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1Université Côte d’Azur, Inria, CNRS, LJAD, McTAO team, Sophia Antipolis, France
2Department of Mathematics, University of York, York YO10 5DD, UK

CM, 0000-0002-8557-1149; HG, 0000-0001-8053-9249

The inertialess fluid–structure interactions of active and passive inextensible

filaments and slender-rods are ubiquitous in nature, from the dynamics of

semi-flexible polymers and cytoskeletal filaments to cellular mechanics and

flagella. The coupling between the geometry of deformation and the physical

interaction governing the dynamics of bio-filaments is complex. Governing

equations negotiate elastohydrodynamical interactions with non-holonomic

constraints arising from the filament inextensibility. Such elastohydro-

dynamic systems are structurally convoluted, prone to numerical errors,

thus requiring penalization methods and high-order spatio-temporal propa-

gators. The asymptotic coarse-graining formulation presented here exploits

the momentum balance in the asymptotic limit of small rod-like elements

which are integrated semi-analytically. This greatly simplifies the elastohy-

drodynamic interactions and overcomes previous numerical instability. The

resulting matricial system is straightforward and intuitive to implement,

and allows for a fast and efficient computation, more than a hundred times

faster than previous schemes. Only basic knowledge of systems of linear

equations is required, and implementation achieved with any solver of

choice. Generalizations for complex interaction of multiple rods, Brownian

polymer dynamics, active filaments and non-local hydrodynamics are also

straightforward. We demonstrate these in four examples commonly found

in biological systems, including the dynamics of filaments and flagella.

Three of these systems are novel in the literature. We additionally provide a

Matlab code that can be used as a basis for further generalizations.
1. Introduction
The fluid–structure interactions of semi-flexible filaments are found everywhere

in nature [1–3], from the mechanics of DNA strands and the movement of poly-

mer chains to complex interaction involving cytoskeletal microtubules and actin

cross-linking architectures and filament bundles and flagella [4–18]. The elasto-

hydrodynamics of filaments permeate different branches in mathematical

sciences, physics and engineering, and their cross-fertilizing intersects with

biology and chemistry. The wealth of theoretical and experimental studies on

the movement of semi-flexible filaments, termed here as filaments, is extensive,

thus reflecting the fundamental importance of the physical interactions marrying

fluid and elastic phenomena. Hitherto the elastohydrodynamics of active and

passive filaments have shed new light into bending, buckling, active matter

and self-organization, as well as bulk material properties of interacting active

and passive fibres across disciplines [4–13,19–21].

The movement of semi-flexible filaments bridges complex fluid and elastic

interactions within a hierarchy of different approximations [22]. Here, we focus

on systems governed by low Reynolds number inertialess hydrodynamics [23].

Both the hydrodynamic and elastic interactions of filaments are greatly simplified

by exploiting the filament slenderness [1,22], reducing the dynamics to effectively

a one-dimensional system [24]. A variety of model families have been developed
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exploiting such slenderness property, and thus it would be a

challenging task to review the wealth of theoretical and

empirical developments to date here. Instead we direct the

reader to excellent reviews on the subject [25–28].

In a nutshell, two theoretical descriptions are popularly

used: the discrete and continuous formulation. In discrete

models, such as the beads model, gears model, n-links model

or similarly worm-like chain models (see [15,16,21,27,29–37]),

the filament is broken into a discrete number of units, such as

straight segments, spheres or ellipsoids. The elastic interaction

coupling neighbouring nodes/joints is described via con-

stitutive energy functionals or via discrete elastic connectors

encoding the filament’s resistance to bending. The shape

of each discrete unit defines the hydrodynamical interaction,

i.e. hydrodynamics of spheres for the beads and gear model,

and slender-body hydrodynamics for straight rod-like

elements. Continuous models, on the other hand, recur to par-

tial differential equation (PDE) systems to describe the

combined action from fluid–structure interactions [11,19]. The

dynamics arises through the total balance of contact forces

and moments along the filament [1]. This formalism results

invariably in a nonlinear PDE system coupling a hyperdiffusive

fourth-order PDE with a second-order boundary value pro-

blem (BVP) required to ensure inextensibility via Lagrange

multipliers [4,11,19], in addition to six boundary conditions

and initial configuration for closeness. The geometrical coup-

ling guarantees that the order of the PDE remains unchanged

under transformation of variables, from the position of filament

centreline x(s, t) at an arclength s and time t relative to a fixed

frame of reference, to tangent angle u(s, t) or curvature k(s, t)
of the filament [7,38]. While the equivalence between discrete

and continuous models is generally not available, both theoreti-

cal frameworks suffer from numerical instability and stiffness

arising from the nonlinear geometrical coupling between the

filament’s curvature and its inextensibility constraint [11,39].

Nonlinearities originated from curvature are well known to

drive numerical instability in moving boundary systems, as

found in pattern formation of interfacial flows driven by surface

tension [40], as well as in elastic and fluid stresses in shells and

fluid membranes [41,42]. The latter often requires numerical

regularization, such as the small-scale decomposition [40,41].

Contact forces of inextensible filaments are not determined

constitutively [1], and require Lagrange multipliers to ensure

strict length constraints. The resulting systems in both discrete

and continuous models are thus prone to numerical instabil-

ities [5,15,16,21,24–28,33,35–37,39]. This is despite the fact

that discrete models automatically satisfy the length constraint

by construction [5,15,21,24,25,33,34,36,43], or equivalently

the tangent angle formulation u(s, t) for continuous models

[5,24,44,45], which intrinsically preserves lengths by

definition. In continuum models, penalization strategies are

required to regularize length errors that vary dynamically

[4,11,35]. The number of boundary conditions is large, and

the nonlinear coupling makes complex boundary systems

challenging [35], as we discuss below. The latter imposes

severe spatio-temporal discretization constraints, increases

the computational time and numerical errors, especially for

deformations involving large curvatures.

