. DOI: 10.1107/S2056989018010496/sj5561globalsup2.cml
CCDC reference: 1857411
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C16H14Cl2N3S+·Br− | F(000) = 864 |
| Mr = 431.17 | Dx = 1.608 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 11.2586 (8) Å | Cell parameters from 5051 reflections |
| b = 6.8886 (5) Å | θ = 2.5–24.3° |
| c = 23.0145 (16) Å | µ = 2.73 mm−1 |
| β = 93.678 (2)° | T = 296 K |
| V = 1781.2 (2) Å3 | Block, colourless |
| Z = 4 | 0.28 × 0.25 × 0.24 mm |
Data collection
| Bruker APEXII CCD diffractometer | 2325 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.085 |
| Absorption correction: multi-scan (SADABS; Bruker, 2007) | θmax = 26.4°, θmin = 2.5° |
| Tmin = 0.483, Tmax = 0.546 | h = −14→14 |
| 20932 measured reflections | k = −8→8 |
| 3651 independent reflections | l = −28→28 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: mixed |
| wR(F2) = 0.123 | H-atom parameters constrained |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0342P)2 + 3.7192P] where P = (Fo2 + 2Fc2)/3 |
| 3651 reflections | (Δ/σ)max = 0.001 |
| 182 parameters | Δρmax = 0.47 e Å−3 |
| 12 restraints | Δρmin = −0.61 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Br1 | 0.33815 (4) | 0.95208 (8) | 0.56902 (2) | 0.05678 (19) | |
| Cl1 | 1.02426 (13) | 0.1283 (2) | 0.44079 (7) | 0.0687 (4) | |
| Cl2 | 1.12966 (15) | 0.2307 (2) | 0.32291 (7) | 0.0869 (5) | |
| S1 | 0.52713 (12) | 0.4896 (2) | 0.61266 (6) | 0.0624 (4) | |
| N1 | 0.7591 (3) | 0.5219 (5) | 0.49730 (15) | 0.0408 (9) | |
| N2 | 0.6952 (3) | 0.4605 (6) | 0.54294 (15) | 0.0433 (9) | |
| N3 | 0.5794 (4) | 0.7393 (6) | 0.53057 (18) | 0.0579 (12) | |
| H3A | 0.624225 | 0.782615 | 0.502288 | 0.069* | |
| H3B | 0.510005 | 0.793065 | 0.539518 | 0.069* | |
| C1 | 0.7176 (4) | 0.2900 (7) | 0.5795 (2) | 0.0465 (11) | |
| H1A | 0.787141 | 0.310790 | 0.605841 | 0.056* | |
| H1B | 0.731818 | 0.177512 | 0.555530 | 0.056* | |
| C2 | 0.6072 (4) | 0.2576 (7) | 0.6139 (2) | 0.0456 (11) | |
| H2A | 0.556596 | 0.159930 | 0.593684 | 0.055* | |
| C3 | 0.6050 (4) | 0.5758 (7) | 0.5566 (2) | 0.0436 (11) | |
| C4 | 0.8437 (4) | 0.4154 (6) | 0.48214 (18) | 0.0380 (10) | |
| H4A | 0.865728 | 0.304542 | 0.503231 | 0.046* | |
| C5 | 0.9060 (4) | 0.4708 (6) | 0.43080 (18) | 0.0368 (10) | |
| C6 | 0.9857 (4) | 0.3433 (6) | 0.40648 (19) | 0.0414 (10) | |
| C7 | 1.0339 (4) | 0.3904 (8) | 0.3543 (2) | 0.0514 (13) | |
| C8 | 1.0074 (4) | 0.5637 (9) | 0.3272 (2) | 0.0608 (14) | |
| H8A | 1.039350 | 0.593679 | 0.292068 | 0.073* | |
| C9 | 0.9330 (5) | 0.6929 (8) | 0.3525 (2) | 0.0586 (14) | |
| H9A | 0.916921 | 0.812359 | 0.334891 | 0.070* | |
| C10 | 0.8825 (4) | 0.6470 (7) | 0.4033 (2) | 0.0487 (12) | |
