
nutrients

Review

Curcumin for the Management of Periodontitis and
Early ACPA-Positive Rheumatoid Arthritis: Killing
Two Birds with One Stone

Eleni Asteriou, Athanasios Gkoutzourelas, Athanasios Mavropoulos, Christina Katsiari,
Lazaros I. Sakkas and Dimitrios P. Bogdanos * ID

Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences,
University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece;
eleniaster91@gmail.com (E.A.); gkoutzou@med.uth.gr (A.G.); mavropoulos_thanos@hotmail.com (A.M.);
cgk2005@gmail.com (C.K.); lsakkas@med.uth.gr (L.I.S.)
* Correspondence: bogdanos@med.uth.gr; Tel.: +30-241-350-2880; Fax: +30-241-350-1016

Received: 27 June 2018; Accepted: 12 July 2018; Published: 16 July 2018
����������
�������

Abstract: We propose curcumin as a preventive measure to avoid/manage periodontitis (PD),
and as a natural immunosuppressant for rheumatoid arthritis (RA). PD, mainly caused by
Porphyromonas gingivalis forming biofilm and leading to tooth decay, is a major public health issue
and a risk factor for the development of RA in humans. P. gingivalis is able to trigger experimental
autoimmune arthritis in animal models and in humans can induce citrullinated peptides, which
not only are a source of anti-citrullinated antibodies (ACPAs), but also participate in autoreactive
responses and disease development. Curcumin appears to have efficient anti-bacterial activity
against P. gingivalis infection and biofilm formation. In addition to antibacterial, anti-oxidant,
and anti-inflammatory action, curcumin exerts unique immunosuppressant properties via the
inhibition of Th17 pro-inflammatory responses and promotion of regulatory T cells, thus suppressing
autoimmunity. We introduce curcumin as a natural product for the management of both PD and
RA-related autoreactivity, possibly also as a preventive measure in early RA or individuals at high
risk to develop RA.
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1. Introduction

Rheumatoid arthritis (RA) is an autoimmune rheumatic disease characterized by
immune-mediated joint inflammation, which leads to joint destruction, loss of joint function,
and disability, if left untreated [1–3]. In fact, joint erosion can develop early during the first three
months of the disease in 25% of RA patients and mostly during the first two years of the disease [4].

The immunopathogenesis of RA has been extensively investigated and it is well established
that genetic factors, predominantly HLA-DRB1 shared epitope (HLA-DRB1SE) alleles [5,6],
epigenetic, and environmental factors are involved in the development of the disease [1,2,7–10].
In immunopathological terms, proinflammatory Th1 cells and B cells and proinflammatory soluble
mediators (TNFα, IFNγ, IL-6) are involved in the pathogenesis of the disease [11]. A better
understanding of the underlying mechanisms of the disease has led to its therapeutic management
with synthetic disease-modifying antirheumatic drugs (sDMARD) and novel biological agents that
target specific molecules involved in disease pathogenesis, which can prevent joint damage and disease
progression, and improve disease prognosis [2,9,11–13]. Since these therapies can have potentially
toxic side effects, it is very important for practicing physicians to diagnose the disease early and
accurately, especially more aggressive forms, in order to select the appropriate treatment [14,15].
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2. Curcumin as a Remedy for the Treatment of Rheumatoid Arthritis: Data from Animal Studies

Curcumin, a traditional remedy and major curcuminoid found in the spice turmeric, has been used
for centuries for treating chronic inflammatory diseases [16–19]. Recent studies have demonstrated
the decisive role of curcumin in treating autoimmune diseases [19–22], including experimental
autoimmune arthritis, the animal model of rheumatoid arthritis (RA) [23–38]. How curcumin exerts its
beneficial effect in experimental arthritis is under investigation [23–38]. It appears that curcumin has
the ability to decrease pro-inflammatory Th1 and Th17 cells and increase regulatory T cells [23–39]
(Figure 1). Recent evidence shows that reciprocal regulation of Th17/Treg cells (decreasing Th17 cells
and increasing Tregs) by administration of IL-10-producing cells (Bregs), can suppress collagen-induced
arthritis (CIA) and thus IL-10-producing Bregs can be considered an attractive therapeutic strategy
for T cell-mediated autoimmune rheumatic diseases (ARDs) such as RA [40–42]. Currently, there is
no available approved medication able to efficiently modulate the Th17/Treg/Breg balance in vivo
in RA. Curcumin, as a bioactive immunomodulatory agent, has well-documented actions against
proliferating lymphocytic populations [43], yet its role in modulating Th17/regulatory cell responses
in ARDs remains largely unexplored. However, there are studies on murine models of experimental
arthritis investigating the role of curcumin; these are summarized in Table 1.

