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Abstract
Tumour metastasis is a dynamic and systemic process. It is no longer seen as
a tumour cell-autonomous program but as a multifaceted and complex series of
events, which is influenced by the intrinsic cellular mutational burden of cancer
cells and the numerous bidirectional interactions between malignant and
non-malignant cells and fine-tuned by the various extrinsic cues of the
extracellular matrix. In cancer biology, metastasis as a process is one of the
most technically challenging aspects of cancer biology to study. As a result,
new platforms and technologies are continually being developed to better
understand this process. In this review, we discuss some of the recent
advances in metastasis and how the information gleaned is re-shaping our
understanding of metastatic dissemination.

Keywords
Metastasis, Cancer, Cancer Therapy, Extracellular Matrix, Tumour Stroma,
Microenvironment, Intravital Imaging, Mouse Models, Biosensors, Circulating
Tumour Cells, Disseminated Tumour Cells, Dormancy, Colonisation,
Intravasation, Extravasation, Invasion, Migration

1* 1* 1 1,2

1,2 1,2

1

2

*

     Referee Status:

  Invited Referees

 

  
version 2
published
10 Sep 2018

version 1
published
01 Aug 2018

   1 2 3

, National CancerKent Hunter

Institute, National Institutes of Health, USA
1

, University of California,Richard Klemke

USA
2

, Fox Chase CancerEdna Cukierman

Center, USA
3

 01 Aug 2018,  (F1000 Faculty Rev):1169 (doi: First published: 7
)10.12688/f1000research.15064.1

 10 Sep 2018,  (F1000 Faculty Rev):1169 (doi: Latest published: 7
)10.12688/f1000research.15064.2

v2

Page 1 of 18

F1000Research 2018, 7(F1000 Faculty Rev):1169 Last updated: 10 SEP 2018

http://f1000research.com/collections/f1000-faculty-reviews/about-this-collection
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/7-1169/v2
https://f1000research.com/articles/7-1169/v2
https://orcid.org/0000-0003-1776-1618
https://orcid.org/0000-0001-7654-9137
https://orcid.org/0000-0001-9294-1745
https://orcid.org/0000-0002-5514-7080
https://f1000research.com/articles/7-1169/v2
https://f1000research.com/articles/7-1169/v1
https://orcid.org/0000-0001-5963-8808
http://dx.doi.org/10.12688/f1000research.15064.1
http://dx.doi.org/10.12688/f1000research.15064.2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.15064.2&domain=pdf&date_stamp=2018-09-10


 

 (0)Comments

 Thomas R. Cox ( ), Paul Timpson ( )Corresponding authors: t.cox@garvan.org.au p.timpson@garvan.org.au
  : Writing – Original Draft Preparation, Writing – Review & Editing;  : Writing – Original Draft Preparation, Writing –Author roles: Chitty JL Filipe EC

Review & Editing;  : Visualization, Writing – Original Draft Preparation, Writing – Review & Editing;  : Writing – Review &Lucas MC Herrmann D
Editing;  : Conceptualization, Supervision, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing;  :Cox TR Timpson P
Conceptualization, Supervision, Writing – Review & Editing

 No competing interests were disclosed.Competing interests:
 The authors are supported by the National Health and Medical Research Council of Australia, Susan G. Komen for the CureGrant information:

(CCR17483294), National Breast Cancer Foundation, Cancer Institute NSW, the Australian Research Council, a Len Ainsworth Pancreatic Cancer
Fellowship, Cancer Council NSW, St Vincent’s Clinic Foundation, Sydney Catalyst and Tour de Cure. This project was made possible by an Avner
Pancreatic Cancer Foundation grant.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2018 Chitty JL  . This is an open access article distributed under the terms of the  , whichCopyright: et al Creative Commons Attribution Licence
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Chitty JL, Filipe EC, Lucas MC   How to cite this article: et al. Recent advances in understanding the complexities of metastasis [version 2;
   2018,  (F1000 Faculty Rev):1169 (doi:  )referees: 3 approved] F1000Research 7 10.12688/f1000research.15064.2

 01 Aug 2018,  (F1000 Faculty Rev):1169 (doi:  ) First published: 7 10.12688/f1000research.15064.1

Page 2 of 18

F1000Research 2018, 7(F1000 Faculty Rev):1169 Last updated: 10 SEP 2018

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.15064.2
http://dx.doi.org/10.12688/f1000research.15064.1


Introduction
In almost all solid tumours, the single biggest cause of mortality 
is metastasis1. Metastasis is the spread of tumour cells away from 
the primary site of origin and subsequent colonisation of distinct 
secondary sites2. The process of metastasis and the formation of  
metastases are inherently inefficient3 yet when successful will 
typically render the cancer incurable1,4,5. Tumour progression to  
metastasis is not a tumour cell-autonomous program6. It is a  
multifaceted and complex series of events7, which is influ-
enced at all stages by the intrinsic cellular mutational burden 
and the numerous bidirectional interactions between malignant 
and non-malignant cell types and is continuously fine-tuned 
by the various extrinsic microenvironmental niches, including 
the biochemistry and biomechanics of the extracellular matrix  
(ECM)8,9, and availability and activity of growth factors. This 
process continually evolves depending on the local and distal 
microenvironments that tumour cells find themselves within or 
transiting through8,10,11 (Figure 1) and is tuned by inflammation, 

angiogenesis, lymphangiogenesis, neoneurogenesis12–14, and sys-
temic physiologic stress-responsive pathways such as the sym-
pathetic nervous system15,16. Finally, tumour cells have been 
known for decades to have the capacity to fuse with one another, 
leading to further genetic instability, although how this fusion 
of tumour cells drives the biology of cancer is not yet clear17–19.  
As a result, our current understanding of how microenviron-
mental and macroenvironmental cues intersect with intrinsic 
cancer cell properties to regulate metastatic dissemination is  
ever-expanding.