| H10A | 0.831686 | 0.735272 | 0.419627 | 0.058* | |
| C11 | 0.6345 (4) | 0.1918 (6) | 0.67564 (14) | 0.0609 (8) | |
| C12 | 0.6080 (6) | 0.0096 (6) | 0.6973 (3) | 0.0609 (8) | 0.541 (9) |
| H12A | 0.571907 | −0.083422 | 0.672760 | 0.073* | 0.541 (9) |
| C13 | 0.6355 (8) | −0.0337 (10) | 0.7556 (3) | 0.0609 (8) | 0.541 (9) |
| H13A | 0.617773 | −0.155583 | 0.770084 | 0.073* | 0.541 (9) |
| C14 | 0.6895 (7) | 0.1053 (15) | 0.79226 (18) | 0.0609 (8) | 0.541 (9) |
| H14A | 0.707872 | 0.076397 | 0.831271 | 0.073* | 0.541 (9) |
| C15 | 0.7160 (6) | 0.2875 (13) | 0.7706 (2) | 0.0609 (8) | 0.541 (9) |
| H15A | 0.752105 | 0.380540 | 0.795135 | 0.073* | 0.541 (9) |
| C16 | 0.6885 (6) | 0.3308 (7) | 0.7123 (2) | 0.0609 (8) | 0.541 (9) |
| H16A | 0.706240 | 0.452706 | 0.697811 | 0.073* | 0.541 (9) |
| C12' | 0.5874 (10) | 0.0071 (10) | 0.6850 (4) | 0.0609 (8) | 0.459 (9) |
| H12B | 0.540937 | −0.050445 | 0.654817 | 0.073* | 0.459 (9) |
| C13' | 0.6064 (10) | −0.0955 (17) | 0.7373 (4) | 0.0609 (8) | 0.459 (9) |
| H13B | 0.575083 | −0.219058 | 0.741912 | 0.073* | 0.459 (9) |
| C14' | 0.6746 (10) | −0.0036 (19) | 0.7822 (5) | 0.0609 (8) | 0.459 (9) |
| H14B | 0.690965 | −0.069494 | 0.817074 | 0.073* | 0.459 (9) |
| C15' | 0.7188 (10) | 0.1846 (18) | 0.7762 (4) | 0.0609 (8) | 0.459 (9) |
| H15B | 0.758883 | 0.247056 | 0.807429 | 0.073* | 0.459 (9) |
| C16' | 0.7016 (9) | 0.2771 (16) | 0.7221 (3) | 0.0609 (8) | 0.459 (9) |
| H16B | 0.735675 | 0.398420 | 0.716985 | 0.073* | 0.459 (9) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.0494 (3) | 0.0517 (3) | 0.0702 (4) | 0.0042 (3) | 0.0114 (2) | 0.0059 (3) |
| Cl1 | 0.0778 (9) | 0.0476 (8) | 0.0840 (10) | 0.0186 (7) | 0.0307 (8) | 0.0078 (7) |
| Cl2 | 0.0899 (11) | 0.0856 (11) | 0.0910 (12) | 0.0098 (9) | 0.0511 (9) | −0.0178 (9) |
| S1 | 0.0564 (8) | 0.0674 (9) | 0.0669 (9) | 0.0151 (7) | 0.0308 (7) | 0.0139 (7) |
| N1 | 0.041 (2) | 0.044 (2) | 0.039 (2) | −0.0015 (17) | 0.0120 (16) | −0.0025 (17) |
| N2 | 0.045 (2) | 0.046 (2) | 0.041 (2) | 0.0077 (18) | 0.0128 (17) | 0.0048 (18) |
| N3 | 0.052 (2) | 0.057 (3) | 0.067 (3) | 0.019 (2) | 0.025 (2) | 0.011 (2) |
| C1 | 0.049 (3) | 0.049 (3) | 0.042 (3) | 0.007 (2) | 0.009 (2) | 0.004 (2) |
| C2 | 0.043 (3) | 0.051 (3) | 0.044 (3) | −0.001 (2) | 0.008 (2) | 0.003 (2) |
| C3 | 0.042 (2) | 0.045 (3) | 0.044 (3) | 0.002 (2) | 0.009 (2) | 0.001 (2) |
| C4 | 0.038 (2) | 0.039 (3) | 0.037 (2) | −0.0026 (19) | 0.0010 (19) | −0.0036 (19) |
| C5 | 0.033 (2) | 0.040 (2) | 0.037 (2) | −0.0042 (19) | 0.0035 (18) | −0.005 (2) |
| C6 | 0.039 (2) | 0.039 (3) | 0.046 (3) | −0.004 (2) | 0.002 (2) | −0.002 (2) |
| C7 | 0.048 (3) | 0.059 (3) | 0.049 (3) | −0.004 (2) | 0.015 (2) | −0.012 (3) |