Table 1. Curcumin’s biological effects in animal models of experimental arthritis.

Animal Model Biologic Effect I Biologic Effect II Refs

CIA-rat model
Suppressed the inflammatory

response and attenuated CIA by
targeting the “gut–brain axis”

Increased vagus nerve function
directly correlated with the
activity of the cholinergic

anti-inflammatory pathway

[23]

CIA-rat model

Anti-arthritic efficacy through
somatostatin generation via

cAMP/PKA and Ca (2+)/CaMKII
signaling pathways in the

small intestine

Oral administration induced
dramatic amelioration of

arthritis symptoms
When injected intraperitoneally,

anti-arthritic effects were lost

[24]

CIA-rat model
Therapeutic effect on RA similar

to methotrexate when
injected intravenously

Curcumin formulated into
oil–water nanoemulsions (Ns)

overcame the low oral
bioavailability and maintained

anti-arthritic potential

[25]

CIA-rat model Potentiated the anti-arthritic effect
of prednisolone

Pronounced beneficial effect on
joint swelling, leucocyte count,

and biochemical parameters
compared with prednisolone

[26]

CIA-rat model
Synergistic activity with

methotrexate in ameliorating
induced arthritis

Reduced hepatotoxicity in
experimental animals [27]

CIA-rat model
Anti-inflammatory effect in vivo

combined with
tetramethylpyrazine, resveratrol

Combination significantly
reduced paw swelling in acute
paw swelling and alleviates the

damage in ankle joints, cartilages,
and fibrous tissue

[28]

CIA-rat model Milk-based formulation of
curcumin prevented inflammation

increased the bioavailability of
curcumin for achieving
maximum effectiveness

[29]
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Table 1. Cont.

Animal Model Biologic Effect I Biologic Effect II Refs

CIA-rat model
Topical application of curcumin in

combination with emu oil
ameliorated induced arthritis

Curcumin–emu oil combination
significantly reduced levels of
pro-inflammatory mediators

[30]

CIA-rat model
Suppressed pannus formation

process that occurred in the
articular cartilage of the CIA joints

Insignificant differences of
curcumin group compared to
betamethasone treated group

[31]

CFA-Induced
monoarthritis rat model Attenuated pain hypersensitivity

Ameliorated spinal
neuroinflammation, decreased

production of inflammatory
mediators in primary cultured

astrocytes and microglia

[32]

CFA-Induced
monoarthritis rat model

Loaded in solid lipid
nanoparticles ameliorated
adjuvant-induced arthritis

Attenuated inflammatory and
immunomodulatory cascades [33]

(SCW)-induced arthritis
rat model Prevented joint inflammation

In vivo anti-arthritic efficacy of an
essential oil-depleted

turmeric fraction
[34]

CIA-DBA/1 mouse
model Inhibited IL-17 production Decreased the clinical symptoms

of CIA [35]

CIA-DBA/1 mouse
model

Suppressed inflammatory
response by inhibiting

pro-inflammatory mediators

Downregulated clinical arthritis
score, and the proliferation of

splenic T cells
[36]

CIA-DBA/1 mouse
model

Protected against
collagen-induced arthritis via

suppression of BAFF production

Decreased serum levels of IFN-γ
and IL-6, suppressed STAT-1

phosphorylation and
nuclear translocation

[37]

CIA- DBA/1 mouse
model

Suppressed production of matrix
metalloproteinases

Inhibited activation of the
PKCdelta/JNK/c-Jun pathway in

synoviocytes and chondrocytes
[38]
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Figure 1. Curcumin may play a significant role in preventing from rheumatoid arthritis through its 
antibacterial action against P. gingivalis infection and biofilm formation in patients with periodontitis; 
and modulation of the proinflammatory immune response, such as inhibition of Th17 cells and 
enhancement of IL-10 producing regulatory T cells. 