Metastasis as a process is one of the most technically chal-
lenging aspects of cancer biology to study20–28. As a result, new  
platforms and technologies are continuously being developed 
to better understand this process22,29. In this review, we discuss  
some of the recent advances as well as emerging tools and 
methodologies being deployed to study metastasis and how the  
information gleaned is re-shaping our understanding of metastatic 
dissemination.

The process of metastasis
Metastases, or metastatic disease, is the end result of a vast and 
interconnected set of dynamic and systemic events encompass-
ing both spatial and temporal selective pressures exerted upon  
cancer cells30. Over the past few decades, our understanding 
of these selective pressures and their importance in the various  

Figure 1. Tumour metastasis is a vast and interconnected array of dynamic and systemic events encompassing both spatial 
and temporal events. The process can be broadly divided into the following stages: (i) invasion/migration at/near the primary tumour,  
(ii) intravasation into the local blood and lymphatic vessels, (iii) survival and transit of cancer cells in the circulation/lymphatics, (iv) arrest  
and extravasation at secondary sites, and (v) overt colonisation of secondary sites.
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stages of metastatic dissemination has improved significantly. 
The entire process of metastasis can be broadly divided into the  
following stages (Figure 1):

(i)    invasion/migration at/near the primary tumour

(ii)   intravasation into the local blood and lymphatic vessels

(iii)  �survival and transit of cancer cells in the circulation/ 
lymphatics

(iv)  arrest and extravasation at secondary sites

(v)   overt colonisation of secondary sites

These different elements (Figure 1) are often seen as distinct yet 
interconnected progressive stages of a linear cascade, typically  
associated with the later stages of primary tumour growth.  
However, we are now beginning to realise that this is far from 
accurate. Metastatic dissemination can occur from the earliest  
point of tumourigenesis, prior to the clinical manifestation 
of tumours31–33, and has been shown to be mediated through  
processes such as ‘delamination’, whereby cancer cells leave 
the epithelia and cross the basement membrane34. In many  
patients, metastasis has already occurred by the time of  
diagnosis, and, as a result, metastasis prevention may be too  
late35. Nonetheless, developing a deeper understanding of the  
process of metastasis which leads to overt metastatic disease, 
along with the attributes that the cells selected by this process  
possess, will be critical for treating metastatic disease4 and 
preventing further metastasis in surgically non-resectable  
patients. Furthermore, the frequent occurrence of multicellular 
seeding, whereby multiple primary tumour clones come together 
to form aggressive polyclonal metastases36 (Figure 2d), and 
tumour reseeding, whereby circulating tumour cells (CTCs) 
may return to the primary tumour37, both support the need for  
continued research into the metastatic process.

Metastasis involves the selection of traits that are advanta-
geous for the survival of cancer cells. Advances in sequencing  
platforms38–40 have shown us that micro-evolutionary genetic 
changes, including somatic mutations, copy number alterations 
and structural variants in the genome, alongside heritable factors, 
are detectable independently at both primary and secondary 
sites as a result of site-specific, context-dependent selective  
pressures6,33,41–43. This has allowed the identification of hallmark 
mutational signatures in many different cancer types as well as 
their metastases44–47 and is facilitating a deeper subclassifica-
tion of specific cancers48–52. In addition, the precise cancer cell 
of origin has been shown to heavily influence the trajectory of  
this entire evolutionary process53. Yet, despite these advances, 
progress has been painfully slow in translating this genetic infor-
mation into improved clinical outcomes for patients. As such, 
more effective translational research to assist in contextualising 
this genetic information against the concomitant recruitment of 
traits in the tumour stroma and secondary tissues and organs is  
required yet is not always easy to achieve54. Such research  
would allow the dissection of the additional layers of complex-
ity at epigenetic, post-transcriptional, and post-translational  
levels that regulate expression patterns in different tissue  
microenvironments. Nonetheless, the concept of metastasis as 

a successive, linear, and discrete stage-centric process, directed  
solely by the accumulation of genetic mutations, is flawed  
and has challenged us to re-examine how we both study and  
effectively target metastasis and metastases55.

The development of new approaches to detect and quantify  
sparsely distributed metastatic cells throughout the body at early 
stages in in vivo tumour models is underway56. However, in 
the clinical setting, the current tumour staging procedures and 
even our highest-resolution imaging technologies are not yet  
sensitive enough to detect micro-metastases or early tumour cell 
dissemination, the key events in primary tumour progression to  
metastasis. Similarly, neither in vitro nor in silico tools can 
accurately recapitulate all stages of metastasis, and more 
holistic approaches using animal models remain the gold  
standard21,25,57–59. A new era of translational research is develop-
ing, and the insights that it brings are rapidly causing paradigm  
shifts in our understanding of metastatic phenomena.

Getting things moving: cancer cell migration and 
invasion
Without question, for metastasis to occur, cancer cells must  
leave the primary tumour (Figure 1i). This requires the  
activation and engagement of cellular mechanisms enabling cell  
movement, adhesion to or degradation of the ECM (or both), 
and the weakening of cell–cell adhesions to facilitate dissocia-
tion from epithelial neighbours. In particular, this centres around  
actomyosin contractility, which underpins and drives cell migra-
tion and invasion60. Cancer invasion is initiated and maintained 
by signalling pathways (such as the coordinated activity of the  
RhoGTPases RhoA, Rac1, and Cdc4261) that act to con-
trol cytoskeletal dynamics in tumour cells and the turnover of  
cell–ECM and cell–cell junctions to allow cell migration into 
the adjacent surrounding tissue (Figure 1i). This process is  
highly adaptive, being influenced by intrinsic and extrinsic  
factors, and is typically temporary, having the potential to 
be reversed. Ultimately, it allows cancer cells to overcome  
obstacles that would typically impede movement62.