| C8 | 0.051 (3) | 0.084 (4) | 0.048 (3) | −0.004 (3) | 0.012 (2) | 0.004 (3) |
| C9 | 0.055 (3) | 0.061 (3) | 0.060 (3) | 0.005 (3) | 0.007 (3) | 0.015 (3) |
| C10 | 0.047 (3) | 0.050 (3) | 0.049 (3) | 0.006 (2) | 0.008 (2) | 0.000 (2) |
| C11 | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
| C12 | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
| C13 | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
| C14 | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
| C15 | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
| C16 | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
| C12' | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
| C13' | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
| C14' | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
| C15' | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
| C16' | 0.0495 (16) | 0.090 (2) | 0.0436 (16) | 0.0106 (16) | 0.0043 (12) | 0.0150 (15) |
Geometric parameters (Å, º)
| Cl1—C6 | 1.720 (5) | C9—H9A | 0.9300 |
| Cl2—C7 | 1.730 (5) | C10—H10A | 0.9300 |
| S1—C3 | 1.712 (5) | C11—C12 | 1.3900 |
| S1—C2 | 1.834 (5) | C11—C16 | 1.3900 |
| N1—C4 | 1.269 (5) | C11—C16' | 1.399 (2) |
| N1—N2 | 1.377 (5) | C11—C12' | 1.400 (2) |
| N2—C3 | 1.342 (5) | C12—C13 | 1.3900 |
| N2—C1 | 1.457 (6) | C12—H12A | 0.9300 |
| N3—C3 | 1.299 (6) | C13—C14 | 1.3900 |
| N3—H3A | 0.9000 | C13—H13A | 0.9300 |
| N3—H3B | 0.9001 | C14—C15 | 1.3900 |
| C1—C2 | 1.533 (6) | C14—H14A | 0.9300 |
| C1—H1A | 0.9700 | C15—C16 | 1.3900 |
| C1—H1B | 0.9700 | C15—H15A | 0.9300 |
| C2—C11 | 1.503 (6) | C16—H16A | 0.9300 |
| C2—H2A | 0.9800 | C12'—C13' | 1.400 (2) |
| C4—C5 | 1.463 (6) | C12'—H12B | 0.9300 |
| C4—H4A | 0.9300 | C13'—C14' | 1.400 (2) |
| C5—C10 | 1.386 (6) | C13'—H13B | 0.9300 |
| C5—C6 | 1.398 (6) | C14'—C15' | 1.399 (2) |
| C6—C7 | 1.388 (6) | C14'—H14B | 0.9300 |
| C7—C8 | 1.370 (7) | C15'—C16' | 1.400 (2) |
| C8—C9 | 1.376 (7) | C15'—H15B | 0.9300 |
| C8—H8A | 0.9300 | C16'—H16B | 0.9300 |
| C9—C10 | 1.371 (7) | ||
| C3—S1—C2 | 92.3 (2) | C8—C9—H9A | 119.7 |
| C4—N1—N2 | 118.1 (4) | C9—C10—C5 | 120.9 (5) |
| C3—N2—N1 | 115.9 (4) | C9—C10—H10A | 119.5 |
| C3—N2—C1 | 116.6 (4) | C5—C10—H10A | 119.5 |
| N1—N2—C1 | 127.4 (3) | C12—C11—C16 | 120.0 |
| C3—N3—H3A | 120.2 | C16'—C11—C12' | 117.1 (6) |
| C3—N3—H3B | 114.9 | C12—C11—C2 | 125.1 (4) |
| H3A—N3—H3B | 124.4 | C16—C11—C2 | 114.9 (4) |
| N2—C1—C2 | 107.4 (4) | C16'—C11—C2 | 131.6 (6) |
| N2—C1—H1A | 110.2 | C12'—C11—C2 | 111.2 (5) |
| C2—C1—H1A | 110.2 | C13—C12—C11 | 120.0 |
| N2—C1—H1B | 110.2 | C13—C12—H12A | 120.0 |
| C2—C1—H1B | 110.2 | C11—C12—H12A | 120.0 |