The aim of this paper is to resolve the bottleneck arising

from the interaction between the hyperdiffusive elastohydro-

dynamics and the inextensibility constraint. For this, we

consider a hybrid continuum–discrete approach. The coarse-

graining formulation is a direct consequence of the asymptotic
integration of the moment balance system along coarse-grained

rod-like elements. No explicit length constraint is required, and

the resulting linear system is structurally stable and does not

require explicit computation of the unknown force distri-

bution aforementioned. Numerical implementation is

straightforward and allows for faster computation, more

than a hundred times faster, with increasingly better per-

formance for tolerance to error below 1%. This greatly

decreases the implementation complexity, the number of

boundary conditions required, computational time and

numerical stiffness. The coarse-graining framework can be

readily applied to systems that would be prohibitive using

the classical system, as we discuss in §4. Furthermore, we

show that the coarse-graining implementation is simple,

and generalizations for complex interaction of multiple

rods, Brownian polymer dynamics, active filaments and

non-local hydrodynamics are straightforward.

This paper is structured as follows: first, we describe the

momentum balance for an inextensible filament embedded in

an inertialess fluid, and re-derive the classical elastohydro-

dynamic system in §2. For this, we employ the standard

elastic theory for slender-rods and lowest order hydrodynamic

approximation for slender-bodies, i.e. resistive forces theory

[46]. In §3, we introduce the asymptotic coarse-graining formu-

lation. In §4, we contrast the classical elastohydrodynamics

and the coarse-graining formulations and their respective

numerical performances. Finally, we abandon the classical

elastohydrodynamic formulation and explore several systems

with the coarse-graining approach in §5. We investigate the

buckling instability of a bio-filament [6,11], magnetically driven

micro-swimmers [30,47–49], the counterbend phenomenon

for effectively one-dimensional filament bundles [20,50,51]

and the driven motion of a two-filament bundle assembly.

Except for the magnetic swimmer, the other bio-filament sys-

tems are entirely novel in the literature. We also provide the

Matlab code via github free repository that can be used as a

basis for further generalizations. The link to this repository is

available at the end of the paper.
2. Classical elastohydrodynamic filament theory
Consider an inextensible elastic rod of length L, parametrized

by its arclength. The position of a point of arclength s on the

filament is denoted by x(s). The filament can experience two

types of forces [1]: contact forces n(s) within the filament and

external forces, that have a force density f(s). Later this will

incorporate the hydrodynamic interaction. Newton’s Second

Law ensures the momentum balance

ns þ f ¼ 0 ð2:1Þ

and

ms þ xs � n ¼ 0, ð2:2Þ

where the subscripts denote derivatives with respect to

arclength s, m(s) is the contact moment and external moments

are neglected. The dynamical system (2.1)–(2.2) is further speci-

fied by the geometry of the deformation and the constitutive

relations characterizing the filament. Here, we focus on inexten-

sible, unshearable hyperelastic filaments undergoing planar

deformations. Thus the contact forces are not defined constitu-

tively while the bending moment is linearly related to the

local curvature [1].
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Figure 1. Parametrization of the continuous and discrete filaments.
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The position of the filament centreline is denoted by x(s, t).
The Frenet basis moving with the filament is given by (ek, e?),

tangent and normal vector, respectively. The angle between

the x-axis of frame of reference and ek is u, where the normal

vector to the plane in which deformation occurs is ez (figure

1). The filament is characterized by a bending stiffness Eb,

and thus elastic moments are simply m(s) ¼ Ebusez. The latter

can be used in conjuction with (2.2), using usse? ¼ xsss, to get

n(s) ¼ �Ebxssse? þ tek, ð2:3Þ

where t(s) is the unknown Lagrange multiplier. The hydrodyna-

mical friction experienced by a slender-body in low Reynolds

number regime can be simplified asymptotically by employing

the resistive force theory [46], in which hydrodynamic friction is

related to velocity via an anisotropic operator

f(s) ¼ �j(e? � xt)e? � h(ek � xt)ek, ð2:4Þ

where h and j are the parallel and perpendicular drag coeffi-

cients, respectively. Using (2.1) and non-dimensionalizing the

system with respect to the length scale L, time scale v21, force

density Eb/L3, and noticing that ek ¼ xs, the dimensionless elato-

hydrodynamic equation for a passive filament deforming in a

viscous environment reads

Sp4xt ¼ �xssss � (g� 1)(xs � xssss)xs þ (txss þ gtsxs), ð2:5Þ

with the dimensionless parameters Sp¼ L(vj/Eb)
1/4 andg¼ j/h.

The unknown line tension is obtained by invoking the

inextensibility constraint

@

@t
(xs � xs) ¼ 0, ð2:6Þ

which together with (2.1) provides a nonlinear second-order

BVP for the line tension, or Lagrange multiplier,

gtss � (xss � xss)t ¼ �3g(xsss � xsss)� (3gþ 1)(xss � xssss): ð2:7Þ

In practice, however, this inextensibility condition is prone to

numerical errors [11] causing the filament length to vary over

time. A penalization term is thus added on the right-hand

side of (2.7) to remove spurious incongruousnesses of the

tangent vector [4,11,35].

The nonlinear, geometrically exact elastohydrodynamical

system of equations (2.5) and (2.7) requires a set of initial and

boundary conditions for closeness. At the filament bound-

aries, either the force/torque are specified or the endpoints

kinematics is imposed. Here, we consider the distal end

free from external forces and moments

8t, �xsss(L, t)þ txs(L, t) ¼ 0, xss(L, t) ¼ 0:
At the proximal end, several scenarios may be considered.