The processes that are activated in cancer cells are similar to  
those seen in normal cells during embryonic development. These 
processes allow cancer cells to adapt to their microenvironment 
and are elicited through changes in cancer cell phenotype and  
are facilitated, in some situations, by what is known as  
epithelial-to-mesenchymal transition (EMT)63. The process of  
EMT is underpinned predominantly by the SNAIL, TWIST, 
ZEB, and other transcription factor families64,65. In cancer, EMT 
is thought to play a role in a cancer cell’s acquisition of a stem-
like and motile/migratory phenotype, in part through interac-
tion with other important signalling pathways such as the Hippo  
pathway66. EMT in cancer, however, is not a one-directional  
permanent program defined by a single pathway63. Instead, it is a  
partial or reversible process that depends on the intrinsic and  
extrinsic stimuli that cancer cells receive. This subtle but critical 
point is what appears to allow cancer cells to undergo both  
EMT and reciprocal mesenchymal-to-epithelial transition  
(known as MET) at different stages and locations of the metastatic 
process67.
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Figure 2. Advances in technologies and tools have allowed us visualise and study some of the stages of metastasis to uncover many 
of the different mechanisms at play. (a) Time-lapse intravital imaging of cancer cells (green) in association with blood vessels (red) and 
collagen fibres—blue, detected by second harmonic generation (SHG)—over the course of 75 minutes shows slow movement (arrowheads) 
of some cancer cells toward blood vessels. From Pereira et al.69. Reused with permission from the American Association for the Advancement 
of Science. (b) Tracking the movement of tumour hypoxia using EF5 and pimonidazole probes. Immunofluorescence of KPC xenograft 
tumours for EF5 (red) and pimonidazole (green) chemical indicators of tumour hypoxia after either (i) co-injection or (ii) 24-hour delayed 
administration. Images from Conway et al.70, under the terms of the Creative Commons Attribution License (CC BY) (http://creativecommons.
org/licenses/by/4.0/). (c) Confocal images of a spheroid (1:1 mixture of cancer-associated fibroblasts [CAFs] [red] and A431 carcinoma 
[green] cells) after 60 hours of invasion. CAFs (red) lead collective strands of A431 cells (green). Image, originally published in Labernadie 
et al.71, used with permission from Macmillan Publishers Ltd. (d) Multicellular seeding is a frequent mechanism for distant metastasis. Via 
Cre recombinase technology, mosaic (red/green) tumour organoids are created and transplanted into non-fluorescent host mice. After 6 to 8 
weeks, the lungs of these mice are harvested. Metastases arising exclusively from single-cell seeding produce only single-colour metastases 
(red OR green). In contrast, multicellular seeding produces metastases with both colours (red AND green). Representative micrographs of 
polyclonal lung metastases of different sizes from Cheung et al.36. Scale bars = (a) 50 μm and (b, c) 100 μm.

The development of new molecular biology approaches and 
advanced intravital imaging techniques is providing research-
ers with novel tools for understanding the importance of EMT 
in cancer progression and metastasis68. There likely exists both  
EMT-dependent and EMT-independent mechanisms for 

metastasis, although as yet the specific contexts for each in  
different cancer types remain elusive. For example, studies on the 
reversibility of EMT, and in particular the role of EMT markers 
such as E-cadherin, have shown that fine-tuned modulation of EMT 
allows switching between stationary and mobile states, whereas 
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others have shown that EMT may be important in cancer stem cell 
capacity and sensitivity to chemotherapy72–74.

Nonetheless, once acquired, cell movement, broadly speaking, 
occurs in one of two modes: either individual or collective cell 
migration75 (Figure 1i). The switch between the two depends 
heavily on and responds to the physical and molecular triggers  
present within the microenvironment76. As cancer cells transit  
within the many different, physiologically distinct, and often  
hostile multicellular microenvironments, they sense and 
respond to a plethora of cues, including the biomechanical and  
biochemical properties of the ECM77,78. In doing so, cancer  
cells generate both transient and permanent alterations, includ-
ing ECM remodelling79,80, which leads to the co-evolution 
of both the cancer cells themselves and the tissues through 
which they transit81. For example, changes in type I collagen  
organisation are evident in primary and secondary breast  
cancer sites82–86, fibronectin levels are altered in ovarian  
cancer87, and post-translational cross-linking of fibrillar  
collagens is observed in pancreatic88, breast89,90, and colorectal91,92 
cancer, all of which are closely linked to disease progression  
and metastatic dissemination (Figure 1i).

Interestingly, and perhaps counter-intuitively, the maintenance 
of epithelial traits during collective cell migration, whereby  
E-cadherin-dependent cell–cell contacts are maintained, has only 
recently emerged but has already been shown to be involved 
in the progression of colorectal cancer93, head and neck squa-
mous cell carcinoma (HNSCC)94, pancreatic cancer95, and breast  
cancer36,96. An interesting consideration is whether all migrating 
cancer cells retain such traits or whether indeed fine-tuning 
of EMT at a population level by the microenvironment is  
important97 such that only leading cells at the invasive front  
retain some crucial epithelial traits and acquire new mesenchy-
mal ones98. Whilst detailed investigation into the underlying  
mechanisms and generation of new tools95,99–102 are underway, it  
is clear that there is still much we do not know.

Furthermore, in recent years, it has been shown that cancer 
cell invasion and metastasis are not necessarily cancer cell- 
autonomous events. Resident stromal cells can be co-opted 
by cancer cells to facilitate and accelerate processes such as  
cancer cell invasion. Cancer-associated fibroblasts (CAFs) 
have been shown to promote cancer cell invasion and  
metastasis103 through a number of mechanisms, including exert-
ing physical forces on cancer cells via heterotypic E-cadherin/ 
N-cadherin adhesions that enable collective invasion71  
(Figure 1i and Figure 2c). In addition, it is known that CAFs  
heavily influence cancer cell behaviour by inducing processes 
such as EMT to initiate their invasion104–107 or driving apoptosis  
to facilitate the switch between expansive invasion and CAF-
led invasion108. Thus, the concept that tumours behave as  
communities109, in which cooperative behaviour occurs not 
only between cancer cell subclones but also between malignant  
and non-malignant cells110, adds significantly to the layers of 
complexity in treating these highly heterogeneous tumours.  
With this in mind, investigators are undertaking mathemati-
cal modelling to better understand the dynamics of cell–cell 

as well as cell–microenvironmental reciprocities that govern  
metastatic priming and progression111–114.

