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We introduce a new method for transforming chemical systems into desired

logical operators (e.g. NAND gates) or similar signal-manipulation com-

ponents. The method is based upon open-loop dynamic regulation, where

external conditions such as feed-rate, lighting conditions, etc., are modulated

according to a prescribed temporal sequence that is independent of the input

to the network. The method is first introduced using a simple didactic

model. We then show its application in transforming a well-stirred cubic

autocatalytic reaction (often referred to as the Selkov–Gray–Scott model)

into a logical NAND gate. We also comment on the applicability of the

method to biological and other systems.
1. Introduction
Natural computing is a broad field of research at the intersection of computer

science, physics, chemistry and biology. Its two main areas are the study of

biology-inspired computing (e.g. neural networks and genetic algorithms), and

information processing in organisms, including, for example, the computational

aspects of self-assembly and biochemical reactions—see Rozenberg et al. [1] for

a review. These research areas are largely inspired by the impressive adaptivity

demonstrated by living systems. Even the simplest single-celled organisms are

capable of adaptation, and whether one sees this as a computational process

(e.g. [2,3]), or one focuses upon sensorimotor feedback dynamics [4,5], it is inter-

esting to consider how these organisms, which lack nervous tissues, can use

chemical processes to ‘process information’, i.e. to transform sensory input into

functional motor output.

A recurring goal in this area is to implement chemistry-based ‘information

processing units’ such as logic gates. Efforts to build logic gates and other

signal-processing devices out of chemistry date back at least as far as 1974 [6],

and a range of approaches, both theoretical and experimental, have been taken.

These involve diverse chemical media, including biochemical systems (e.g.

enzyme reaction networks [7,8], gene-regulatory networks [9–11], peptide-

based computing [12] and DNA-computing [13]); abiotic chemistry (e.g. Belou-

sov–Zhabotinsky oscillators [14], the bistable iodate–arsenous acid

reaction [15] or other molecules [16]); and mathematical idealizations or abstrac-

tions of chemistry (sometimes referred to as ‘artificial chemistry’ [17]), where

networks are designed to satisfy various desiderata and the constraints of

actual chemistry are, for the moment, ignored. One example of this last class of

study can be found in the work of Hjemfelt et al. [18–20], who proposed a reaction

motif that recreates McCulloch–Pitts neuron dynamics and that can be assembled

into networks that accomplish Boolean operations. This work was then used to

implement a chemistry based pattern-generator neural network using the bistable

iodate–arsenous acid reaction run in a continuous flow stirred-tank reactor

(CSTR) [15].
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Table 1. NOT logic table.

input output

TRUE FALSE

FALSE TRUE
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The target behaviours in these studies include switching

and rectification [7], mimicking the behaviour of neurons

[18–20], and other functions, but perhaps the most popular

goal has been to recreate the Boolean operations of logic

gates such as AND, XOR, NAND, etc. Part of the appeal of

logic gates is that they are sufficient for implementing flip-

flop memory units, half-adders and the other networks from

which modern computers are made.

Often, the first step for implementing chemistry-based logic

gates is to decide how the Boolean values (TRUE and FALSE) will be

represented. The most intuitive way to do so is to equate certain

reactant concentrations with Boolean values (e.g. high acidity¼

TRUE; low acidity ¼ FALSE) and to identify or develop chemical

reactions that transform those concentrations in ways that corre-

spond to the desired Boolean operations. Other representations

are also possible. For instance in excitable media [21], the pres-

ence or the absence of chemical waves can be used to play the

role of binary logic values, chemical wave propagation in

narrow capillary tubes play the role of information transmission

between inputs and outputs, and the specific geometric con-

figuration of capillary tubes dictates the computation to be

done. A similar idea is explored in [22], where the network of

capillary tubes is replaced by a ‘printed circuit’ of catalyst.

This idea of using excitable media is pushed further by Ada-

matzky and co-workers [23,24] (see also [25–27] for reviews).