2.1. Experimental Arthritis 

The CIA model is one of the best-characterized murine models for RA. In genetically 
susceptible murine strains, such as C57BL/6 mice, the administration of type II collagen (CII) causes 
a robust and sustained T-cell response to administered CII, leading to synovitis and erosion that 
histologically resemble RA [44]. It is also a significant model for studying Th17 responses [45] as 
symptoms of CIA are markedly suppressed in mice lacking IL-17 (IL-17−/−mice) [45,46]. 
Paradoxically, the effect of curcumin on IL-17 production in CIA induced in C57BL/6 mice has not 
been thoroughly investigated. Cong et al. [47] using C57BL/6 (B6) and B6.RAG-2−/−mice have 
demonstrated that curcumin could induce tolerogenic bone marrow-derived dendritic cells that 
promote the differentiation of intestinal Tregs [47]. Some evidence of Th17 cells was documented in 

Figure 1. Curcumin may play a significant role in preventing from rheumatoid arthritis through its
antibacterial action against P. gingivalis infection and biofilm formation in patients with periodontitis;
and modulation of the proinflammatory immune response, such as inhibition of Th17 cells and
enhancement of IL-10 producing regulatory T cells.

2.1. Experimental Arthritis

The CIA model is one of the best-characterized murine models for RA. In genetically susceptible
murine strains, such as C57BL/6 mice, the administration of type II collagen (CII) causes a robust
and sustained T-cell response to administered CII, leading to synovitis and erosion that histologically
resemble RA [44]. It is also a significant model for studying Th17 responses [45] as symptoms of CIA
are markedly suppressed in mice lacking IL-17 (IL-17−/−mice) [45,46]. Paradoxically, the effect of
curcumin on IL-17 production in CIA induced in C57BL/6 mice has not been thoroughly investigated.
Cong et al. [47] using C57BL/6 (B6) and B6.RAG-2−/−mice have demonstrated that curcumin could
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induce tolerogenic bone marrow-derived dendritic cells that promote the differentiation of intestinal
Tregs [47]. Some evidence of Th17 cells was documented in C57BL/6 mice with a mutation in the
Foxp3 gene scurfin (scurfy mice) that develop polyendocrinopathy and enteropathy X-linked (IPEX)
syndrome, a lethal autoimmune disease [48]. Curcumin ameliorated IPEX syndrome by inhibiting
Th1/Th2/Th17 responses [41]. Scurfy mice on a curcumin diet survived four times longer (92.5 days)
compared to scurfy mice fed a normal diet (23 days), and in in vitro experiments curcumin decreased
the production of cytokines IFN-γ (Th1 cytokine), IL-4 (Th2 cytokine), and IL-17A (Th17 cytokine) in
CD4+ T cells [41].

Okamoto et al. [35] has reported that curcumin treatment inhibited IL-17 production in vitro
and ameliorated CIA in DBA/1 J mice. A significant anti-arthritic effect of curcumin has also been
previously demonstrated in CIA induced in DBA/1 J mice but no information has been given on
the effects on Th17 cells. Huang et al. [37] injected mice intra-peritoneally with curcumin and found
decreased levels of B cell-activating factor (BAFF), IFN-γ, and IL-6 in serum and their production by
spleen cells but gave no information on IL-17 production [37]. DBA/1 mice immunized with CII and
treated with curcumin every other day for two weeks also demonstrated reduced clinical arthritis
scores, associated with reduced expression of TNF-alpha and IL-1beta in the ankle joint, and decreased
levels of IgG2a in serum [36]. Orally administrated curcumin also suppressed the production of matrix
metalloproteinase (MMP)-1 and MMP-3 and ameliorated CIA [38]. Curcumin can also attenuate
collagen-induced inflammatory responses through the “gut–brain axis” by modulating the function of
the cholinergic system [23].

Funk et al. [34] were the first to report the anti-arthritic effect of complex turmeric extracts
containing curcuminoids in experimental arthritis induced in Lewis rats [34]. The anti-inflammatory
effect of the tetramethylpyrazine, resveratrol, and curcumin (TRC) combination in acute and chronic
inflammation was reported in vivo in CIA induced in rats [28]. The TRC combination could inhibit the
production of TNF-α, IL-1β, and IL-6 in the serum but, again, no information was available for IL-17
levels [28]. In addition, curcumin administered via the intravenous (IV) or oral route had a therapeutic
effect similar to methotrexate on adjuvant-induced arthritis in rats, an effect associated with decreased
levels of TNF-α and interleukin-1β in both synovial fluid and serum [25].

