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The success of the Bayesian perspective in explaining perceptual phenomena

has motivated the view that perceptual representation is probabilistic. But

if perceptual representation is probabilistic, why does normal conscious

perception not reflect the full probability functions that the probabilistic

point of view endorses? For example, neurons in cortical area MT that respond

to the direction of motion are broadly tuned: a patch of cortex that is tuned to

vertical motion also responds to horizontal motion, but when we see vertical

motion, foveally, in good conditions, it does not look at all horizontal. The

standard solution in terms of sampling runs into the problem that sampling

is an account of perceptual decision rather than perception. This paper

argues that the best Bayesian approach to this problem does not require

probabilistic representation.

This article is part of the theme issue ‘Perceptual consciousness and

cognitive access’.
1. Introduction
One motivation for treating neural representations as probabilistic is that neurons

are stochastic devices: identical inputs to identical neurons will inevitably yield

variation in firing patterns. That applies to all neural representation, but there is

a reason to expect perceptual representation, in particular, to be probabilistic

because, given any activation of a perceptual system, there are many different

environmental situations with different perceptible properties that could have

produced it, some more probable than others. The visual system is said to cope

with these facts by representing many of the possible environmental situations,

each with a certain probability [1,2]. Perceptual representation of a range of

environmental situations, each with a certain probability, is what is meant in

this article by ‘probabilistic representation’.

For example, Vul et al. say that ‘. . . that internal representations are made up of

multiple simultaneously held hypotheses, each with its own probability of being

correct . . .’ [3]. Gross & Flombaum [4] describe ‘. . . a growing body of work that

emphasizes the probabilistic nature of the computations and representations

involved in a perceiver’s attempts to “infer” the distal scene from noisy signals

and then store the representations it constructs’. They advocate probabilistic rep-

resentations in which perceptual properties are attributed to places or things with

a certain probability.

It is often noted that perception does not normally seem probabilistic

[3,5–7]. But how would perception seem if it did seem probabilistic? The phenom-

enology of perception would reflect the probability distributions of probabilistic

perceptual representations.

An example from motion-sensitive area MT that illustrates the problem is in

figure 1. Tuning curves in individual neurons for direction of motion have

broad sensitivities. (I will discuss populations of neurons later.) Tuning curves

for neurons tuned to vertical downward motion respond also to a range of

other motions, from horizontal motion to the left to horizontal motion to the

right [8]. Still, when you look at a close medium-size object moving vertically

in good conditions, you do not normally see any hint of horizontal motion.

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2017.0341&domain=pdf&date_stamp=2018-07-30
http://dx.doi.org/10.1098/rstb/373/1755
mailto:ned.block@nyu.edu
http://orcid.org/
http://orcid.org/0000-0003-0587-6899
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Figure 1. The response of a patch of cortex tuned to downward motion in
area MT of monkey cortex. (The curve is representative but hypothetical.) The
height of the curve represents level of neuronal discharge. The shaded area
indicates the most active neurons. Reproduced with permission from [8] the
Society for Neuroscience.
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The same point applies to detectors for orientation in

early cortical areas of the visual system. Seeing a vertical

bar or grid activates neurons whose maximum response is

to vertical grids. Simple cells tuned to vertical respond to a

wide range of other orientations, but to a lesser degree, typi-

cally with substantial activations by grids tilted up to 308 in

either direction, clockwise and anticlockwise [9,10]. But

when one views a vertical grid foveally in normal conditions,

there is no hint of the 308 tilts. You can verify this for yourself

by looking at figure 2. (The fovea is the centre of the retina

where cones are the densest. A thumb at arm’s length is

seen entirely foveally.)

The probabilistic point of view as applied to individual

neurons dictates that these degrees of activation in neurons

are representations of probabilities that the stimulus has one

or another of these orientations, so the representation of the

orientation of a grid is often thought of as a set of hypotheses

attributing different probabilities to various different grids,

or, alternatively, as a probability function over orientations.