In their approach, localized excitations (wave fragments) are

sent on ballistic trajectories in an architecture less excitable

medium. Computation is the result of the interactions between

the localized excitations, and complicated logic circuits can be

implemented in this collision-based computing paradigm.

In general, chemistry does not naturally perform these

kinds of operations. In other words, substantial human inter-

vention is required to produce chemical-logic gates, and it

is interesting to consider for a moment the forms of these inter-

ventions. In a few rare cases, such as template-molecule-based

DNA-computing or gene-regulatory networks, researchers can

select the reactants so as to design reaction networks. This is

only possible for rather small reaction networks, with relati-

vely recent work [28] reporting that ‘the largest and most

complex program constructed so far’ consists of three gates,

built using 11 regulatory proteins. This pales in comparison

to silicon-based logic gates (modern CPUs have hundreds of

millions of gates), but evolution works under different con-

straints and to accomplish different goals from human

engineered computers. It will be interesting to see how this

area advances.

When it is not possible to arbitrarily design reaction net-

works (and this is the more typical scenario), the alternative is

to construct an environment (i.e. ‘external’ or ‘boundary’ con-

ditions) in which the chemistry operates, so as to cause it to

perform the desired operation. This is most easily seen in

Adamatzky’s and others’ work in excitable media, where

the shape of the spatial boundaries causes the propagating

waves to interact as desired, but the same idea underlies

the development of logic gates based upon bistable reactions

in CSTRs [29], or light modulated Belousov–Zhabotinsky

micro-droplets [14], etc. In these latter cases, the external con-

ditions are not (only) the shape or properties of the

containers, but also include feed-rates, lighting conditions

or other phenomena that influence the chemical reactions in

various ways.

It is well established that varying the external conditions

of chemical systems can change their dynamical regimes. This
change can be quantitative, such as when light is used to

influence decay or reaction rates [30–34], or qualitative,

when a parameter crosses a bifurcation point, such as

the use of light to suppress oscillations in the chlorine

dioxide–iodine–malonic acid reaction [35].

In all cases that we are aware of, the developers of chemi-

cal logic gates have employed static external conditions, i.e.

conditions that do not change during the evaluation of logical

operation(s)1. In this paper, we show that in some cases a

sequence of external conditions is sufficient to transform a

well-stirred chemical system (sometimes referred to as the

Selkov–Gray–Scott model [36,37]) into one capable of logical

operations. Note that the method presented here is con-

ceptually very different from other approaches in the field.

Instead of designing a (sometimes extremely) fine-tuned

chemical system with fixed external conditions to perform a

logical operation, we subject an existing chemical system to

a prescribed temporal sequence of changes in its external con-

ditions. We argue that this type of reasoning is more likely to

be applicable to biological systems.

The rest of this paper is organized as follows. Because

the method we are presenting is new, we first provide in §2 a

didactic example, where our ‘dynamic external condition’

method is applied to a minimal mathematical toy example.

We then show that the method can transform a well-known

cubic autocatalytic chemical model into a logic gate in §3. We

finally discuss the applicability of the method to biological

and other systems in §4.
2. Dynamic external conditions in a simple toy
example

For illustrative purposes, we now show how modulation of a

dynamical system’s parameters can transform it into a logical

NOT gate, which transforms TRUE input into FALSE and FALSE

input into TRUE (the action of a NOT gate is shown in table 1).

For our base dynamical system, we will consider a bead on a

saddle-shaped wire (figure 1). Depending on where the bead

is placed, it will slide into one of the two ‘troughs’. To identify

such a dynamical system with a logic gate, it is necessary to

specify what is meant by inputs and outputs for that gate. In

this toy example, we decide that inputs are determined by

which half-side of the wire the bead is initially placed and out-

puts are determined by which trough the bead ends up in. For

both input and output, we consider the right (left) half to cor-

respond with a TRUE (FALSE) value. The motion of the bead

represents the operation of the gate.