A key element that can permit or restrain the invasion of  
primary tumour cells into the surrounding tissue is the local 
remodelling of the host microenvironment and in particular the  
ECM (Figure 1i). Both normal and tumour-associated ECM 
is deposited, remodelled, and degraded on a continuous basis.  
However, the tumour-associated ECM in particular is also  
associated with altered post-translational modification, such as  
cross-linking, leading to the generation of a dense and usually 
stiffer fibrotic microenvironment that is pro-tumourigenic11. 
For years, despite an expanding body of knowledge to the con-
trary, it was generally believed that this extensive deposition and  
remodelling of the tumour ECM merely accompanied tumour 
growth. More recently, however, it has been widely accepted 
that ECM remodelling is an active contributor to driving cancer  
progression115 through clustering of integrins and other  
receptors, leading to downstream activation of intracellular 
kinase signalling pathways116, which subsequently alter, among 
other things, EMT and cancer cell migration and invasion117  
(Figure 1i).

In addition to changes in the ECM at the primary tumour, there 
are significant changes in the resident non-malignant cell  
populations recruited to, or excluded from, the tumour and their 
activation states. Advances in technologies such as intravital  
imaging have allowed us to uncover mechanisms by which  
tumour cells manipulate the normal tissues within which 
they grow in order to facilitate disease progression59,118,119.  
Several recent articles have shown the close interplay among 
CAFs, primary tumour-associated ECM remodelling, and pro-
gression of desmoplastic tumours (those surrounded by dense 
fibrous tissue) such as pancreatic ductal adenocarcinoma88,120–122  
and breast cancer123. Most surprising is that CAFs, and 
the ECM remodelling they underpin, have been shown to 
play both pro- and anti-tumourigenic roles124,125, highlight-
ing how simple removal of the stroma may not be a suitable  
therapeutic approach and showing that, instead, subtler 
approaches such as stromal re-engineering or normalisation, or  
short-term ‘priming’ interventions120, may represent a more  
robust approach126,127.

Taking this a step further, there have been several recent  
studies aimed at mapping the changes in the matrisome (the 
inventory of all ECM constituents) of primary and metastatic  
lesions128 in order to generate ECM signatures that could 
be used to predict outcome and metastasis across different  
tumours129–131. Because the majority of structural ECM pro-
teins exhibit a remarkable longevity in vivo, often measured 
in weeks and months and even years8, as opposed to hours for  
intracellular proteins, we argue that the tumour-specific blend 
of ECM molecules records a history of tumour evolution132.  
As such, it has the potential to allow us to better understand 
how a specific tumour has emerged. Furthermore, this longevity 
appears to be tissue and tumour type specific. The emergence of  
ECM signatures to stratify patients with cancer is already  
providing useful predictors of disease staging130,131, and ECM 
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molecules such as tenascins, periostin, and versicans have been  
linked to tumour progression and eventually could be used to 
identify early signs of metastasis133–136. In addition, just as we  
currently use genomic signatures to identify high-risk patients 
and predict outcome across a wide array of cancer types,  
ECM-based proteomic signatures are emerging, and it will not be 
long before these can be routinely used in the clinic for patient  
stratification132.

Yet it is not only cells that move around the tumour. Other  
non-cellular physiological elements such as hypoxia have  
recently been shown to move within the three-dimensional  
tumour using dual PLIM/FLIM (phosphorescence lifetime  
imaging microscopy/fluorescence lifetime imaging microscopy) 
intravital imaging70 (Figure 2b). The importance of this  
phenomenon is not to be underestimated, since hypoxia is well 
known to trigger cell invasion and migration as well as other  
biological effects such as altered response to therapy70. Thus, 
daily fluctuations in oxygenation status across the tumour likely  
reshape the microenvironment, both activating and deactivat-
ing signalling pathways and gene expression programs in normal 
and tumour cells, blunting therapy efficacy and thereby having  
long-term consequences. Furthermore, it was recently shown 
that, in breast cancer models, intermittent hypoxia, and not  
chronic hypoxia, actually promotes clonal diversity and enhances 
metastatic seeding to secondary organs137.

Going with the flow: intravasation into blood and 
lymphatics
Intravasation is the active entry of cancer cells into the circula-
tion in order to spread around the body (Figure 1ii and Figure 2a).  
Logic dictates that it would follow local invasion away from 
a tumour toward a vessel, and one of the critical requirements  
for this would be the ability to activate cellular programs that  
would act to help tumour cells to transverse the endothelial layer 
of vessels to enter the bloodstream. However, recent evidence 
has suggested that intratumoural intravasation does not need to  
be preceded by local invasion and in fact may proceed in  
parallel to, or independent of, tumour cell invasion into the  
surrounding stroma138. Either way, intravasation as a process 
has been incredibly difficult to visualise and model and so has 
led researchers to believe it is a rare event. This is in contrast to  
publications showing that, on average, somewhere in the region 
of 1 million cancer cells per 1 g of tumour tissue can enter and  
spread daily within the circulation139. Successful studies to date 
have shown that the escape of cancer cells from the primary 
tumour into the circulation can occur as both single cells or  
clusters of a few to a dozen strands or sheets140–143 (Figure 1). 
What governs the spatial and temporal cues for cancer cell 
intravasation is still not fully elucidated, but evidence points  
toward intrinsic cancer cell cues, the activity of stromal cell  
populations such as macrophages110,144, and organisation of 
the ECM. For example, cells may orientate according to 
ECM structures such as collagen fibres that then can direct  
tumour cell intravasation in in vitro breast cancer cells145.