The reader may wonder whether the cortical areas men-

tioned really do support conscious perception rather than

unconscious perception. It is controversial whether visual

area V1 supports conscious perception [11,12], but other orien-

tation-specific areas (e.g. V2 and V3) do support conscious

perception. The evidence is overwhelming that MT/MST sup-

ports conscious perception. Micro-stimulation to MT/MST

affects direction perception in monkeys according to the domi-

nant tuning of the cells stimulated [13]. Damage to this area

causes deficits in motion perception, including the total

inability to see motion [11]. Subjects’ perception of motion are

correlated with the dominant tuning of motion-selective

cells including three-dimensional (3D) as well as 2D motion

[14]. Even illusory motion correlates with activation in this

area [15].

In brief, the problem to be discussed here is that conscious

perception does not normally reflect the probabilistic hypoth-

eses other than the dominant one. The response that I have

often gotten from Bayesians is that it is a mistake to focus on

the level of individual neurons. A Bayesian computation that

combines information from many neurons in a population

can be used to decide which hypothesis or narrow band of

hypotheses best predicts the overall neural activations. (These

are ‘likelihoods’ in a sense to be explained.) If the perceiver is

in a scanner, combining responses of many neurons allows

for decoding of the visual input orientation [16]. However, it

is unclear how the procedures that allow the neuroscientist to

decode from a population relate to the perceiver’s decoding

from a population. There is no inner eye that looks at popu-

lations. There has to be some mechanism of combination.
Unless some such mechanism is found, we should not suppose

there is any explicit representation [17] of these likelihoods.

That is, we should treat the likelihoods or likelihood functions

‘instrumentally’, i.e. as ‘as if’ constructs.

The subject of this article is probabilistic representation in

perception, not cognition (thinking, reasoning, deciding). And it

is probabilistic representation, not representation of probabilities.
Let me explain the difference. The probabilistic perceptual rep-

resentations at issue here are of this sort: ,red, therei, 0.7., to

be read as a representation of redness at the location indicated

by ‘therei’, with a 0.7 probability. But what if what is represented

in perception is not redness but itself a probability, say that the

probability is 0.3 that something is red? This is a representation

of a probability. Humans certainly have cognitive representations

of probabilities. We know that if A causally influences B, then

the presence of A makes B more probable. And, we use such rep-

resentations in reasoning and problem solving [18,19]. There is

some evidence of representations of probabilities in perception

[20], though I am not persuaded that this study concerns percep-

tion as opposed to perceptual judgement. If there is perception

of probability, the question arises as to whether there could be a

probabilistic representation of probability; for example, a repre-

sentation of the form: ,probability of redness of 0.3, therei,

0.7.. (If this seems unintelligible, note that I can have a

0.9 credence that the probability of decay of a certain subatomic

particle is 0.1.) In any case, this article concerns probabilistic

representation, not representation of probabilities; and in

perception, not cognition.

I will mention two proposals that have been made con-

cerning the role of probabilistic representation in the

phenomenology of perception, confidence and precision, arguing

that they do not deal with the problem at hand. Then I will

return to a discussion of more promising approaches which

focus on populations of neurons.
2. Confidence
Some say that a conscious reflection of probabilistic represen-

tation can be found in conscious confidence. One can have a

conscious sense of a low degree of confidence that that is Isaac

in the distance. As one gets closer, one’s conscious confidence

that it is Isaac might increase [21]. However, such confidences

involve cognitive categorization of perception (where cognition

is the domain of thought and reasoning). One can be very con-

fident that one sees something, less confident that one sees a

person, still less confident that one sees a guy in a ill-fitting

suit and still less confident that one sees Isaac [6]. The fact that

conscious confidence depends on the imposition of cogni-

tive categories raises the question of the extent to which the

phenomenology of confidence is perceptual phenomenology.