As it stands, this system does not represent a NOT gate. The

bead ends in the same trough in which it starts and so the

system can be considered an IDENTITY gate, where TRUE

input produces TRUE output and FALSE input produces FALSE

output. Indeed no matter the shape of the wire, no static



gravity

Figure 1. Bead moving on a saddle-shaped wire used as a toy model to
implement a NOT gate. Note that the projection of the saddle-shaped
wire on the horizontal plane gives a circle (as depicted in figure 2) and
that gravity is pointing down. (Online version in colour.)
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FALSE 1q

Figure 2. Dynamical system where a bead (small black circle) moves on a
circle according to equation (2.1) (with f ¼ 0). Large numbered black
and white circles represent attractive (u*

1, u*
3) and repulsive (u*

2, u*
4) fixed

points, respectively. In our toy example, we assign u*
1 to mean TRUE and

u*
3 to mean FALSE.
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configuration of the wire would be able to accomplish a NOT

operation. To cause the bead to switch sides and thus the

system to act as a NOT gate, we can subject the saddle-

shaped wire to a predetermined sequence of rotations2 that

take place after the bead is placed in a way that is entirely inde-

pendent of the bead’s location. The rotations are comparable to

changes in the external conditions of the bead.

We make these ideas mathematically precise by consider-

ing the following one-dimensional periodic dynamical system:

du(t)
dt
¼ sin (2u(t)� f), ð2:1Þ

where u(t) denotes the angular position of a bead moving on a

circle and f is a phase parameter. The angular velocity of the

bead depends on its position and can be either positive (coun-

terclockwise) or negative (clockwise), depending on the sign of

the sine function in equation (2.1). The fixed points of the

system are u*
1 ¼ f/2, u*

2 ¼ p/2 þ f/2, u*
3 ¼ p þ f/2 and

u*
4 ¼ 3p/2 þ f/2. u*

1 and u*
3 are attractive fixed points, while

u*
2 and u*

4 are repulsive. The phase, f, implements rotations

of the saddle-shaped wire around the vertical axis of figure 1,

as discussed below. When f ¼ 0, for any initial condition in

the right (left) half-circle uRHC (uLHC), the bead asymptotically

goes to the fixed point u*
1 (u*

3). The system thus has two basins

of attraction, and the separatrix, i.e. the manifold separating

those basins, is the points u*
2 and u*

4. As described above, we

associate the attractor of each of these basins with Boolean

values, such that u*
1 ; TRUE and u*

3 ; FALSE. Figure 2 illustrates

this dynamical system for f ¼ 0, showing the saddle-shaped

wire of figure 1 viewed from above, with the repulsive fixed

points of the crests and attractive fixed points of the troughs

indicated as open and closed circles, respectively.

As already described informally, for f ¼ 0, this dynamical

system operates as an IDENTITY gate, transforming initial con-

ditions associated with a TRUE input u(t ¼ 0)[uRHC into a TRUE

output state and initial conditions associated with a FALSE input

u(t ¼ 0)[uLHC, into a FALSE output state. We now show how by

judiciously modifying the external conditions, it is possible to

transform this dynamical system into a logical NOT gate.

More explicitly, for initial conditions in or near the TRUE state

(i.e. u(t ¼ 0)[uRHC) we want the system to approach (at asymp-

totically large times) the FALSE state and inversely, for initial

conditions in or near the FALSE state (i.e. u(t ¼ 0)[uLHC), the

system should approach the TRUE state. To accomplish this
goal, we first identify a ‘handle’, i.e. an ‘external condition’—

a parameter that we can modulate. Examples of such par-

ameters in chemical systems include flow rates, temperature,

stirring rates, etc. For this exercise, we use the phase parameter,

f, as an externally adjustable parameter. We also assume (both

here and in the subsequent chemical model) that changes to

external conditions are fast compared with the other dynamics

so that changes in parameter regimes can be approximated as

discrete jumps. When this assumption does not hold,

additional equations describing this parametric dynamics can

be coupled to the main dynamics.