| H1A—C1—H1B | 108.5 | C12—C13—C14 | 120.0 |
| C11—C2—C1 | 114.2 (4) | C12—C13—H13A | 120.0 |
| C11—C2—S1 | 110.4 (3) | C14—C13—H13A | 120.0 |
| C1—C2—S1 | 106.2 (3) | C13—C14—C15 | 120.0 |
| C11—C2—H2A | 108.7 | C13—C14—H14A | 120.0 |
| C1—C2—H2A | 108.7 | C15—C14—H14A | 120.0 |
| S1—C2—H2A | 108.7 | C16—C15—C14 | 120.0 |
| N3—C3—N2 | 123.6 (4) | C16—C15—H15A | 120.0 |
| N3—C3—S1 | 122.6 (3) | C14—C15—H15A | 120.0 |
| N2—C3—S1 | 113.8 (3) | C15—C16—C11 | 120.0 |
| N1—C4—C5 | 118.6 (4) | C15—C16—H16A | 120.0 |
| N1—C4—H4A | 120.7 | C11—C16—H16A | 120.0 |
| C5—C4—H4A | 120.7 | C11—C12'—C13' | 123.5 (9) |
| C10—C5—C6 | 118.5 (4) | C11—C12'—H12B | 118.3 |
| C10—C5—C4 | 120.6 (4) | C13'—C12'—H12B | 118.3 |
| C6—C5—C4 | 120.8 (4) | C14'—C13'—C12' | 117.0 (10) |
| C7—C6—C5 | 119.7 (4) | C14'—C13'—H13B | 121.5 |
| C7—C6—Cl1 | 119.8 (4) | C12'—C13'—H13B | 121.5 |
| C5—C6—Cl1 | 120.4 (3) | C15'—C14'—C13' | 121.8 (10) |
| C8—C7—C6 | 120.7 (4) | C15'—C14'—H14B | 119.1 |
| C8—C7—Cl2 | 119.2 (4) | C13'—C14'—H14B | 119.1 |
| C6—C7—Cl2 | 120.1 (4) | C14'—C15'—C16' | 118.7 (10) |
| C7—C8—C9 | 119.5 (5) | C14'—C15'—H15B | 120.6 |
| C7—C8—H8A | 120.2 | C16'—C15'—H15B | 120.6 |
| C9—C8—H8A | 120.2 | C11—C16'—C15' | 121.7 (8) |
| C10—C9—C8 | 120.6 (5) | C11—C16'—H16B | 119.2 |
| C10—C9—H9A | 119.7 | C15'—C16'—H16B | 119.2 |
| C4—N1—N2—C3 | −178.7 (4) | C8—C9—C10—C5 | 0.7 (8) |
| C4—N1—N2—C1 | 4.3 (6) | C6—C5—C10—C9 | 2.1 (7) |
| C3—N2—C1—C2 | 16.1 (6) | C4—C5—C10—C9 | −174.5 (4) |
| N1—N2—C1—C2 | −166.9 (4) | C1—C2—C11—C12 | −112.2 (5) |
| N2—C1—C2—C11 | −141.6 (4) | S1—C2—C11—C12 | 128.3 (4) |
| N2—C1—C2—S1 | −19.8 (4) | C1—C2—C11—C16 | 69.0 (5) |
| C3—S1—C2—C11 | 140.2 (3) | S1—C2—C11—C16 | −50.4 (4) |
| C3—S1—C2—C1 | 15.9 (4) | C1—C2—C11—C16' | 58.9 (10) |
| N1—N2—C3—N3 | −2.2 (7) | S1—C2—C11—C16' | −60.6 (9) |
| C1—N2—C3—N3 | 175.2 (5) | C1—C2—C11—C12' | −117.4 (7) |
| N1—N2—C3—S1 | 178.8 (3) | S1—C2—C11—C12' | 123.1 (7) |
| C1—N2—C3—S1 | −3.8 (5) | C16—C11—C12—C13 | 0.0 |
| C2—S1—C3—N3 | 173.2 (4) | C2—C11—C12—C13 | −178.7 (5) |
| C2—S1—C3—N2 | −7.8 (4) | C11—C12—C13—C14 | 0.0 |
| N2—N1—C4—C5 | 175.1 (4) | C12—C13—C14—C15 | 0.0 |
| N1—C4—C5—C10 | 7.4 (6) | C13—C14—C15—C16 | 0.0 |
| N1—C4—C5—C6 | −169.2 (4) | C14—C15—C16—C11 | 0.0 |
| C10—C5—C6—C7 | −3.5 (6) | C12—C11—C16—C15 | 0.0 |
| C4—C5—C6—C7 | 173.1 (4) | C2—C11—C16—C15 | 178.9 (4) |
| C10—C5—C6—Cl1 | 176.6 (3) | C16'—C11—C12'—C13' | −1.5 (15) |
| C4—C5—C6—Cl1 | −6.8 (6) | C2—C11—C12'—C13' | 175.4 (9) |
| C5—C6—C7—C8 | 2.2 (7) | C11—C12'—C13'—C14' | 1.2 (16) |
| Cl1—C6—C7—C8 | −177.9 (4) | C12'—C13'—C14'—C15' | 2.0 (16) |
| C5—C6—C7—Cl2 | −178.4 (3) | C13'—C14'—C15'—C16' | −4.9 (16) |