2.2. Experimental Periodontitis

In experimental periodontitis (PD), an effect of curcumin on systemic Th17 responses, gingival
IL-17A expression, Retinoic Acid Receptor-Related Orphan Receptor γt, and alveolar bone loss has
recently been described [49].

2.3. Experimental Autoimmune Encephalitis

More data on curcumin and Th17 responses are available from studies in experimental
autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS). In EAE, strong evidence
suggests that IL-17-producing T cells play a dominant pathogenic role. In EAE induced by the
MOG-peptide 35–55 in C57BL/6 mice, CD4+ Th17 cells are present both in the periphery and in the
inflamed central nervous system [50] and amelioration of EAE by curcumin treatment was through
inhibition of IL-17 production [39]. Further studies indicated that dietary curcumin inhibited the
differentiation of pro-inflammatory Th1/Th17 cells in vivo during encephalomyelitis and instead
promoted Th2 cells [51]. Curcumin appeared to silence IL-23/Th17-mediated pathology in EAE by
enhancing HO-1/STAT3 interaction in dendritic cells (DCs) [51].

3. Human Rheumatoid Arthritis: Data from Clinical Trials

Clinical data in human RA have started to emerge. Though limited, the findings from two
small clinical trials are encouraging [52,53]. The first small randomized clinical trial [52] enrolled
45 patients with active RA into three groups, receiving curcumin (500 mg) alone, diclofenac sodium
(50 mg) alone, or curcumin and diclofenac in combination. The primary endpoint was good or
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moderate Disease Activity Score (DAS) 28 response, and the secondary end point was C-reactive
protein (CRP) levels at week 8 post-treatment. Curcumin administration was safe and no adverse
events were reported. Patients in all three treatment groups showed statistically significant changes in
their DAS28 scores. DAS28 was reduced from 6.40 at baseline to 3.55 in the curcumin-alone group,
and from 6.72 to 3.89 in the diclofenac-alone group. However, CRP levels were reduced by 52% in
the curcumin-alone group but were not reduced in the diclofenac-alone group [52]. Another small
randomized, double-blind, placebo-controlled study [53] evaluated the efficacy of curcumin compared
with that of a placebo in RA patients with medium disease activity and rather low CRP levels. A novel
curcumin matrix formulation, with 10-fold bioavailability compared to unformulated 95% curcumin,
was given to all participants. Twelve patients in each group received the placebo, 250 or 500 mg of
the curcumin product twice daily for 90 days. Curcumin was well tolerated without adverse effects.
At the end of the study, there was a significant DAS28 improvement and ACR20 response in a high
percentage of patients who received curcumin at either the 250 or 500 mg dose. In the curcumin groups,
the disease improvement was accompanied by a significant decrease in markers of inflammation (CRP
and erythrocyte sedimentation rate, ESR), and rheumatoid factor (RF) levels [53]. These results are
encouraging and should be confirmed in larger trials, which will also address the safety profile of
long-term usage of curcumin or a supplement’s tolerance. In addition, the reduction of RF levels to
be found in such a short time post-treatment is unexpected and requires confirmation. There are no
reports on the effect of curcumin on ACPA levels. Nevertheless, these findings support the notion that
curcumin may indeed have beneficial effects not only in experimental models of arthritis but also in
patients with RA. The work performed in animals has hinted at the pathophysiological pathways that
could account for curcumin’s advantageous effects. Another point to be considered is the long-term
safety profile of curcumin at pharmacological dosing, which is not known at present.

4. Curcumin’s Antibacterial, Antiviral, and Antifungal Action: A Mode to Prevent
Pathogen-Induced RA?

A number of studies have investigated the antibacterial, antiviral, and antifungal activity
of curcumin [54]. Most in vitro studies clearly demonstrate extensive antimicrobial activity of
curcumin [54]. Many in vitro and in vivo studies have provided data in support of curcumin’s
inhibitory effects [55]. A characteristic example of promising data stems from studies investigating
the inhibitory effect of curcumin in Helicobacter pylori, whereby curcumin alone or more efficiently in
combination with conventional antibiotics diminishes the symptoms of gastritis and eradicates the
bacterium [56,57]. Similar results were obtained in viral pathogens including herpes viruses, placing
curcumin on the long list of natural antiviral compounds [58–60]. Candida species, Paracoccidioides
brasiliensis, and other fungi were also inhibited by curcumin [61].