It is now possible to identify a temporal sequence of exter-

nal conditions that produces the desired behaviour One such

sequence is shown in figure 3. In Step 1, the system is placed

in Regime-A (RA), where f ¼ fRA ¼ 0. The system evolves

in this regime for the duration tRA, which is chosen to be

sufficiently long for the bead to approach close to the fixed

point centred within the basin in which it started, i.e.

u(t ¼ 0) [ uRHC ! u�1 and u(t ¼ 0) [ uLHC ! u�3. In Step 2,

the system’s dynamics are changed to Regime-B (RB) by setting

the external condition f ¼ fRB ¼ 2p/3 for a duration tRB. This

rotates all fixed points counterclockwise by 608, and for the

duration tB the bead will be attracted to the new position of

the fixed points whether it started this step in u*
1 or u*

3. In

Step 3, we enter Regime-C (RC) by setting f ¼ fRC ¼ 4p/3

for a time tRC. In this parameter regime, the fixed points are

rotated counterclockwise by a further 608, and again the bead

follows. Finally, in Step 4, the system is returned to its original

configuration, Regime-A (f ¼ fRA ¼ 0) for a time t4. Since the

bead is now on the opposite side of the separatrix from

which it started, it moves to the fixed point that is on the oppo-

site side of where it began. To summarize, initial conditions

associated with a TRUE input now result in a FALSE output

state u(t ¼ 0) [ uRHC ! u(t) ¼ u�3, and initial conditions associ-

ated with a FALSE input result in a TRUE output state

u(t ¼ 0) [ uLHC ! u(t) ¼ u�1. We have thus transformed the

system into a NOT gate.

Before we introduce our chemistry-based example, a few

further comments are in order. First, we note that everything

about the sequence of the external conditions is independent

of the initial condition of the state of the system. Put another
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Figure 3. Example of dynamic external conditions necessary to turn the toy dynamical system (2.1) into a NOT gate. See text for explanations of the steps. The
labels ‘RA’, ‘RB’ and ‘RC’ correspond to the three regimes discussed in the main text.

Table 2. NAND logic table.

input A input B output

FALSE FALSE TRUE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSE
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way, there are no rules that say, for instance, to change to

Regime-X if the system is in a particular state or if the input

is TRUE, etc. We emphasize this so as to make clear that the

logical operation is performed within the modulated

system—not outside of it, i.e. not by the modulation itself.

Second, we observe that the dynamic sequence of external

conditions shown in figure 3 is not unique. The values of fi

and ti for each step are constrained, but substantial freedom

is allowed in their choice. For instance, the duration of Step 2

(tRB) must be long enough for the bead to move at least 308
counterclockwise, but apart from that is not constrained.

Similarly, the duration tRC must be sufficiently long for the

bead to cross the separatrix that is present in the Regime-A
state, but is otherwise unconstrained. Also, other regimes

could have been used, for instance, replacing all fi ! �fi

would accomplish the same final operation by moving the

fixed points clockwise instead of counterclockwise.

Finally, we observe that this example has treated the

simple case of a NOT gate, which has only one input (associ-

ated with the initial condition of the dynamical system).

Other important gates (AND, OR, NAND, etc.) have two

inputs. To be able to implement those gates using dynamic

external conditions, the two inputs must be combined into

one initial condition for the dynamical system. For instance,

a linear combination of the two inputs could be used. An

explicit example of this in a chemical context is presented

in the next section.