Morrison has countered by appealing to perceptual categor-

ization, saying it is the perceptual categories that make the

confidences perceptual [22]. However, it is not the case that

perceptual categorization is involved in all perception. The

operational index of perceptual categorization is faster and

more accurate discrimination across perceptual categories

than within perceptual categories. And that obtains in only

some cases of perception, for example, colour perception and

phoneme perception. Using the example of oriented grids,

there may be categorical perception of cardinal orientations,

but the same issue arises for +158 from a 258 tilt where no

cardinal orientations are involved.
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Figure 2. Oriented grids tilted from minus 308 to plus 308. Ask yourself whether in viewing the central grid, you see any hint of the minus 308 or plus 308 grids.
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In any case, perceptual categorization does nothing to

solve the problem of the perception of direction or orientation

that we started with. In normal foveal perception of a vertical

grid, we are not aware of the 308 tilts at all, so we are certainly

not aware of them with low confidences.

Another confidence-based approach would be metacogni-

tive confidence, the confidence that a certain probability

estimate is correct. Confidence in this sense is strongly con-

ceptual; for example, it requires the concept of probability.

So, metacognitive confidence is unlikely to be perceptual.
70341
3. Precision
Another proposal about the manifestation of probabilistic

representation in the phenomenology of perception is that

what Vul et al. and Gross & Flombaum interpret probabilisti-

cally should instead be seen in terms of representational

precision [6]. In the case of the orientation cells that are

tuned to verticality but are also activated by a wide range

of other orientations, the manifestation of this wide respon-

siveness might be blur. Of course, vertical things may look

blurry in a fog, but the problem at hand is why they do not

look blurry in foveal perception in standard conditions,

despite the wide tuning of individual neurons.

It has been suggested that the low quality of colour infor-

mation in the peripheral retina shows that perception really

is highly indeterminate. Our impression of determinacy is sup-

posed to be an illusion [23–27]. My first point against this claim

is that it is a myth that there are insufficient colour receptors in

the periphery of the retina to see vivid colours. Discrimination

of one hue from another is as good at 508 as in the fovea if the

colour stimuli are large enough [28]. And there is some colour

sensitivity out to 808–908. I called this a myth ([29, p. 534]) and

a recent article describes it as a ‘widespread misconception

even among vision scientists’ [30]. Second, it is well known

that there is integration of colour information over time

within visual cortex. Third, ‘memory colour’ effects are well

known. Similar points are made in [29,31].

It might be said that, rather than blur, the perception rep-

resents a determinable rather than a determinate [32]. A

determinate is a more specific way of having a determinable,

as red is a more specific way of being coloured. The determin-

able/determinate relation is relative—red is determinate

relative to coloured but determinable relative to scarlet. The

suggestion that we are aware of determinables does have the

advantage of predicting that we do not see low probability

alternatives, but it throws out the baby with the bathwater

by denying that we see the high probability alternatives as

well. How would the determinable hypothesis apply to the

vertical grid or vertical motion examples? Perhaps, the deter-

minable would be motion that deviates from vertical at most by a
small acute angle. If ‘small’ is supposed to cover the full range
of putatively represented angles, the problem is just restated,

and if ‘small’ covers a smaller range, the proposal does not

face up to the problem how it is that perception does not reflect

the probabilistic representations outside that range.
4. Populations
Thus far, it may seem that I am arguing that if perception is

probabilistic, it would seem probabilistic; it does not seem so,

so it is not probabilistic. That is not my argument. There are

a number of ways in which probabilistic perception might

not seem probabilistic. The most promising candidates involve

populations of neurons. I mentioned earlier that the infor-

mation required to determine the conscious perception is

spread over populations. The question at hand is whether the

mechanisms by which this information is integrated requires

actual probabilistic representation. My overall point is that

the best approach to population responses does not involve

commitment to actual explicit probabilistic representa-

tions because they are to be understood in terms of Marr’s

‘computational’ level, to be explained below.

The next two sections concern two population-based

approaches: sampling and competition. I endorse the latter

and go on to explain that it is compatible with Bayesian

approaches.
5. Sampling
Sampling is a way of moving from probabilistic representations

to narrower probability distributions or to non-probabilistic

representations in populations of neurons. Any such process

can be described as sampling but as we will see in the next sec-

tion, there is another approach that is less naturally described

as sampling. The big attraction of sampling from a Bayesian

perspective is that optimal Bayesian inference is intracta-

ble but sampling is not. My objection to sampling is that

standard sampling models model perceptual decision rather
than perception itself.