The vast majority of solid tumours are also able to drive de novo 
angiogenesis (the growth of new blood vessels) (Figure 1), 
and malignant progression is typically associated with, and  

likely even depends on, an angiogenic switch146. Tumour  
angiogenesis is driven through the secretion of pro-angiogenic  
growth factors, recruitment of immune cells, and alteration 
of the perivascular ECM by both tumour cells and associated  
stromal cells. The generation of leaky tumour vessels is thought 
to facilitate the dissemination of tumour cells throughout the 
body and thus represents a viable therapeutic intervention.  
However, at present, more work is needed to determine whether 
the majority of intravasation happens predominantly at main  
vessels or these angiogenic capillary branches. A more compre-
hensive coverage of angiogenesis in cancer and its therapeutic  
potential has been reviewed146–148. However, it must be noted 
that not all solid tumours form or require new vessels for intra-
vasation to occur, and the existence of non-angiogenic tumours  
is becoming increasingly recognised149.

In addition to metastatic spread through the circulation, an  
alternative route of dissemination for cancer cells is through the  
lymphatics (Figure 1ii). Lymphatic metastases may be the pre-
ferred route of dissemination for some tumour types such as  
breast cancer150 and rhabdomyosarcoma151, which, compared 
with other types of solid tumours, show a higher propensity for  
lymph node metastasis. Indeed, in many tumour types, the 
extent of lymph node involvement is a crucial prognostic factor  
for the disease. Recently, it has been shown that during  
metastasis, cancer cells escape the primary tumour, intravasate 
into lymphatic vessels, and reach draining sentinel lymph nodes 
well before they appear to overtly colonise distant organs via the  
blood circulation152. This process, shown to occur in mammary 
carcinoma, squamous cell carcinoma, and melanoma model  
systems, implicates lymph node metastases as a key step for 
establishing distant metastases of these tumours69. Nonethe-
less, metastatic disease as a whole is likely to consist of a  
complex interplay between disseminating cancer cells exiting the  
tumours via a combination of both routes, modulated by local 
and systemic factors and possibly even by sex in cases such as 
renal clear cell carcinoma where androgen receptor (AR) has 
been shown to increase haematogenous metastasis yet decrease  
lymphatic metastasis153.

It has been shown that tumours can also promote lymphangio-
genesis (the formation of lymphatic vessels) (Figure 1), which 
in turn acts to promote cancer cell dissemination154. Aberrant  
lymphangiogenesis and restructuring of lymphatic networks 
have been shown to significantly enhance metastasis to both  
regional lymph nodes and distal organs155 through the secretion 
of various factors such as vascular endothelial growth factor  
A/D (VEGF-A/D)156, VEGF-C150,157, interleukin 1 beta (IL-1β)158,  
fibroblast growth factor (FGF)159, ECM components such as  
periostin160, or even chronic stress activation of the sympathetic 
nervous system161.

Whilst lymph node spread of cancer has been known for  
decades, more recent evidence has implicated the lymphat-
ics not simply as passive highways for tumour cell spread but 
also as facilitators in many other processes, including the active  
recruitment of tumour cells to local and distal lymph nodes162  
through mechanisms such as CCL21–CCR7 signalling163,164, 
promoting the survival of metastasising cancer stem cells via 
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CXCL12–CXCR4 signalling165,166, and modulating the host  
inflammatory response to alter tumour immune surveillance167–170. 
Inflammation is a critical component of tumour progression, 
and inflammatory cells are seen as an indispensable partici-
pant in progression. Inflammatory cells have been shown to alter  
cancer cell proliferation, survival, and migration. In some  
circumstances, cancer cells have co-opted some of the signalling 
molecules of the innate immune system, including chemokines 
and their receptors (such as CXCL12–CXCR4 and CCL21–CCR7  
mentioned above), to facilitate invasion, migration, and metasta-
sis. As advances in non-invasive imaging technologies improve 
and allow us to visualise the lymphatics with greater resolution, 
and with the development of new tools such as the ‘MetAlert’  
mice171, which serve to visualise lymphovascular niches in 
whole animals, we can begin to study the function of tumour- 
associated lymphatics on metastatic dissemination as well as  
during therapeutic response.

The road to metastasis: circulating tumour cells
In recent years, an increasing body of evidence has been  
supporting the primary role for CTCs as the major contributor 
to metastatic relapse in patients with cancer172 (Figure 1iii). 
This has fuelled an explosion of interest in their detection and  
quantification. Indeed, CTCs have been reported in almost 
all epithelia-derived cancers, including head and neck173, 
lung174, gastrointestinal (including pancreatic, colorectal and,  
gastric)175–179, and breast180–187 cancer.

With potentially hundreds of thousands of tumour cells intrava-
sating into the bloodstream, it appears that only a small fraction 
of CTCs are capable of surviving and extravasating into distant  
sites to persist as disseminated tumour cells (DTCs)188. Thus, in 
order for CTCs to become DTCs, they face a number of obsta-
cles that they must overcome to survive whilst transiting within 
the bloodstream189. Studies have shown that CTCs travel either 
as individual cells or, more often, as clusters190 (Figure 1iii). 
These clusters appear in some cases to be heterogeneous in 
nature, exhibiting combinations of epithelial and mesenchymal  
traits143. This reintroduces the role of the EMT program in the 
process of intravasation and cancer cell dissemination. These  
clusters appear to maintain a partial EMT program which sub-
sequently may facilitate a more robust resistance to apoptosis 
and an increased propensity to seed and survive at secondary  
sites191. This resistance to anoikis (apoptosis induced by  
inadequate or inappropriate cell–cell or cell–ECM interactions) in  
CTCs has been shown to be driven through various mechanisms, 
including expression of the tyrosine kinase receptor TrkB192  
or activation of non-canonical Wnt signalling193.