It is important to emphasize that in our method, external

conditions are regulated by an ‘open-loop’ controller,

where external conditions are regulated according to a pre-

determined sequence that is entirely independent of both the

current state of the chemistry and the input given to the

system. The logical operation is thus performed by the

chemical medium and not by the process regulating it.
3. Dynamic external conditions in a chemical
model

We now show how a cubic-autocatalytic chemical reaction

can be turned into a NAND gate by dynamic modification

of its external conditions. The action of a NAND gate is

shown in table 2. The NAND logic gate was selected for its

universality, i.e. the fact that all logical operations can be con-

structed out of networks of this gate [38]. The chemical model

(sometimes referred to as the Selkov–Gray–Scott model) was

selected as it is a well-studied system that is known to be
capable of interesting and complicated dynamics [37]. It is

given by

dU
dt
¼ �ruU � lUV2 þ Fu ð3:1Þ

and

dV
dt
¼ �rvV þ lUV2 þ Fv, ð3:2Þ

where U ¼ U(t) and V ¼ V(t) are chemical concentrations.

These equations can be thought of as describing a continuous

well-stirred flow reaction system, where autocatalyst V reacts

with substrate U, transforming it into more V according to the

reaction U þ 2V ! 3V. The reactants are fed into the reactor

at rates described by parameters Fu and Fv, and they are

removed at rates described by terms ruU and rvV . Without

loss of generality, we choose the values ru ¼ 1.5, rv ¼ 3 and

l ¼ 1 in the following; other values would change the details

of our results, but not the overall reasoning.

As was the case for the toy model, a first step is to find

parameters that can be adjusted externally. We pick the

‘feed-rate’ parameters, Fu and Fv, as our tunable external con-

ditions. In other situations, it may make sense to pick other

parameters. For example, if the reaction rate (l) were influ-

enced by the presence of light, l could be used instead of

(or in addition to) the feed-rate parameters.

Once again, there is more than one way to modulate the

parameters to cause the system to operate as a logic gate. It is

useful (but not necessary, see Discussion) to have two fixed

points that we can associate with the two Boolean values.

We thus start by identifying a configuration of the adjustable

parameters for which the system is bistable (see appendix A

for an analysis of the fixed points of the model). These values

are indicated in the row labelled RA (for Regime-A) in table

3 and plots in figure 4 show the dynamics of the system

when the system is in this configuration. We associate a Boo-

lean value with each of the two fixed points, arbitrarily
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Table 3. Parameter regimes.

regime Fu Fv

RA (bistable) 20 0

RB ( perturbatory) 5 5

RC (monostable) 0 0
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selecting (U, V)FALSE � (13.33, 0) to represent FALSE and (U,

V)TRUE � (0.5, 6.5) to represent TRUE (figure 4).

We assume that the mechanism through which the system

receives inputs from upstream gates is by way of diffusion or

some other process, such that the input is the average of two

of the Boolean states, attenuated by some constant, k. For

example, if the chemical NAND gate were to be imple-

mented with the use of a CSTR, the two inputs might

correspond to samples taken from upstream CSTR-based

gates. The net effect on the concentration of the reference

chemical in the CSTR would thus depend on the average of

the two input concentrations, diluted in the whole reaction

volume. In this example, k represents the effect of dilution.

For the Selkov–Gray–Scott model, the possible inputs (initial
conditions) are thus IFF ¼ k(U, V)FALSE, ITT ¼ k(U, V)TRUE and

ITF ¼ IFT ¼ k((U, V)TRUE þ (U, V)FALSE)/2 ¼ k(6.6, 3.25), where k
is set to 0.15. Similar to system parameters ru, rv and l, the

exact value of k is not important for our method to work,

but is important in the modelling of realistic physical/chemi-

cal situations. A different value of k might affect the specifics

of each regime (timing, values of the parameters), but not the

overall recipe. For instance, in the present case the value of k
was chosen such that of the four possible input values, only

ITT lies above Regime-A’s separatrix (see figure 5a). We con-

firmed in numerical simulations that small changes to k (we

checked k[[0.11, ..0.18]) would have no effect upon the logi-

cal operation performed. Larger changes to k can change the

type of logical operation accomplished. For instance, a k value

of 0.25 places both ITF and IFT above the separatrix, which

causes the regime sequence to accomplish a NOR operation

instead of NAND (confirmed in numerical simulation, results

not shown). Changing regime parameters, or the sequence or

duration of regimes used would allow further flexibility

in selecting a value for k. For instance, the parameter Fu

influences the position of the separatrix in Regime-A.