(i) Free torque and force condition, thus the above equations

are satisfied at s ¼ 0. (ii) Pivoting, pinned or hinged con-

dition: the extremity has a fixed position but it is free to

rotate around it, xt(0, t) ¼ 0, xss(0, t) ¼ 0. (iii) Clamped con-

dition: the extremity has a fixed position and orientation,

xt(0, t) ¼ 0, xst(0, t) ¼ 0. Finally, initial conditions are required

for closeness. Boundary conditions for the Lagrange multiplier

t BVP (2.7) are derived from the above boundary constraints

accordingly, and are generally unknown. Thus the PDE

system of equations (2.5) and (2.7) is solved simultaneously.
3. Asymptotic coarse-grained
elastohydrodynamics

In this section, we describe the asymptotic coarse-graining

formulation by integrating the moment balance system (2.1)–

(2.2). The aim of this formulation is to bypass the complexity

arising from the unknown contact forces (2.3), not defined con-

stitutively, thus requiring the Lagrange multiplier t to ensure

inextensibility (2.7). Integrating the balance of contact forces

over the whole filament (2.1), we get

n(L)� n(0)þ
ðL

0

f(s) ds ¼ 0,

where external contact forces are given by n(L) ¼ n(0)¼ 0. The

filament is conveniently divided in N rod-like segments with

Ds ¼ L/N. In the asymptotic limit of a small non-zero Ds, the

filament can be coarse-grained via a semi-Riemann sum

XN

i¼1

ðiDs

(i�1)Ds
f(s) ds ¼

XN

i¼1

Fi ¼ 0, ð3:1Þ

so that Fi represents the total contact force experienced by the

ith element. For a filament free from external torques, m(L) ¼

m(0) ¼ 0, the total moment balance (2.2) simply reads

XN

i¼1

ðiDs

(i�1)Ds
xs(s)� n(s) ds ¼ 0:

After partial integration, and exploiting the force balance (2.1),

we find

XN

i¼1

ðiDs

(i�1)Ds
(x(s)� x0)� f(s) ds ¼

XN

i¼1

Mi,x0 ¼ 0, ð3:2Þ

which is independent of n(s). Similarly, Mi,x0
is the ith moment

about x0 ¼ x(0). As required, the total moment balance above is

independent of the bending moment. Integration by parts



rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180235

4
of (2.2) for the jth element instead introduces the effect of the

elastic bending moments via

XN

i¼j

Mi,xj¼m j, ð3:3Þ

where mj ¼m(( j 2 1)L/N) and j ¼ 2, ::: , N. Here, it is con-

venient to write the moment Mi,xj
relative to xj, whilst mj is the

bending moment contribution from the jth element and, as pre-

viously, it is linearly related to the curvature m(s)¼ Ebusez.

Distinct finite difference approximations may be employed for

us [4,11,33]. For simplicity, we use the backward difference

formula

mi ¼ kaiez ¼ k(ui � ui�1)ez, ð3:4Þ

where k ¼ Eb/Ds. The contact force f(s) in (3.1)–(3.3) is given by

the hydrodynamic coupling (2.4).

We introduce now the geometry of deformation for centreline

x(s, t) for the the coarse-grained elastohydrodynamic system. It

is convenient to describe filament centreline in terms of the tan-

gent angle u (figure 1), where x(s, t) ¼ x0 þ
Ð L

0 (cos u, sin u) ds,

so that in the coarse-graining limit, we have

xi ¼ x0 þ
Xi�1

k¼1

(cos uk, sin uk)Ds ð3:5Þ

for i¼ 1, . . ., N, thus xi¼ x((i 2 1)L/N)¼ (xi, yi), where uk is the

angle between ex and ek,k of the kth element, ek,k ¼ (cosuk, sinuk),

ek,? ¼ (2sinuk, cosuk), thus ensuring inextensibility intrinsically.

Owing to the curvature dependence in (3.3), it is simpler to

define the tangent angle in terms of the backward difference

angle, ai¼ ui 2 ui21, i.e. the angle between ei21,k and ei,k,

ui ¼
Xi

k¼1

ak, ð3:6Þ

by setting a1 ¼ u1. This reduces the filament centreline x(s, t)

to only N þ 2 parameters (x0, y0, a1, . . ., aN) (see [29]). The

total force balance (3.1) and torque balance (3.2), together

with N 2 1 equations for the internal moment balance (3.3),

further closes the elastohydrodynamic system with N þ 2

scalar equations.

The resistive force theory approximation (2.4) allows for

further analytical progress, as described in the seminal

work by Gray & Hancock [46], by expressing the anisotropic

operator in terms of tangent angle. Thus Fi and Mi,xj
can be

integrated analytically over the coarse-grained elements and

expressed in terms of ( _xi, _ui), where the overdots represent

time derivatives. For simplicity, we assume linear interp-

olation of the shape function along the length s of each

coarse-grained element. Thus from (3.5) the velocity of the

centreline can be expressed as

_xi(s) ¼ _xi þ (s� (i� 1)Ds) _uiei,?:

At the fixed frame of reference, the contact forces over the ith
coarse-element read [30,47]

Fi ¼ hDsL(ui)
T _xi

Ds _ui

� �
, ð3:7Þ

where

L(u) ¼
�cos2 u� g sin2 u (g� 1) cos u sin u

(g� 1) cos u sin u �g cos2 u� sin2 u
1
2 sin u � 1

2 cos u

0
@

1
A:
Similarly, the contact moment at the ith element relative to xj

takes the form

Mi,xj ¼ hDs
Ds

xi � xj
yi � yj

0
@

1
A

T

G(ui)

_xi
_yi

Ds _ui

0
@

1
Aez ð3:8Þ

with

G(u) ¼
� 1

2 cos u 1
2 sin u � 1

3

(1� g) cos u sin u � cos2 u� g sin2 u � 1
2 cos u

g cos2 uþ sin2 u (g� 1) cos u sin u � 1
2 sin u

0
@

1
A,

ð3:9Þ

where the above set of 3N variables X3N ¼ (x1, . . ., xN, y1, . . .,

yN, u1, . . ., uN) can be reduced to N þ 2 variables X ¼ (x1, y1,

u1, . . ., aN) via X3N ¼ QX, as described in detail in appendix

A. The coarse-grained elastohydrodynamics (3.1)–(3.8)

reduces to a non-dimensional system of ordinary differential

equations

Sp4AQ _X ¼ B, ð3:10Þ

where Sp is the ‘sperm number’ as defined in (2.5), following the

same recalling used for the classical system in §2. The general

forms of the matrices A and B are also defined in appendix A.
4. Comparison between the classical and
coarse-grained formulations

The classical elastohydrodynamic system is solved using the

numerical scheme used in [11,35,52], briefly described here

for comparison purpose. The system (2.5)–(2.7) couples non-

linearly a fourth-order PDE with a second-order BVP for the

unknown line tension, yielding severe constraints for the

time-stepping size if all terms are treated explicitly [11,52].