Transit within the circulatory system represents one of the 
most vulnerable times for disseminating cancer cells, and the  
importance of cooperative host–tumour cell interactions during 
this time should not be underestimated194 (Figure 1iii). During  
transit, there is significant cross-talk among tumour cells, accom-
panying CAFs, platelets, leukocytes, and endothelial cells.  
These cell–cell contacts and paracrine cell–cell interactions 
occur both temporally and spatially during transit and at sites of  
extravasation. For example, CTCs have been shown to associ-
ate with activated platelets, which secrete protective signals, 
such as transforming growth factor-beta (TGF-β), which in turn  

upregulates nuclear factor kappa B (NFκB) signalling in 
CTCs, potentially substituting for stromal interactions found at  
primary and secondary sites195. Furthermore, these platelets 
have been shown to form protective shields via the deposition of  
fibrinogen196 and tissue factor (TF)197. In some cases, it has been 
shown that disseminating tumour cells carry with them primary 
tumour CAFs along with stromal ECM components198, which 
subsequently act to facilitate seeding and overt colonisation at  
secondary sites.

Tools and technologies for the detection of CTCs in the periph-
eral blood are continuously evolving, yet none has reached 
the ‘gold’ standard of sensitivity and, more importantly, of  
specificity172. Nonetheless, every one of these studies supports 
a critical role for CTCs in metastatic dissemination. To that  
end, it is now widely accepted that targeting CTCs during  
haematogenous transport within the circulation may offer an 
effective approach to targeting the metastatic process, which  
could lead to the reduction of cancer morbidity and mortality 
in early stage cancer patients without already-established  
metastatic diease199.

Of note, one of the major forces that CTCs experience during 
transit in the circulation is shear stress. The shearing forces  
exerted on CTCs are caused by the movement of blood over the 
cell surface. It is heavily influenced by both the viscosity and the  
velocity of the blood flow200. It is perhaps not surprising that 
tumour cells have been shown to be more resistant to haemo-
dynamic shear stress than normal cells201,202 and that this  
feature is crucial not only to survival in the bloodstream 
but also to the activation of mechanotransduction signalling  
during attachment at and extravasation into secondary sites203. 
Furthermore, the generation of tumour microparticles from 
CTCs attached to vessel walls as a result of shear flow in  
capillaries within the lung vasculature has been shown to 
modulate local immune cell behaviour and confer anti- 
metastatic protection at metastatic sites204.

Next stop, please! Tumour cell extravasation
For decades, it was thought that the specific patterns of  
metastatic dissemination observed in patients could be explained 
solely by the dynamics of haematogenous flow7. Not until the 
1970s was it demonstrated that regardless of the importance of  
blood flow, successful metastatic colonisation could occur 
only at certain organ sites205,206. These studies were the first to  
provide experimental evidence for organotropic metastasis. Since 
then, several studies have dissected the various elements of CTC 
attachment to and extravasation at secondary sites of metasta-
sis. These studies have uncovered critical elements, such as the 
ability of CTC clusters to manoeuvre through capillary-sized  
vessels, doing so as a single-cell chain held together through  
adhesive interactions207. Another study demonstrated that 
CTC induction of ATP secretion from accompanying activated  
platelets is able to render the vasculature more permeable by 
acting on P2Y2 receptors expressed by endothelial cells208.  
Similarly, CTC-driven platelet-induced alpha-granule secretion 
contains a wide range of metastasis-promoting growth factors 
and cytokines that support cancer cell extravasation and survival  
at secondary sites195.
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A recently discovered phenomenon, which has also been 
shown to play a role in metastasis of some solid tumours, is the  
production of neutrophil extracellular traps (NETs)209. NETs 
are extracellular DNA structures that are typically ‘cast’ by neu-
trophils in response to infection. However, it has been shown that 
some metastatic cancer cells can stimulate neutrophils to form  
NETs, which ultimately act to support metastatic colonisation 
of secondary sites, and these NETs have been observed in both  
in vivo models and clinical samples210.

Other work has shown that CTC secretion of the CCL2 chem-
okine is capable of directly inducing vascular permeability211 
and subsequently recruiting pro-tumourigenic CCR2 receptor-
positive inflammatory monocytes to sites of extravasation212. In 
addition, the presence of distinct and specific ‘tumour microen-
vironment of metastasis’ (so-called TMEM in models of breast 
cancer dissemination) has been described in both genetically 
engineered models of breast cancer and human breast cancer 
patients. It has been shown, using intravital microscopy, that a 
local loss of vascular junctions at TMEMs, mediated by TIE2high  
macrophage-derived VEGF-A, facilitates cancer cell intravasa-
tion and metastasis213 (Figure 1v). Additional factors have been 
implicated in altering vascular permeability, secreted either  
locally by tumour cells within the vasculature or systemically 
from the primary tumour214, to facilitate the alteration of vascular  
endothelial barriers, including microRNAs (miRs)215, secreted 
factors such as VEGF, a disintegrin and metalloproteinase  
domain-containing protein 12 (ADAM12), epiregulin, cyclooxy-
genase-2, matrix metalloproteinase-1 (MMP-1) and MMP-2216, 
angiopoietin-like 4217, angiotensin II (ANG-2), MMP-3 and  
MMP-10218, and finally stromal cell-derived factor 1 (SDF1)219. 
Many of these factors have also been implicated in the genera-
tion of pre-metastatic niches (reviewed elsewhere220). Interest-
ingly, a novel mechanism has recently been described in which 
CTCs, once arrested on the endothelial wall of blood vessels, can  
extravasate and coordinate the formation of overt lung metas-
tases via the induction of programmed necrosis (necroptosis)  
in endothelial cells of vessel walls221. Neutrophils also appear 
to play an important role in regulating the survival and  
extravasation of CTCs from the bloodstream, through 
direct interaction222,223, regulation of natural killer (NK) cell  
activity via secretion of IL1β or MMPs224 (or both), or altering 
cytotoxic CD8+ T-cell responses225. Finally, only very recently, 
researchers have shown that haemodynamic forces and the 
speed of circulatory flow alone may be critical components of  
tuning the arrest, adhesion, and extravasation of CTCs from the  
circulation226 (Figure 1v).