To operate as a NAND gate, trajectories that start at initial

conditions IFF, ITF and IFT must end at (U, V)TRUE and initial

condition ITT must end at (U, V)FALSE. There is no single

fixed parametric regime of the system that accomplishes



Table 4. NAND regime sequence.

step name regime duration

categorize RA (bistable) 5.00

perturb RB ( perturbatory) 0.10

invert RA (bistable) 0.25

shift to separatrix RC (monostable) 0.85

stabilize RA (bistable) 2.00
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this behaviour. But we now explain how this behaviour can

be achieved when the system is placed in the temporal

sequence of external conditions specified in table 4.

We start with the system in the bistable regime (regime

RA in table 3). This categorizes the trajectories such that

those initial conditions that are associated with an output

of TRUE are at one of the fixed points, while the other initial

condition falls into the other fixed point (figure 5a). If we

were implementing an AND gate rather than a NAND

gate, we could stop here, as inputs IFF, ITF and IFT are at (U,

V)FALSE and ITT is at (U, V)TRUE. However, AND gates are not

universal, and to accomplish our goal of creating a NAND

gate, we must ‘invert’ the system such that those trajectories

at (U, V)FALSE are moved to (U, V)TRUE and vice versa.

We briefly place the system in the perturbatory regime

(regime RB in table 3), which causes a small increase in V
for all of the trajectories (Step 2, figure 5b). This small increase

in V means that when the system is returned to the bistable

regime in Step 3 (figure 5c), the IFF, ITF and IFT trajectories

are no longer in the (U, V)FALSE basin of attraction, and they

move on a transient that takes them higher than the ITT trajec-

tory. If we were to stay in the bistable regime for a long time,

all of the trajectories would approach (U, V)TRUE. This would

be bad as it would no longer be possible to distinguish

between the four inputs. To prevent this from happening,

we move to the monostable regime (Step 4, figure 5d )

before the system comes to equilibrium. In this regime, the

feed rates Fu and Fv are both 0, causing all of the trajectories

to decrease in both U and V . We again make use of the tran-

sient dynamics by moving the system into the bistable

regime before the system comes to equilibrium. With the

correct timing, at the start of the final bistable regime (Step

5, figure 5e) the IFF, ITF and IFT are on one side of the separ-

atrix, within the basin of attraction of (U, V)TRUE and ITT is on

the other side, within the basin of attraction of (U, V)FALSE.

Left in this final regime of the sequence, the IFF, ITF and

IFT trajectories approach (U, V)TRUE and the ITT approaches

(U, V)FALSE, and we have successfully completed a NAND

operation.

This process involves the sequential use of three different

parameter regimes, the bistable regime (RA), the perturbatory

regime (RB) and the monostable regime (RC). Although the

timing of the duration of each regime must be somewhat pre-

cise, in our experience the values of the parameters for the

regime do not need to be precisely tuned, provided they per-

form the desired qualitative dynamics (e.g. bistability, or

desired transient dynamics). The values of the parameters for

each regime can be found in table 3 and the order and duration

of regimes for performing a NAND operation in a non-spatial

system can be seen both in figure 5 and table 4.
4. Discussion
The toy and chemical models presented above are two simple

examples of dynamical systems that can be turned into logic

gates using dynamic external conditions. The method pre-

sented here is general and could in principle be applied to

other dynamical systems, including chemical systems.