Despite these promising data, more clinical trials are needed to establish the potential clinical
use of curcumin [62]. Currently, curcumin-based compounds are in use not only as part of traditional
medicine, but also as dietary supplements in several countries, including China, India, Japan, Korea,
South Africa, Thailand, Turkey, and the United States, and the list of countries increases at a fast pace.

To better understand why the antimicrobial activity of curcumin may be beneficial for a typical
autoimmune disease like RA (Figure 1), we must first understand the role of specific microbes in the
breaking of tolerance of this disease [8,63].

5. Rheumatoid Arthritis, Anti-Citrullinated Peptide Antibodies, Citrullination, and Periodontitis

The serological marker of RA is the presence of high-titer autoantibodies (autoabs), namely
rheumatoid factor (RF) and abs against citrullinated peptides (anti-CCP abs, ACPAs) [1,64–66].
ACPAs appear years before the clinical onset of RA. Of clinical importance, the presence of
peptide-specific ACPAs predict the future development of the disease in patients with undifferentiated
arthritis [4,65,67,68], raising the question of whether such autoantibodies or ACPA-producing
plasmocytes play a pathogenic role in the development of RA [69–71]. Along these lines, several



Nutrients 2018, 10, 908 7 of 17

studies have clearly demonstrated that ACPA is the most reliable prognosticator of radiographic
progression in RA [72].

Prompt therapeutic intervention at very early disease stages, a period known as the “window of
opportunity,” can slow disease onset and progression [14,15]. Of relevance, there is an ongoing debate
among investigators as to how we can manage and whether we can/must intervene in anti-CCP
(ACPA) seropositive patients with no recognizable clinical arthritis [73].

Nevertheless, upon the discovery of ACPAs, a better understanding of the immunopathogenesis
of RA has been gained [65,74]. ACPAs recognize few citrullinated peptides in early preclinical disease
states, but over time the number of recognized citrullinated peptides increases; such an increase is
accompanied by elevated levels of pro-inflammatory cytokines and finally clinical disease [70,75].
The fact that the presence of ACPAs, particularly those against specific citrullinated peptides, is
associated with more aggressive/severe disease supports the notion that such peptides are indeed
makers of the disease rather than markers of it [11,65,73,76].

Citrullination is a post-translational modification of proteins caused by peptidyl arginine
deiminases (PADs) [77,78]. At the experimental level, it has been shown that citrullination can
form neoantigens that activate T cells. Such T helper (Th) cells can offer antigen-specific help to B
cells to differentiate into ACPA-producing plasma cells [8,79,80]. Convincing data have shown that
citrullination amplifies the affinity of peptides to HLA-DRB1SE alleles [81,82]. Of interest, T cells can
also recognize PAD. Such an ability of T cells has a clear implication, namely the capacity of T cells to
help plasmocytes produce Abs against hapten/carrier citrullinated proteins bound to PAD [83].

The extent to which pathogens play a role in the development of RA started to unfold when
it became clear that citrullination induced by Porphyromonas (P. gingivalis), a pathogen of PD, can
be a source of citrullinated peptides (such as neoantigens) that can then break immunological
tolerance [63,84–87]. P. gingivalis produces gingipains, proteases that cleave proteins at peptidyl
arginine, and PAD (PPAD) that preferentially citrullinates C-terminal arginine, thus creating
neoantigens [88]. There is evidence of P. gingivalis infection years before the onset of clinical RA [87,89].

There is an association between P. gingivalis infection and ACPA-positive RA [8,63,90,91].
Furthermore, in ACPA-positive RA an interaction between markers of P. gingivalis infection,
smoking, and HLA-DRB1SE was reported [92]. ACPA to citrullinated α-enolase peptide 1 (CEP1),
an immunodominant peptide in RA, showed high homology with α-enolase from P. gingivalis and
cross-reacted with citrullinated recombinant P. gingivalis enolase [93]. P. gingivalis inoculation of mice
caused PPAD-dependent exacerbation of CIA [94]. In addition, oral inoculation of P. gingivalis in
HLA-DR1 transgenic mice transiently increased Th17 cells in regional lymph nodes and peripheral
blood, induced a massive increase in proinflammatory cytokines, and exacerbated CIA [95]. P. gingivalis
can also affect inflammation through gut microbiota (discussed later) [96,97].