This is resolved by employing a second-order implicit–explicit

method (IMEX) [53], where only the higher-order terms are

treated implicitly, and before any previous time level is avail-

able, the second-order IMEX is replaced by the first-order

IMEX [53]. The arclength discretization is uniform with N inter-

vals, while second-order divided differences are used to

approximate spatial derivatives, in which skew operators are

applied at the boundaries [11,52]. The timestep thus can be

chosen to be the same order of magnitude as the grid spacing,

yielding a first-order constraint for time-stepping. Each iteration

is made in two steps: first, the BVP for the Lagrange multiplier

t, equation (2.7), is solved for a given filament configuration x at

time tn, from which equation (2.5) can be timestepped to obtain

new filament configuration x at tnþ1. Theoretical and empirical

validation of this scheme is provided in [11,35,52].

The coarse-grained elastohydrodynamic system (3.10)

does not require evaluation of Lagrange multipliers. The

inextensibility is satisfied by model construction, while the

asymptotic coarse-graining allows for a straightforward

semi-analytic relation between the filament kinematics and

the elastohydrodynamic forces and torques. The ordinary

differential equation (ODE) system (3.10) is straightforward to

implement using any solver or numerical scheme of choice.

To illustrate this, we solved (3.10) using the built-in ode15s

Matlab solver, which uses a variable-order, variable-step

method based on the numerical differentiation formulae of

orders 1 to 5 [54]. All computations for both the classical and

coarse-grained formulation were conducted on an Intel Core

i5-6500 processor, 3.20 GHz, using Matlab software.
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In what follows, we study the transient dynamics of a fila-

ment decaying from an initial configuration [20,38,55], set to

be a half-circle and a parabola. The filament thus unbends

to its straight equilibrium configuration. Figure 2 contrasts the

coarse-grained filament configuration and difference angle

a for N ¼ 5 and N ¼ 50. A remarkable agreement between

the dynamics of a very coarse filament (with only five

segments) and N ¼ 50 is observed. Indeed, the bulk-part

elastohydrodynamics is well captured by the the coarser

system. This is despite the shape inaccuracies associated with

high curvatures. The shape discrepancies are continuously

reduced as the filament approaches the equilibrium state. A

higher number of segments smoothes the elastohydrodynamic

hyperdiffusion profile, thus acting as an effective spatial spline

interpolation for each filament configuration in time (compare

the angle plots in figure 2). De facto, the coarse-grained
system is able to capture the filament elastohydrodynamics

with excellent accuracy even for very coarse filaments when

compared with the classical system. This is in agreement with

figure 3 which depicts the discrepancy between the classical,

xc, and the coarse-grained, xcg, solutions via

Dmax ¼ max
s,t
jxc � xcgj,

so that Dmax ¼ 0 if the agreement is exact [4]. For Dmax � 0.1

or less, the agreement is observed to be very good, as

illustrated by the shapes for an increasing N (figure 3).

For Dmax , 0.05 the difference between the classical and

coarse-grained solutions is almost undistinguishable; see

for example the detailed insets in figure 3b,c on the right

column. Dmax decays approximately with 1/N in figure 3,

as expected from linear interpolation of curves. The dynamics



Table 1. Computing times in seconds for the two relaxation tests and two
different sperm numbers. Tolerance of the length error only applies to the
classical system.

coarse-grained tolerance classical

test system N 5 70 length error system

Sp ¼ 4

half-circle 1% 1.3

2 0.1% 249

0.01% 3750

parabola 1% 90

1.5 0.1% 1820

0.01% .1 h

Sp ¼ 2

half-circle 1% 97

3 0.1% 850

0.01% .1 h

parabola 1% .1 h

1.7 0.1% .1 h

0.01% .1 h
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is thus weakly influenced by the coarse-graining refinement

level of the system. This feature may be exploited to reduce

the dimensionality of the linear system while keeping a

reasonable accuracy of the dynamics. By construction the

asymptotic integrals along coarse-grained segments will

tend to zero for infinitesimal Ds, as detailed in equations (3.1)

and (3.2). This introduces a higher bound for N. For N . 80,

or equivalently for Ds/L , 1%, the system becomes numeri-

cally stiff and requires an excessive time-stepping refinement.

We further compare the computational time of both

formulations in table 1. We focus on the numerically stiff

regime of the classical system, occurring at low sperm number

Sp, for effectively stiff filaments, and high curvatures. N ¼ 70

was used for all simulations of the coarse-grained model. The

classical system, however, requires distinct spatio-temporal dis-

cretizations according to total length error associated to each

parameter regime [11], chosen to give the smallest computing

time. Table 1 shows that the coarse-grained model has a maxi-

mum time duration of 3 s for Sp¼ 2. The computational time

for the coarse-grained system increases as Sp is reduced,

although the accretion is marginal. On the other hand, the clas-

sical system suffers dramatically from numerical stiffness. For

the lowest length-error tolerance imposed, 1%, the compu-

tational time increases by a factor of 74 for the half-circle case

when Sp is reduced. The time required for the parabola is of

the order of hours. The latter is exacerbated when length-error

tolerance is reduced to 0.01%. In this case, even for Sp ¼ 4, the

computational time surpasses one hour to solve the parabola

initial shape. De facto, this regime is known to be numerically

challenging, as one approaches the limit of validity of the resis-

tive-force theory. Elastic forces and torques are very large

compared to the viscous dissipation, characterized by a snap-

through, fast unbending of the filament towards the relaxation

state, thus requiring very fine time-stepping to resolve this fast

transient phase. Table 1 demonstrates how the coarse-grained

approach outperforms the classical elastohydrodynamic system.
5. Bio-applications
In this section, we apply the coarse-grained formulation for

a variety of elastohydrodynamic systems and boundary con-

ditions found in biology, emphasizing the simplicity and

robustness of this approach. We focus on the filament buck-

ling problem (§5.1), well known for its numerical stiffness,

instability and challenges associated with boundary forces.