| Cl1—C6—C7—Cl2 | 1.6 (6) | C12'—C11—C16'—C15' | −1.5 (15) |
| C6—C7—C8—C9 | 0.6 (8) | C2—C11—C16'—C15' | −177.6 (7) |
| Cl2—C7—C8—C9 | −178.8 (4) | C14'—C15'—C16'—C11 | 4.6 (16) |
| C7—C8—C9—C10 | −2.1 (8) |
Hydrogen-bond geometry (Å, º)
Cg3 and Cg4 are the centroids of the major (C11-C16) and minor (C11/C12'–C16') disorder components, respectively, of the phenyl ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| N3—H3A···Br1i | 0.90 | 2.51 | 3.303 (4) | 147 |
| N3—H3B···Br1 | 0.90 | 2.36 | 3.258 (4) | 175 |
| C13′—H13B···Cg3ii | 0.93 | 2.91 | 3.596 (12) | 132 |
| C13′—H13B···Cg4ii | 0.93 | 2.99 | 3.746 (12) | 139 |
| C2—H2A···Br1iii | 0.98 | 2.87 | 3.778 (5) | 154 |
| C10—H10A···Br1i | 0.93 | 2.90 | 3.796 (5) | 161 |
| C7—Cl2···Cg3iv | 1.73 (1) | 3.80 (1) | 5.525 (6) | 175 (1) |
| C7—Cl2···Cg4iv | 1.73 (1) | 3.57 (1) | 5.299 (6) | 175 (1) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y−1, z; (iv) −x+2, −y, −z+1.
Funding Statement
This work was funded by Baki Dövl\#601;t Universiteti grant .
References
- Akbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. [DOI] [PubMed]
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
- Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.
- Hazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 197–200.
- Kvyatkovskaya, E. A., Zaytsev, V. P., Zubkov, F. I., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 515–519. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408. [DOI] [PubMed]
- Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
- Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017a). Inorg. Chem. 56, 9698–9709. [DOI] [PubMed]
- Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
- Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017b). CrystEngComm, 19, 3322–3330.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763–4772.
- Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54–72.
- Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121–10138. [DOI] [PubMed]
- Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. [DOI] [PubMed]
- Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.
- Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.
- Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.
- Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Shetnev, A. A. & Zubkov, F. I. (2017). Chem. Heterocycl. C. 53, 495–497.
- Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.
- Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global. DOI: 10.1107/S2056989018010496/sj5561sup1.cif
Supporting information file. DOI: 10.1107/S2056989018010496/sj5561globalsup2.cml
CCDC reference: 1857411
Additional supporting information: crystallographic information; 3D view; checkCIF report