Another causative agent of PD, Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans),
also causes citrullination of human proteins through the production of leukotoxin A [84,98].
Furthermore, HLA-DRB1SE is associated with ACPA only in RA patients exposed to
A.actinomycetemcomitans [98]. Epstein–Barr virus (EBV), which infects epithelial cells and B cells,
also causes ACPA production. ACPAs against peptides derived for EBV nuclear antigen (EBNA)1
(PCV1) and EBNA2 (PCV2) cross-react with human citrullinated proteins [99]. In addition, ACPAs
against PCV1 and PCV2 and ACPAs against histone-4-derived citrullinated peptide (HCP1) and HCP2
appear years before the onset of clinical RA and predict with a high risk ratio (OR = 8 to 19) the
subsequent development of RA [90]. EBV is also a cause of PD [100].

Newly diagnosed, untreated RA patients show a high prevalence of PD and significant changes to
their oral microbiome, compared to those without RA [101]. Also, microbiome changes seen in saliva
and dental samples appear to be restored, at least in part, after efficient treatment of the underlying
disease [102].

P. gingivalis can cause arthritis through changes of gut microbiota. Orally administered P. gingivalis
changed the gut microbiome with a decrease in Bacteriodetes phylum, increased Th17 cells in mesenteric
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lymphocytes, increased intestinal permeability, and aggravated CIA [96,97,103]. P. gingivalis DNA was
also detected in synovial tissue from RA patients. More interestingly, P. gingivalis DNA in synovial
tissue was detected more frequently in HLA-DRB1*04-positive than HLA-DRB1*04-negative RA
patients [104]. These findings suggest that molecular mimicry between dysbiotic bacteria and humans
may operate in RA as well. The proiflammatory milieu of periodontitis exacerbates arthritis as DNA
from periodontopathogenic bacteria stimulates macrophage IL-6 and TNFa production [105].

PD and smoking, the two known environmental risk factors for RA, argue in support of the
concept that an immune response mounted at mucosal sites provides the impetus for the initiation
of a series of events that culminate in losing immune tolerance and the perpetuation of autoreactive
responses leading to RA [106–108]. An excellent Swedish study in twins (from the Swedish Twin
Registry) has shown that among 12,590 twins, 350 (2.8%) had ACPA (including 124 (1% of the total or
35.2% of the ACPA positive)) [109]. A clear association was found between smoking and HLADRB1SE
and the ACPAs’ presence [109]. The authors concluded that environmental and lifestyle (e.g., smoking,
PD) rather than genetic factors may play a more important role in the production of ACPAs [109].

Gingival grevicular fluid collected from the space between the tooth and gingival mucosa from
patients with PD, not only shows marked citrullination, but also mirrors the hypercitrullination in RA
joints; on the other hand, it shows minimal citrullination in healthy individuals without PD [98].

PD is highly prevalent among adults in most developed countries around the globe [110].
It is a chronic disease associated with the development of a pathogenic bacterial biofilm of dental
plaque. This bacterial biofilm is one of the most diverse microbial ecosystems within the human
body, involving approximately 700 different bacterial species, the most prominent of which are
Porphyromonas gingivalis, Prevotella intermedia, and A. actinomycetemcomitans [111]. The encounter
of the host’s immune system with these pathogenic bacteria is responsible for the initiation of an
immune-mediated inflammation, which ultimately leads to the destruction of periodontal tissues
and the tooth. PD is a major public health issue affecting approximately 15% of the adult population
worldwide. The socioeconomic impact of the disease is huge and attempts to efficiently manage
the disease are still lacking [110]. Surgical intervention, scaling, and root planing accompanied by
antibiotic therapy are widely used measures to handle PD. However, their effect is limited, short-term,
and may have adverse side effects, the most profound being antibiotic resistance in those undergoing
long-term antibiotic treatment [112]. Thus, there is an agreement among investigators that the
most efficient means must be non-invasive, preventive measures to avoid the establishment of PD
and its deleterious effects via control of the infection and the development and biofilm formation.
Towards this, several dietary compounds/supplements have been suggested as efficient and safe,
such as plant-originated polyphenol extracts [113], which exert antibacterial (and anti-oxidant or
anti-inflammatory), in particular anti-P. gingivalis activity, such as cranberries, gallic acid, quercetin,
naringin, and, more recently, curcumin.