We also study the magnetic actuation of swimming filament

(§5.2) and the dynamics of cross-linked filament bundles and

flagella (§5.3), including explicit elastic coupling among

coarse-grained filaments. Other interactions, via boundary

forces/torques or their distribution along the filament, such

as in gravitational and electromagnetic effects, as well as

background flows, may be accounted effortlessly within

this formulation.
5.1. Filament buckling instability
The coarse-grained system equation (3.10) is particularly

suitable for non-trivial boundary constraints, such as in

fixed or moving boundary cases. In such situations, either

the position (angle) or the force (torque) is imposed at the

extremities. Here, we consider an initially straight filament

with the proximal end, s ¼ 0, pinned, so that the position is

fixed but free from external torques. The distal boundary,

s ¼ 1, moves with an imposed velocity towards the proximal

end, although free from external torques. Post-transient

dynamics, at the steady state, leads to the celebrated Euler-

elastica BVP which admits exact solutions in terms of elliptic

functions [1,51]. In this limit, contact forces balance exactly

the imposed load, and the shape is defined by the torque

balance [1,51]. The transient dynamics of a filament buckling

in a viscous fluid, however, depends on the distribution of

both contact forces and torques that evolves in time. This

requires the evaluation of unknown boundary forces at the

proximal end, s ¼ 0, while the distal end, s ¼ 1, follows pre-

scribed kinematics. We consider that the two endpoints are

driven towards each other at a constant speed. This is a

non-trivial task within the classical elastohydrodynamic for-

mulation, as the usual separation between equations (2.5)

and (2.7) for the customary free force/torque condition is

not possible. Instead, the unknown tension line at the bound-

ary, required for the inextensibility constraint, is nonlinearly

coupled with the hyperdiffusive elastohydrodynamics (2.5).

This difficulty is augmented by the fact that the buckling

instability is instigated by excessive compressive force

distribution to a critical level in which the filament cannot

uphold and buckles. This occurs via a pitchfork bifurca-

tion with equal chances to buckle in either direction, as

u! �u is also a solution [51]. The initial straight configur-

ation thus requires an infinitesimal bias to trigger the

unstable modes dynamically.

The buckling phenomenon is however straightforward

within the coarse-grained framework. For this, we introduce

unknown contact forces, respectively, for the proximal and

distal ends P0 and PN, and associated moments in the

coarse-grained system equation (3.10), which reduces to

PN
i¼1

Fi þ P0 þ PN ¼ 0

and
PN
i¼j

Mi;xj þ LN,xj ¼ mjdj,

9>>>=
>>>;

ð5:1Þ
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for j ¼ 1, . . ., N, where dj is defined as d1 ¼ 0 and dj=1 ¼ 1, and

LN,xi
is the moment induced by PN with respect to the point xi,

LN,xi
¼ (xNþ1 2 xi) � PN. The unknown forces are sup-

plemented by the kinematic constraints _x0 ¼ (k=2, 0) and

_xN ¼ (�k=2, 0), where k is positive. The detailed form of the

linear system may be found in appendix A.3.

Figure 4 depicts the shape evolution for the first three

initially unstable modes at the onset of the instability and

beyond, for Sp ¼ 2, 4, 8 from equation (5.1). They capture

the fast transient solutions for an effectively stiff filament,

Sp ¼ 2 (also the numerically stiff case), which rapidly col-

lapses into the static, steady-state Euler-elastica solutions

for the first two modes, top and middle plots in figure 4

for Sp ¼ 2. Complex mode competition is easily accessible.

This is demonstrated by the third mode dynamics (bottom

row). The coarse-grained system thus unveils the cascade of

unstable modes towards the stable shape; see third mode

for Sp ¼ 8. For Sp ¼ 2, these transitions occur via fast

distal–proximal travelling waves, with distinct wave dur-

ation and speed, as demonstrated by the spatio-temporal-a

profiles. As Sp increases, more unstable modes are instigated,

giving rise to a wide diversity of nonlinear phenomena and

interactions among the participating modes, in particular

mode-coupling competition; see for example Sp ¼ 4, 8 in

figure 4. Investigation of mode stability at advanced, non-

linear stages is also possible using this formulation, for

instance, by studying the energy landscape and bifurcation

diagrams. Despite the current gap in the literature, detailed

nonlinear investigation of the buckling phenomenon in a

viscous environment is outside the scope of the present

paper and will be explored elsewhere.

5.2. Magnetic swimmer
Following recent resurgence of interest in magnetically driven

elastic fibres for the purpose of locomotion at micro- or

macro-scale [49,56,57], we solve the coarse-graining of a mag-

netic filament under the influence of an external magnetic

field. In this section, we consider a filament magnetized

with a homogeneous magnetic moment m along its arclength,
directed towards the tangential direction, under the action of

a uniform, time-varying sinusoidal oscillatory magnetic field

H(t). The new terms arising from external torques are thus

straightforward, as it only requires the addition of a distri-

bution of the magnetic moments in equation (3.10), mm
i ¼

miei,k � H, and reads

PN
i¼1

Fi ¼ 0

and
PN
i¼j
ðMi,xj þmm

i Þ ¼ mjdj, for j ¼ 1 . . . N:

9>>>=
>>>;
ð5:2Þ

Figure 5 shows an example of a partially magnetized swimmer

moving according to the applied sinusoidal magnetic field,

with N ¼ 20 and Sp ¼ 4, starting from a straight configuration

for approximately five cycles. The coarse-grained system is

numerically cheap, as it has a reduced number of mesh

points. Thus it allows for optimization studies involving the

continuous evaluation of objective function across a large par-

ameter space. Previous studies demonstrated that the classical

system leads to very expensive numerical simulations [35,49],

making any parameter search very challenging. This opens

new possibilities for investigations within control theory, as

well as optimal control [47,58] by using this approach.

5.3. Cross-linked filament bundles and flagella
In this section, we focus on biological systems involving

time-dependent load distributions. This could arise, for

example, via mechano-sensory coupling in biological struc-

tures and biochemical landscapes. Flagella and cilia found

in eukaryotes are perfect exemplars of the latter [59].

They are composed by a geometrical arrangement of

semi-flexible filaments interconnected by elastic linking

proteins, called axoneme [60]. Its generic form is composed

by 9 þ 2 microtubule doublets surrounding a central pair

[50,61,62], observed in both motile and non-motile form.