The NAND gate that we have implemented includes two

properties that are necessary if the gates are to be assembled

into networks of gates that are capable of useful computation

above and beyond a simple NAND operation. The first prop-

erty is error correction. Both of the presented systems employ

a bistable regime, where two distinct stable fixed points are

used to correct for noise or small perturbations in the initial

conditions, and steering the trajectory to a well-defined,

time-invariant state that is a function of the input. This

error-correcting ‘categorization’ step limits the influence of

initial conditions upon subsequent steps. Without this error

correction, noise can accumulate within sequences of gates,

making them ineffective when combined into larger compu-

tational circuits thus limiting the possibility of composing

them into useful computational networks. Magnasco [39]

discusses this idea in the context of chemical neurons.

The second property concerns the transmission of the

output of one logic gate into the input of a subsequent ‘down-

stream’ gate. If chemical logic gates are to be composed into

networks capable of more complex computation, it must be

possible to use the output of certain gates as the input of

others. Not all previous research on chemistry-based logic

gates has fully addressed this demanding requirement. For

example, in Wang et al. [14], input to a chemical logic gate is

defined by the presence or the absence of oxidation spikes in

the Belousov–Zhabotinsky reaction of two ‘input’ droplets,

whereas the output in this system is defined by a delay in the

autonomous oscillations of a third ‘output’ droplet. Without

further work, it is unclear how this output could be used as

the input for a subsequent downstream gate. The idea here

that we want to emphasize is that for chemical logic gates to

be composable into networks, the ‘format’ or ‘representation’

of output Boolean values must be the same as (or compatible

with) that of the input. Our method allowed us to produce a

chemical logic gate where the output of the gate, once diffused

and diluted, could be used as input for another gate.

In general, the process of designing of a specific gate

using dynamic external conditions depends strongly on the

underlying system and on the number and effect(s) of the

externally adjustable parameters. In some cases, there will

be no solution; no sequence of external conditions will

cause the base system to perform the desired behaviour. In

general, it is difficult to establish whether or not a solution

exists but occasionally, when certain fundamental properties

are absent from the base system or when the effects of external

conditions are limited, the absence of a solution can be quickly

established. For instance, if a system always has a single basin

of attraction, regardless of any external parameter shifts, it

seems that it would be impossible to create a NAND gate

with error correction. Our example systems employ two

stable fixed points to accomplish error correction, but it is inter-

esting to speculate that one could replace one or more fixed

points with limit cycles or chaotic attractors—provided those

attractors are sufficiently separated in phase space, then they

could be used as Boolean value representations. Multistability

could in principle be used to implement n-valued logic
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gates and that other forms of signal processing, such as

amplification, dynamic range compression, etc., could be

accomplished with monostable or other systems.

For the presented method to work, the tunable external

conditions must have sufficient influence upon the system’s

dynamics. Typical external conditions for chemistry include
flow rate, temperature, stirring rate and light-sensitive reac-

tion rate, but in many specific cases these parameters may

not sufficiently influence the chemical dynamics, making it

impossible to use the presented method. Additionally, we

have assumed that the parametric shifts can occur quickly

compared to the other dynamics. In some systems, it may
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be possible to relax this assumption, but in others it may

be impossible to regulate the external conditions quickly

enough to avoid undesired transients. Ultimately, the proper-

ties of the chemical medium (reaction rates, diffusion rate,

etc.) in which the computation is taking place impose a

number of unavoidable constraints that might limit the

experimental applicability of the method. For instance, the

shift to the separatrix (table 4) might be hard to achieve

experimentally if reactions are too fast.

The necessary or desired characteristics for a base system

to be amenable to this method are difficult to describe at this

stage. The method requires a case by case study of its

dynamics in different regimes and trial and error and exper-

imentation. From a practical point of view, it means that a

mathematical model of the dynamics is very helpful (perhaps

even necessary) to find out all the regimes and timings for the

method to work. Since models of chemical dynamics are

often approximate, this can add a layer of difficulty when

applying this method to complex chemical systems.