6. Prevention of Early RA: Fighting Periodontitis

Since directly or indirectly citrullinated peptides, ACPAs, and autoreactive lymphocytes specific
for such peptides are involved in the pathogenesis of RA, preventive measures must be taken to control
or, even better, prevent the development of the vicious circle that places citrullinated peptides as the
key player [14,15,64,65,73,114].

If PD induced by P. gingivalis or other pathogens is a key factor participating in the loss of tolerance
that characterizes early RA [85,89,91,94,104,107,115,116], a key preventive measure would be efficient
treatment of PD, i.e., infection by P. gingivalis or other PD-related oral pathogens (Figure 1). To this end,
lessons must be learned from the work performed on this topic by researchers in the past [117–129].

Curcumin and Oral Hygiene: Curcumin Inhibits the Growth of P. gingivalis and Prevents Periodontitis

Following the above argument, an obvious intervention to reduce the risk of ACPA production
is to maintain good oral hygiene and treat PD. The rationality of this approach is to stop feeding
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autoantigens. It becomes apparent that remedies, such as curcumin, could be used as part of preventive
measures, especially if they have an effect on the management of PD. Indeed, investigators have studied
the effect of curcumin in PD, mainly its ability to inhibit P. gingivalis [130]. The lipopolysaccharide
(LPS) of P. gingivalis stimulates cytokine secretion in immune cells, and has been considered a
major cause of inflammation in PD. Macrophages are prominent cell subsets at periodontal sites
of inflammation and the effect of curcumin on macrophages stimulated with P. gingivalis LPS has been
studied [117]. TNF-alpha and IL-1beta expression was inhibited in a dose-dependent manner when
the murine macrophage RAW264.7 cell line was pre-treated with various concentrations of curcumin
and stimulated by P. gingivalis LPS [117]. Also, curcumin can inhibit P. gingivalis LPS-induced COX-2
expression, mainly due to the inhibition of the NF-κB pathway [119]. Curcumin also downregulated
NF-κB and NF-κB-regulated genes (vascular endothelial growth factor, matrix metalloproteinase 9,
cyclo-oxygenase-2) in an orthotopic mouse model of pancreatic cancer [131].

Curcumin can exert antibacterial activity on a series of periodontopathic bacteria, including
P. gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Treponema denticola. Bacterial growth
was inhibited even at very low concentrations of curcumin, as 20 µg/mL curcumin inhibited the growth
of P. gingivalis biofilm formations by >80%, suggesting that, at least in vitro, this nutrient can be a potent
agent for preventing periodontal diseases [130]. Amongst polyphenols, both curcumin and quercetin
are able to alter the architecture of mature multi-species biofilms; however, only curcumin-treated
biofilms display significantly reduced metabolic activity [132]. Local curcumin was clinically effective
and reduced the microbial load in patients with chronic PD [124].

7. Unresolved Issues

Curcumin, the most bioactive curcuminoid of turmeric, has relatively poor oral bioavailability in
humans due to low solubility in aqueous solvents, poor stability and absorption, and rapid elimination
from the systemic circulation [133]. Such disadvantages may limit its therapeutic application, including
fighting or preventing the development of RA. Multiple heterogeneous approaches have been applied
to overcome such obstacles, involving the development of curcumin-based nanoparticle formulas,
curcumin structure modifications, metabolism inhibitors-based administration, and the development
of curcumin prodrugs to improve bioactivity and bioavailability and to optimize its antimicrobial,
anti-oxidant, and anti-inflammatory potential [134,135]. This may assist efforts to fight PD, as well
as prevent RA, especially in individuals at high risk, such as those who carry susceptible genes
(i.e., the HLA–DRB1SE genes). The data are still limited and safe conclusions are difficult to draw.
An increasing number of reports, mainly on the Internet, suggest that turmeric (alone or in combination
with coconut oil) as a surplus for efficient whitening of teeth, appears attractive, but the data are still
lacking. Nevertheless, natural compounds such as turmeric’s curcumin, which convincingly show
both RA-related anti-bacterial activity and immunosuppressant/regulatory action, are ideal candidates
to focus on in the years to come.
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