The term ‘sampling’ covers any process in which items are

chosen from a distribution, e.g. drawing balls from an urn. The

‘standard’ form of sequential sampling according to a recent

review [33] is the diffusion decision model in which the subject

is given a task, say of deciding whether a bar is tilted to the left

or to the right. A threshold of evidence is set for each of the

choices, and the system samples from the distribution of

responses. Samples are the input and the output is a decision.

(Some writers treat the decision itself as a sample [34].) In one

version, each sample is treated as an item of evidence in a

Bayesian calculation of posterior probability. If the accumu-

lation of evidence reaches the threshold for clockwise before

the threshold for anticlockwise, the perceptual decision is

clockwise [33,35].



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170341

4
Applied to the problem at hand, the suggestion would be

that probabilistic representations are unconscious, but con-

scious perception reflects the sampling, not the probabilistic

representations themselves. The sampling answer to ‘If per-

ception is probabilistic, why does it not seem probabilistic?’

then is that unconscious perception is probabilistic but

conscious perception is not.

Vul et al. say ‘Internal representations are graded probability

distributions, yet responses about, and conscious access to,

these representations is limited to discrete samples. Our mind

appears to perform Bayesian inference without our knowing

it’. Gross & Flombaum (p. 361), referencing Vul et al., put it

this way: ‘perceivers construct from noisy transduced signals

probabilistic representations (assignments of credences over a

space of possibilities concerning the distal scene) that take

into account, as best they can, expected relationships among

the scene’s various features; performance, in response to a
specific query, then involves “sampling” from the probabilistic

representations stored in visual memory’ (italics added).

However, we do not need a query for the vertical grid or vertical
motion to look vertical. Without any particular task or query or

focused attention, vertical objects in the world seen foveally

in normal conditions tend to look vertical. You may be reading

this on a computer screen whose sides are vertical and look ver-

tical despite the fact that there is no task concerning them and

you are not attending directly to them. Further, Bayesian

models of sampling standardly require cognitive categories

imposed in advance as part of the subject’s task. In the example

above, the categories were tilted left and tilted right. But then the

same problem arises as already mentioned in connection with

confidence. When sampling depends on the imposition of

cognitive categories, that raises the question of the extent to

which the phenomenology of the conscious state is genuinely

perceptual phenomenology.

The basic problem is that sampling models model percep-
tual decision rather than perception, i.e. the formation of a

percept. Perception takes place routinely with no task, explicit

or implicit, and without any need for perceptual decision as

to which cognitive category to apply. I am appealing here

and in what follows to the difference between perception and

cognition—where cognition includes thought, reasoning and

decision-making. Although I cannot argue for it here, I believe

that perceptual representations are constitutively iconic,

non-conceptual and non-propositional in content, whereas

cognitive representations do not have these properties. There

is an important divide between the types of representations

involved in perception and cognition [36–38].

An advocate of sampling might suggest that there is

always sampling in conscious perception, independently of

any task. If there are many samples, the problem this article

started with arises: The samples will be samples of different

orientations, so why does not vision reflect all the samples?

The supposition that there is a single random sample leading

to a point estimate would predict widespread illusion.

The evidence for probabilistic representation in ordinary

perception is problematic. To get evidence for sampling, Vul

et al. had to produce a perceptual situation in which subjects

were making weakly informed guesses, something that does

not happen in prototypical foveal vision. They presented 26

letters in quick succession for 20 ms each with 47 ms in between

letters. In the series, one letter was surrounded by a circle and

the subjects’ task was to say which letter was circled. The inno-

vation of Vul et al. was to ask for multiple guesses about the
same perception, the results of which they describe as sampling

from a distribution of hypotheses in that very perception.

However, anyone who has been a subject in such a rapid

series of percepts—15 letters in a single second—knows that

the subjective impression is one of guessing. A similar problem

arises for a second experiment in which letters were ‘crowded’

together in space. In crowded perception, most notably in the

periphery of the visual field, there is more than one object in

an ‘integration field’, making the perception bewildering.