With regards to the chemical processing of information in

biological systems, our approach to chemical logic gates is

conceptually different from previous studies on the subject.

For instance, the chemical logic gates of [18–20] require

building a precise network of chemical neurons (each made

of many chemicals) in order to perform a certain logical oper-

ation. The networks are built specifically for the task they are

designed for, and the absence of one or more chemicals could

disrupt its proper functioning. This high level of fine tuning

seems to be generic of other chemical gate designs. This

may be hard to achieve naturally in a biological setting.

It is interesting to return for a moment to one of the motiv-

ations of natural computing: understanding how organisms

process information. The approach presented here is different

from previous approaches to chemical logic in that it uses exist-

ing ‘chemical hardware’ (already designed for certain tasks) to

process information. By playing on the external conditions of

some pre-existing chemical dynamics, cells may be able to per-

form a logical operation by re-purposing some of its internal

chemical components by dynamically regulating the external

conditions of that chemistry (e.g. transport of reactants through

the cell membrane). In addition, our two examples explicitly

show that there is no unique temporal sequence of external

conditions and also substantial freedom in the choice of par-

ameters in our method. So it is not unreasonable to think that

evolution could tweak relatively easily the external conditions

of biological processes in order for them to perform logical

operations or other forms of signal manipulation. This makes

the above method a potentially useful way of processing infor-

mation in biological systems. We are not aware of any example

of natural or synthetic biological systems that uses such a

method, but it would be interesting to pursue research in

that direction.
5. Conclusion
We have shown that a well-known cubic autocatalytic chemi-

cal model can be transformed into a logic gate by changing its

external conditions according to a prescribed time-dependent

sequence that is independent of the state of the system and of

the input to the system. The method is general and could in

principle be applied to other dynamical systems. In a parallel

publication, we present our application of the method to a
spatial model (where diffusion effects are important), show-

ing how the method can be used to take advantage of

spatial symmetries and produce a network of logic gates

out of a uniform chemical medium.
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Endnotes
1In some cases (e.g. [14]), conditions are varied over time so as to pro-
vide different input to the network. As shall become clear, this is
different from the method presented here, where external conditions
are regulated independently of input, and with the fundamentally
different purpose of modifying dynamics into a logical operation.
2We assume in this toy model that the position of the bead is
unchanged by these rotations.
Appendix A. Fixed points of the Selkov – Gray –
Scott model
The fixed points of the Selkov–Gray–Scott model in the case

where Fv ¼ 0 are obtained by setting equations (3.1) and (3.2)

to zero. There are three fixed points in total:

(U�1 ,V�1) ¼ Fu

ru
, 0

� �
ðA 1Þ

and

(U�2,3, V�2,3) ¼ Fu +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

u � 4rur2
v=l

p
2ru

,
Fu +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

u � 4rur2
v=l

p
2rv

 !
:

ðA 2Þ

The stability of the system can be obtained by linearizing

equations (3.1) and (3.2) around each fixed point [40]. The lin-

earized system is

d(dU)
dt

d(dV)
dt

 !
¼ �ru � lV2 �2lUV

lV2 �rv þ 2lUV

� �
U�,V�

dU
dV

� �
, ðA 3Þ

where dU, dV represent small deviations in concentrations

around the fixed point (U*, V*). For the parameter values

specified below equations (3.1) and (3.2) and in table 3, we

get that Regime-A has two stable fixed points at (13.33, 0)

and (0.46, 6.43) and one unstable fixed point at (12.87, 0.23),

while Regime-C has only one stable fixed point at (0, 0).

The analysis of Regime-B is more complicated, since the

expressions for the fixed points (A 1) and (A 2) are obtained

under the assumption that Fv ¼ 0. Analytical expressions for

the fixed points in Regime-B exist, but they are not particu-

larly illuminating and we do not include them here.

Nonetheless, it is possible to show that for the parameter

values specified in table 3, there is a single stable fixed

point at (0.45, 3.11).
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