Flagella are a challenging mathematical system. It couples

nanometric scales from the molecular motor biochemical

activation with microscopic properties of the elastic



(a) (b)

Figure 5. Example of magnetic drive with a sinusoidal orthogonal magnetic field. One-quarter of the length of the filament (i.e. the first five elements) is not
magnetized, and the other part is constantly magnetized. Here Sp ¼ 4, N ¼ 20, M ¼ 1, H(t) ¼ cos(t)e y /15. (a) The filament is displayed at regular intervals of
time over a time period, coloured from blue (beginning) to red (end). (b) The red line shows the position of the filament at the end of the simulation. The thin
dotted and thick blue lines, respectively, show the trajectory of the non-magnetized end and the centroid of the filament.
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structure, as observed for the purpose of spermatozoa

transport [59,63]. A geometrical abstraction of this system

based on the sliding filament mechanism was first pro-

posed by Brokaw [64]. In the static case, for steady-state

deformations, flagella are prone to the so-called counterbend
phenomenon [50,61]. This occurs when distant parts of a

passive flagellum (in absence of motor activity) bend in

opposition to an imposed curvature elsewhere along the

flagellum, for example, using the tip of a micropipette

[62,65,66]. Theoretical models encoding the mean cross-

linked filament-bundle mechanics were able to recover

the counterbend phenomenon [50,51], from which material

parameters could be measured directly from the resulting

counter-curvature. The dynamics of passive flagellar bun-

dles have been investigated using linear theory [50], and

prediction of counter-travelling waves instigated by the

non-local cross-linking moments reported. To date, a geo-

metrically exact investigation is still lacking in the

literature.

We consider the geometrically exact cross-linked filament

bundle system for a passive bundle, that is a flagellum with-

out molecular motor actuation, using the coarse-grained

formulation. The sliding filament model [20,64] is particu-

larly cumbersome within the classical elastohydrodynamic

framework [52]. The boundary conditions are non-local due

to the accumulative dependence of sliding moments along

the bundle, and generally unknown during the dynamics.

This becomes even more challenging when the bundle is

driven via the molecular motor activity [20,67]. The coarse-

grained formulation breaks the contribution of the sliding

filament moments for each segment simply as

ms
j ¼ ks

XN

i¼j

Ds(ui � u1), ð5:3Þ

this last sum being a discretization of the sliding displace-

ment integrated along the part of the filament going from

jDs to L, and ks an effective resistance to sliding between

the sliding filaments [20]. The balance of forces and moments

then reads

PN
i¼1

Fi ¼ 0

and
PN
i¼j

Mi,xj ¼ mjdj þms
j , for j ¼ 1 . . . N

9>>>=
>>>;
ð5:4Þ

and describes an effective sliding filament bundle free from

forces/torques at endpoints. We consider instead that the

bundle is fixed and angularly actuated at the proximal

end. Thus the first three equations in equation (5.4) are

replaced with the kinematic conditions _x1 ¼ 0 and
_u ¼ a cos t for an angular amplitude a. Numerical solutions

of the the coarse-graining system for a filament bundle angu-

larly actuated at s ¼ 0 with amplitude a ¼ 0.4362 rad and

ksDs/k ¼ 0.06 are shown in figure 6. They confirm analytical

prediction of counter-wave phenomenon from linear theory

reported in [20, fig. 2], where waves are instigated non-

locally, and travel in opposition to the imposed angular

oscillation. The wavespeed and amplitudes involved

depend on the cross-linking elastohydrodynamic parameters

and the sperm number; compare Sp ¼ 7 and Sp ¼ 15 in

figure 6. It is worth noting that coarse-graining system in

equation (5.4) allows for straightforward generalization to

include different motor-control hypotheses—central for the

current flagella and cilia self-organization debate [20,67,68].

Finally, we consider the dynamics of two individual

filaments embedded in a viscous fluid and coupled elasti-

cally via Hookean elastic springs (figure 7). The system

thus involves the geometrically nonlinear elastohydro-

dynamics of two interacting elastic fibres. Once again, the

classical elastohydrodynamic formulation is ill-posed. The

discrete distribution of elastic springs introduces unknown

point forces via equations (2.5) and (2.7) for each filament.

We consider that the two-filament assembly is angularly

actuated at one end (figure 7). We assume that the connecting

elastic springs have an effective spring constant K connecting

opposite nodes between the two filaments, placed at each

coarse-grained segment junction for simplicity (figure 7).

The equilibrium bundle diameter is d0 at rest. The elastic

force F int
i

exerted by the ith spring on the filament S (top filament) reads

Fint
i ¼ K 1� d0

kxi � x0ik

� �
(xi � x0i),

where primes refer to the second filament. The coarse-grained

formulation for S and S0 is thus augmented by the elastic reac-

tions from each connecting spring, and their associated

moments along each filament. Hence, the coupled system for

the filaments S and S0 reads, respectively,

PN
i¼1

ðFi þ Fint
i Þ ¼ 0,

PN
i¼j
ðMi, xj þ Fint

i � ðxj � xiÞÞ ¼ mjdj,

PN
i¼1

ðF0i � Fint
i Þ ¼ 0

and
PN
i¼j
ðM0

i, xj
� Fint

i � ðx0j � x0iÞÞ ¼ m0jdj:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð5:5Þ

The proximal end of both constituent filaments is fixed, but

the angle at s ¼ 0 of the filament S (top filament) is
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–0.5

0.5

0
–0.1

–0.2

–0.3

0.1

0.2

0

12

t (p)

14 16

1.0

0.8

0.6

0.4

0.2

s

12

t (p)

14

(d – d0)/d0 (D – d0)/d0

 d
D 

16

1.0

0.8

0.6

0.4

0.2

s

12

t (p)

14 16

1.0

0.8

0.6

0.4

0.2

s

a

a

Figure 7. Coupling between two filaments obtained with the coarse-grained approach. Here Sp ¼ 4, a ¼ 0.88 rad, K=k ¼ 1=25. On the top, the actuated
filament is represented at regular intervals of time over half a time period, coloured from blue (beginning) to red (end). The three colour maps display three parameters
with respect to time and arclength: the angle a of the centreline (left), the distance d between the two filaments (middle) and the distanceD between two facing nodes,
normalized by their resting length d0. Note that the beginning time for the graphs has been chosen big enough to skip transient phase and display only steady state.
A travelling wave of curvature generated by the actuation of the top filament is visible in graph at the bottom left. The graph at the bottom in the middle shows the
distance between the two filaments. Moreover, the graph at the bottom right captures the sliding distance between the two filaments.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180235

9

actuated via u1(t) ¼ a sin t. The filament S0 (bottom fila-

ment) is free from external actuation, thus its movement

solely arises via the elastic coupling between them. A

detailed description of the resulting two-filament system

is provided in appendix A.5.