Building new homes: metastatic seeding and tissue 
colonisation
Despite estimates that over 1 million cancer cells per 1 g of tumour 
tissue enter the bloodstream daily139, only a very small propor-
tion survive, escape, and become DTCs. An even smaller frac-
tion of these DTCs (that do not become dormant, as discussed 
in the next section) are capable of progressing toward overt  
metastases188. It is known that the DTC microenvironment plays 
an important role in sustaining their survival, regulating their  
growth, and conferring resistance to therapy227. The ‘seed and  

soil’ hypothesis proposed by Stephen Paget in 1889 broadly  
states that colonisation of a secondary site is, in part, dependent 
on the interactions between tumour cells and the secondary host  
tissue. That is, inadequate support or cues from secondary  
tissues, mediated by local resident and recruited cells as well 
as the ECM, significantly contribute to the inefficiency of the  
metastatic process.

There is still much discussion as to whether the ability of 
a tumour cell to overtly colonise a secondary organ is pre- 
programmed at the primary site prior to leaving or educated upon  
extravasation at these secondary sites or, more likely, a com-
bination of the two. There is a large body of work addressing 
how the establishment of pre-metastatic niches and primary  
tumour-driven remodelling of sites of future metastasis53,228  
cross this divide. Work in the PyMT model of breast  
carcinogenesis has shown that a rare population of primary 
tumour-derived cancer stem cells can initiate metastases in 
the lung and that, accordingly, the ability of these tumours to  
metastasise is dependent on the induction of periostin expres-
sion in secondary sites in order to maintain cancer cell  
stemness229. Furthermore, the oxygen-rich environment in 
the lung may act to restrain T-cell responses to extravasating  
cancer cells and induce tolerance to provide a more hospitable 
environment for metastatic colonisation230. Similarly, the abil-
ity of DTCs to physically interact with the ECM, at least in the  
context of the lung, appears to be contingent upon their  
ability to form filopodium-like protrusions that are rich in 
integrin beta-1231. DTCs that are unable to sense or respond to 
these secondary organ cues thus fail to activate the proliferative  
programs, driven primarily by FAK, SRC, and ERK signal-
ling, that are necessary for overt metastatic colonisation92,232. As 
such, it has been shown that targeting Src and ERK signalling  
pathways may be a potential therapeutic approach to block  
overt metastatic colonisation of the lung by breast cancer cells233.

Overt colonisation of tissues likely requires a series of tissue-
specific events, which may explain the propensity of certain  
tumours for metastatic organotropism. For example, in the  
brain, DTCs encounter reactive astrocytes that produce  
plasminogen activator, which leads to the production of  
plasmin and induces DTC death. The ability of DTCs to survive 
in this hostile environment is therefore dependent upon the abil-
ity of the cancer cell to express serpins234, which typically are  
produced by neurons and protect against plasminogen activator- 
mediated cell death235. Conversely, serpins have also been  
shown to be important in stromal remodelling and local  
invasion at the primary tumour in pancreatic cancer236, highlight-
ing tissue- and context-dependent roles for this family across 
multiple stages of metastatic dissemination. Thus, the ability  
of DTCs to acquire or express markers of non-malignant  
resident cells in tissues, and in doing so mimicking these cells, 
could be a malignant adaptation required for survival and  
overt secondary organ colonisation. In another example, a study 
has shown that metastasising breast cancer cells arriving in the  
brain display a GABAergic phenotype similar to that of  
neuronal cells, which enhances their survival and subsequent  
metastatic colonisation237.
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In addition to cell-intrinsic properties of the arriving cancer 
cells, their ability to subvert resident stromal cells to initiate  
remodelling programs in these new and distinct environments, 
such as the bone238, is critical in facilitating overt colonisation.  
Thus, the local stroma, comprising ECM, non-malignant cells, 
and the signalling molecules they produce, is an integral and 
vital component of secondary niches that, together with the  
underlying genetic aberrations in the cancer cells, determines 
the growth characteristics, morphology, and aggressiveness of  
disseminating tumour cells239. For example, lung colonisation 
by breast cancer cells is enhanced by the deposition of the ECM  
components tenascin C133 and periostin229 or post-translational 
cross-linking of collagens86.

It is now well established that sites of future metastasis within  
secondary organs are not merely the passive receivers of CTCs 
but instead are selectively and actively modified by the primary  
tumour prior to the arrival of CTCs220. The term pre- 
metastatic niche was coined over a decade ago to describe the 
systemic modification of secondary tissue microenvironments  
to facilitate subsequent metastatic colonisation by disseminat-
ing tumour cells240. In order to maximise the chance of overt  
metastatic colonisation of secondary organs, the combined  
action of tumour-secreted factors and tumour-shed extracellular 
vesicles (cargo-containing vesicles that are secreted by cells into 
the extracellular space and can bind to and be incorporated into  
other target cells to facilitate cell–cell communication) is  
required to facilitate this pre-metastatic niche formation. 
Together, their coordinated action induces changes such as the 
induction of vascular leakiness241, remodelling of stroma and  
ECM90,242, along with systemic effects on the immune system. 
Many of these secreted factors are transported within cancer 
exosomes (extracellular vesicles, typically 40 to 100 nm, shed 
from the surface of cells) possessing unique surface marker  
compositions, which act to facilitate guiding of the exosomes 
and their cargo to specific secondary organs of future  
metastasis243–246. For example, pancreatic cancer cell-secreted  
exosomes have been shown to accumulate in secondary tissues 
such as the liver and lead to the generation of pre-metastatic  
niches through activating hepatic stellate cells and Kupffer 
cells to drive ECM remodelling243 and can be detected in the  
circulating blood, offering promise of potential biomarker  
applications. Given the technical limitations of studying these 
early pre-metastatic events in vivo and in the clinic, there has  
recently been a push to develop engineered niche-mimicking  
biomaterials to better study this process247,248.