Figure 7 shows numerical simulations for time evolution of

the two-filament assembly, demonstrating the effectiveness of

the connecting springs while transmitting bending moment

from the top filament to the bottom one. A synchronous travel-

ling wave of curvature is observed; see for example the tangent

angle a of the centreline of the filament-pair in figure 7. The

axial diameter d however evolves asymmetrically (middle

plot in figure 7). The angular actuation of the top filament
modifies the diametral distance between the filaments near

the base, in an oscillatory motion, from where axial waves

are propagated down the structure. Axial extensional

waves (light yellow regions) propagate more easily than com-

pressional waves in the axial direction (light green regions).

The resulting sliding displacement D between the filament-

pair is also depicted in the right graph in figure 7. Similarly

to the radial distance, the relative sliding motion is concen-

trated towards the basal end; however, it is not propagated

along the filament-pair. This is despite the fact that both fila-

ments are inextensible, and tangential motion is easily

propagated. Conversion of curvature into relative sliding

motion between the filaments is not observed nor the



rsif.royalsocietypublishing.org
J.R.Soc.Interface

1

10
counterbend phenomenon observed in figure 6; see the light

yellow region for D � 0 in figure 7. This suggests that simple

elastic connectors between filaments are not effective while

transmitting sliding moments. Instead, axial distortions are

prevailed and propagated along the filament-pair assembly.

The connecting springs contribute to forces along its direc-

tion, but mostly in the radial direction, perpendicular to

centreline. The elastic springs are hinged at each connecting

node, thus the constituent filaments are free from bending

moments arising from the interfilament sliding (in contrast

with figure 6). This supports the so-called geometric clutch

mechanism proposed by Lindemann [69], where axial

displacements are central for flagellar mechanics. These

results further show that the sliding filament mechanism

present in flagellar systems [50,61,64] is far more complex

than this simplistic two-filament cross-linked assembly

[5,20,64,68,70].
 5:20180235
6. Conclusion
This paper studies inertialess fluid–structure interaction of

inextensible filaments commonly found in biological sys-

tems. The nonlinear coupling between the geometry of

deformation and the physical effects invariably results in

intricate governing equations that negotiate elastohydrody-

namical interactions with non-holonomic constraints, as

a direct consequence of the filament inextensibility. As a

result, the classical elastohydrodynamical formulation is

prone to numerical instabilities, requires penalization

methods and high-order spatio-temporal propagators.

Here, we exploit the momentum balance in the asymptotic

limit of small rod-like elements, from which the system

can be integrated semi-analytically. This bypasses the bottle-

neck associated with the inextensibilty constraint, and does

not require the use of Lagrange multipliers to solve the

system. We further show the equivalence between the two

formalisms, as well as a direct comparison between their

numerical performances. The coarse-graining formalism

was shown to outperform the classical approach, in particu-

lar for numerically stiff regimes where the classical system

performs poorly. The coarse-graining structure also allowed

faster computations, more than a hundred times faster than

previous implementations. The coarse-graining approach is

simple and intuitive to implement, and generalizations for

complex interaction of multiple rods, active filaments,

flagella, Brownian polymer dynamics and non-local

hydrodynamics are straightforward.

We employed the coarse-grained formulation to study

distinct biologically inspired systems: the buckling

instability of bio-filaments, the magnetic actuation of a

micro-swimmer and the dynamics of cross-linked filament

bundles and flagella. With the exception of the magnetic

swimmer case, the results obtained here for the other

systems are new in the literature. For the buckling problem,

travelling waves are generated and propagated with

different speeds, depending on the elastohydrodynamic

properties of the filament and its interaction with other com-

peting modes, figure 4; thus relevant to biological systems in

which buckling is a naturally occurring phenomenon [6].

The coarse-graining approach successfully captured the

counterbend phenomenon in cross-linked filament bundles

[20,50], figure 6, including geometrical nonlinearities.
Finally, motivated by mathematical abstractions of flagellar

systems [5,68], we solved the dynamics of interactions

between two individual filaments interconnected with

elastic springs. Numerical simulations indicated that the

sliding between the filaments is not instigated by changes

in curvature, as assumed by the sliding-filament mechanism

[64]. Instead, axial distortions are propagated along the

two-filament assembly, in agreement with the geometric

clutch hypothesis [69]. These modes of deformation are

central for the molecular-motor control debate in flagellar

systems [20,68].

The results presented here offer new possibilities for

theoretical investigations, for instance, of the elasto-

hydrodynamic self-organization of fibres, many interacting

filaments, cytoskeleton modelling, manoeuvrability of

micro-magnetic robots [47,58], as well as optimal strategy of

deformation for micro-locomotion [71]. Only basic knowl-

edge of systems of linear equations is required and

implementation achieved with any solver of choice. We

hope that the simplicity of the formalism, the numerical

robustness and easy-to-implement generalizations will

appeal to the biology, soft-matter and interdisciplinary

communities at large.
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Appendix A
A.1. Parametrization in the coarse-graining model
In the asymptotic description, the filament can be described

with two different sets of parameters (figure 1).

— The N þ 2 parameters X ¼ (x1, y1, u1, a2, . . ., aN).

— The 3N parameters X3N ¼ (x1, . . ., xN, y1, . . ., yN, u1, . . ., uN).

The second set uses 3N parameters where N þ 2 are suffi-

cient. Going from _X to _X3N can be done via the following

transformation matrices:

_X ¼ ~P _X3N and _X3N ¼ ~Q _X

with

~P¼

1 0 . . . 0

0 . . . 0

0 . . . 0

1 0 . . . 0
02,N

0N 0N

1 0 . . . . . . 0

�1 1 0 0

0 �1 1 . .
. ..

.

..

. . .
. . .

. . .
. ..

.