Lying low: disseminated tumour cell dormancy
Dormancy is defined as the latent state in which (tumour)  
cells remain quiescent and are reversibly arrested in the G

0
 

phase of the cell cycle188. When tumour cells enter a patient’s  
bloodstream, the cells transit to and lodge in various microen-
vironments such as niches in the lung tissue or bone marrow.  
Upon arrival, the tumour cells may become dormant. These  
dormant tumour cells can spend months, years, and even dec-
ades in these niches, which act as a safe haven, in many cases  
providing protection from adjuvant therapies28. Dormant tumour 
cells are typically seen as chemotherapy-resistant because they 
are not actively dividing; however, the molecular mechanisms  

underlying this resistance are still poorly understood227. There 
are also emerging arguments in the field that, rather than wait for  
these metastases to emerge before initiating treatments, it may 
be more effective to target the dormant metastatic seeds or their  
dormancy-inducing niches before they re-awaken (or both)227 
or, perhaps more controversially, actively stimulate their re- 
awakening during adjuvant therapy.

In some situations, studies of metastatic tumour dissemina-
tion have shown that primary tumour-driven mechanisms act to  
counter the overt colonisation of secondary tissues and thereby 
induce dormancy. For example, rather than forming pre- 
metastatic niches (discussed above) that act to increase the effi-
ciency of metastatic colonisation, tumours may create specialised 
microenvironments in which tumour cells can become quies-
cent, allowing DTCs to survive in a dormant state. These ‘sleepy  
niches’ or ‘silent’ pre-metastatic niches220 result in the extensive 
delay in the development of overt metastasis. DTCs thus appear 
to be able to persist long term within organs, re-awakening 
many months or years later when the host organs inevitably  
succumb to overt colonisation249. Of note, in addition, there is  
experimental evidence to show that DTCs can persist in other 
organs that rarely develop metastases250. However, what governs 
the re-awakening of dormant DTCs is still the topic of much  
debate.

An important factor determining the persistence of dormant  
DTCs appears to be their ability to escape the body’s immune 
surveillance. Previous work has shown that DTCs can evade  
NK cell clearance by decreasing the expression of NK ligands, 
a program that appears to be tightly coupled with their entry 
into a quiescent state251. Similarly, it appears that, in some cases, 
DTCs can be held in a state of dormancy by CD4+ and CD8+  
T cells252–254. There are also several factors that have been 
shown to induce or sustain (or both) the dormancy of DTCs in  
secondary tissues and they tend to be organ specific. For exam-
ple, bone morphogenetic protein 4 (BMP4) is present in many 
tissues, yet elevated levels in the lung contribute to modulating  
prostate255 and breast cancer256 cell dormancy. Breast cancer 
cells lodged within the bone marrow can activate Src signalling 
and expression of the CXCR4 receptor which in turn activates  
pro-survival signalling in response to bone-derived CXCL12257. 
Similarly, in the bone marrow, secreted factors such as BMP7 
and TGF-β2, as well as ECM components such as secreted pro-
tein acidic and rich in cysteine (SPARC), have been shown to  
modulate HNSCC258 and prostate cancer259,260 cell dormancy. 
Thrombospondin-1 (TSP1) produced from mature endothelial 
cells and deposited into the microvascular basement membrane 
is able to confine DTCs to a quiescent state in some tissues261.  
However, given the ubiquitous nature of TSP1 in other tissues, 
it strongly indicates that a co-operative interaction with other  
factors present within each tissue-specific context may be at  
play. In this particular study, the authors elegantly dissect the 
role of vascular niches, demonstrating that TSP1 suppresses  
DTC outgrowth in both the lung and the bone marrow but not in 
the brain261.

Both inflammation and ECM remodelling programs elicit  
profound effects on cell behaviour, including DTCs and  
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cellular dormancy programs. The outgrowth of previously  
dormant DTCs in the lung has been shown to be activated by 
both inflammation262 and TGF-β-driven fibrotic type I collagen  
remodelling263. Similarly, other tissue-resident cells, including 
osteoblasts and osteoclasts, have been shown to control the 
switching of dormancy programs within the endosteal niche in  
multiple myeloma264.

Clinical translation and implications
Clinically, metastatic disease represents a major challenge and 
is responsible for more than 90% of deaths associated with 
solid tumours265. Conventional drugs for cancer treatment are  
largely cytostatic drugs aimed at targeting intrinsic cancer cell 
mechanisms such as cell cycle progression. Although in many  
instances they are successful in reducing the size of primary 
tumours, they have been shown to have little effect on DTCs,  
potentially owing to the increased heterogeneity and signifi-
cant mutational burden of DTCs, which facilitates efficient  
evasion of cell death1,265,266. Furthermore, evidence suggests that 
some chemotherapies may trigger metastasis through increasing  
intravasation267. Thus, much research has turned to finding  
drugs which interfere with cell motility, targeting phases such 
as cancer cell invasion and migration through the surrounding  
ECM265, intravasation, and extravasation.

Treating cancer metastasis is further challenged by the  
logistical and indeed ethical difficulties in evaluating metas-
tasis formation and development in clinical trials. Running  
metastasis-preventing trials on patients with early stage cancer 
using survival and reduction of metastases as the endpoint is 
not always viable, as these studies will be lengthy and will 
require a large number of patients with otherwise relatively good  

survival prospects. One must also remember that the metastatic 
pathway is a dynamic, ongoing process, which has, in many 
patients, already occurred before primary diagnosis, mean-
ing that successful treatment would require targeting of early or  
already-established metastasis rather than the initial process of 
dissemination and colonisation. Similarly, it is highly unlikely  
that a single metastasis-preventing agent will be maximally 
effective, and so co-targeting multiple elements of the metastatic 
process, coupled with new clinical trial designs, is required, 
though not always readily achievable, to improve patient  
outcome and improve survival. However, given the current  
landscape, there is still much work needed before successful  
targeting of established metastasis can become a clinical reality.
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