0 . . . 0 �1 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

https://github.com/Clementmoreau/Filament
https://github.com/Clementmoreau/Filament
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and

~Q¼

1 0

..

. ..
.

1 0

~Q1

0 1

..

. ..
.

0 1

~Q2

0N,2

1 0 . . . 0

1 1 . .
. ..

.

..

. . .
.

0

1 . . . 1

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

, ðA 1Þ

where ~Q1 and ~Q2 are N � N matrices whose elements are

given by the general formula

qi,j
1 ¼�Ds

Xi�1

k¼j

sin
Xk

m¼1

am

 !
and

qi,j
2 ¼Ds

Xi�1

k¼j

cos
Xk

m¼1

am

 !
,

with qi,j
1 ¼ qi,j

2 ¼ 0 if i � j. The tildes refer to the dimensional

quantities.

A.2. Matricial form of the ordinary differential equation
system

Using the explicit expressions of the different contri-

butions (3.4), (3.7) and (3.8), and after non-dimensionalizing,

we can rewrite the system (3.1)–(3.3) in a matricial form:

Sp4AQ _X ¼ B, ðA 2Þ

where the terms are defined as follows:

— The matrix A is a (N þ 2) � 3N matrix whose coefficients

are given, for all i in f1, . . ., Ng and j in fi, . . ., Ng, by

a1, i ¼ �cos2 ui � g sin2 ui;

a2, i ¼ ðg� 1Þ cos ui sin ui;

a1, Nþi ¼ ðg� 1Þ cos ui sin ui;

a2, Nþi ¼ �g cos2 ui � sin2 ui;

a1, 2Nþi ¼
1

2
sin ui;

a2, 2Nþi ¼ �
1

2
cos ui;

aiþ2, j ¼ vðxi, xjÞM1ðujÞ;

aiþ2, Nþj ¼ vðxi, xjÞM2ðujÞ;

aiþ2, 2Nþj ¼ vðxi, xjÞM3ðujÞ;

where

vðxi, xjÞ ¼ 1
xj�xi

Ds
yj�yi

Ds

� �
and M1, M2, M3 are the columns of the matrix (3.9). If j , i,
then aiþ2,j ¼ aiþ2,Nþj ¼ aiþ2,2Nþj ¼ 0.

— Q is the non-dimensionalized version of the transform-

ation matrix (A 1). It is defined by replacing ~Q1 and ~Q2

with Q1 ¼ ~Q1=Ds and Q2 ¼ ~Q2=Ds in the expression of ~Q.

— B is a column vector of size N þ 2, given by

B ¼ 0 0 0 a2 . . . aNð ÞT:
A.3. Buckling instability system
The buckling problem requires two unknown contact forces

P0 and PN (see §5.1). This yields four additional unknowns:

P0x, P0y, PNx, PNy. We add four equations to the

system (3.10) by embedding the buckling kinematic con-

straints _x0 ¼ (k=2, 0) and _xN ¼ (�k=2, 0), where k is positive.

The new system of (N þ 6) scalar equations is given by

Ab _Xb ¼ Bb, ðA 3Þ

where

Xb ¼

X

P0x

P0y

PNx

PNy

0
BBBBBBB@

1
CCCCCCCA

, Bb ¼

B

� k
2

0

k
2

0

0
BBBBBBB@

1
CCCCCCCA

, Ab ¼
Sp4AQ aT

a 0

0
B@

1
CA ðA 4Þ

and

a ¼

1 0 0 . . . . . . 0
0 1 0 . . . . . . 0
1 0 �

PN
k¼1 sin uk �

PN
k¼2 sin uk . . . � sin uN

0 1
PN

k¼1 cos uk
PN

k¼2 cos uk . . . cosuN

0
BB@

1
CCA
ðA 5Þ

where matrices A, B and Q are defined as in appendix A.2.
A.4. Magnetic swimmer
The matricial system describing a magnetically driven

filament with the coarse-graining approach reads

Sp4AQ _X ¼ Bþ 1

k
Cm: ðA 6Þ

It is simply obtained by adding to the system (3.10), the

magnetic effect vector Cm ¼ (cm
1 . . . cm

Nþ2)T, with cm
1 ¼ cm

2 ¼ 0

and 8i [f1, . . ., Ng,

cm
iþ2 ¼

XN

k¼i

mk(Hy(t) cos uk �Hx(t)uk),

where Hx(t) and Hy(t) are the components of the magnetic

field along the x- and y-axis.
A.5. Cross-linked filament bundle
The system (5.5) describing a filament bundle with sliding

resistance takes the following matricial form:

Sp4AQ _X ¼ Bþ ks

k
Cs, ðA 7Þ

with C s ¼ (cs
1 . . . cs

Nþ2)T, with cs
1 ¼ cs

2 ¼ 0 and 8j [f1, . . ., Ng,

cs
jþ2 ¼ Ds

XN

i¼j

ui � u1:

In the case of two interacting filaments, S and S0, the new

coupled dimensionless system of (2N þ 4) equations reads

Sp4 (AQ)S 0
0 (AQ)S0

� �
XS
XS0

� �
¼ BS

BS0

� �
þ C

C0

� �
: ðA 8Þ

In the above, A, B, Q and X are defined as previously, where

the subscripts denote the filament S or S0. The interaction
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vectors C and C0 are defined as follows:

c1

c2

� �
¼ 1

k

XN

j¼1

Fint
j ;

c01
c02

� �
¼ � 1

k

XN

j¼1

Fint
j ;

8i [ {1, . . . , N}, ciþ2 ¼
1

k

XN

j¼i

Fint
j � (xj � xi)

and c0iþ2 ¼ �
1

k

XN

j¼i

Fint
j � (x0j � x0i):

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ðA 9Þ
The above system describes a bundle with free endpoints.

However, in the case studied in equation (A 8), both filaments

have a fixed proximal end, and the filament S is actuated at

its proximal end (prescribed angle u1). We embed these

boundary conditions in the system by replacing the first

three lines with the constraints _x1 ¼ 0, _y1 ¼ 0, _u1 ¼ a cos t,
and its N þ 3th and N þ 4th equations (i.e. the first two

equations for the second filament) by the constraint equations

_x01 ¼ 0 and _y01¼0.
c.Interface
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