One subject in a (different) crowding experiment was quoted

as saying ‘It looks like one big mess . . . I seem to take features

of one letter and mix them up with those of another’. Another

subject said: ‘I know that there are three letters. But for some

reason, I can’t identify the middle one, which looks like it’s

being stretched and distorted by the outer flankers’ ([39,

p. 1139]) . The evidence for probabilistic perception in a case

in which subjects are subjectively guessing does not automati-

cally apply to ordinary foveal perception in which a vertical

line looks vertical, despite representations in the visual

system of lower probability tilts. In the Vul et al. cases, compe-

tition has broken down and there are many simultaneously

present percepts.

Further, what Vul et al. describe as sampling from a distri-

bution was a matter of making a series of four decisions about

what letter was cued. Subjects got monetary rewards, more

money for getting the letter right on the first guess and less

for the subsequent three guesses, so they had to evaluate

which of these conceptual categorizations they were most

sure of. Their responses required complex cognition involving

the imposition of concepts on whatever perceptual information

they had.

In sum, standard forms of sequential sampling require

the imposition of cognitive categories, something that may

never be involved in genuine perception. Sampling is more

of a model of perceptual decision than of perception, i.e.

the formation of percepts. And a highly cited item of evi-

dence for sampling involves uncertain perception that is

quite different from the kind of perception that gives rise to

the original problem.

The problems with the sampling approach motivate look-

ing at another approach to populations of neurons,

competition.
6. Competition
What seems to me the most promising approach is based on the

notion of competition. I know that some will see competition as

an implementation of sampling but the key difference, as I have

been saying, is that competition routinely happens without any

need for a perceptual decision. One kind—not the only kind—

of competition is involved in the ‘global workspace’ model of

consciousness [40] (figure 3). The outer ring indicates the sen-

sory surfaces of the body. Circles are neural systems and lines

are links between them. Filled circles are activated systems

and thick lines are activated links. Activated neural coalitions

compete with one another to trigger recurrent (reverberatory)

activity, symbolized by the ovals circling strongly activated net-

works. Sufficiently activated networks trigger recurrent activity

in cognitive areas in the centre of the diagram and they in turn

feed back to the sensory activations, maintaining the sensory

excitation until displaced by a new dominant coalition. Not

everyone accepts the global workspace theory as a theory of
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Figure 3. Schematic diagram of the global workspace. I am grateful to Stan Dehaene for supplying this drawing. Dark pointers added.
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consciousness (including me), but it does serve to illustrate one

kind (again, not the only kind) of competition among sensory

activations that in many circumstances is ‘winner-takes-all’,

with the losers precluded from consciousness.

(I have argued that recurrent activations confined to the

back of the head can be conscious without triggering central

activation. Because of local recurrence, these are ‘winners’ in

a local competition without triggering global workspace acti-

vation [41]. Strong recurrent activations in the back of the

head normally trigger ‘ignition’, in which a winning neural

coalition in the back of the head spreads into recurrent acti-

vations in frontal areas that in turn feed back to sensory

areas (figure 3). As Dehaene et al. [42] have shown, such

locally recurrent activations can be produced reliably with a

strong stimulus and strong distraction of attention. As I am

concerned in this paper with normal perception, I will

ignore my disagreement with the model here.)

Another case in which losing representations are precluded

from consciousness is rivalry, both rivalry that can be

experienced with one or both eyes (as with the Necker cube

and standard figure/ground stimuli) and binocular rivalry.

In rivalry, alternative representations compete for dominance

because of mechanisms of reciprocal inhibition. The losing

representations rise again when the dominant perceptions

are weakened by adaptation. One evolutionary explanation

for reciprocal inhibition is that vision has to cope with

damage to the eye in which there is some distorted registra-

tion that must be inhibited in favour of a dominant percept

[43]. In this winner-takes-all competition, the mechanism is

competition and dominance.

Although the explanation of rivalry in terms of reciprocal

inhibition and adaptation is very well confirmed [44], there

are Bayesian accounts, including accounts based on sampling,

that have some utility in predicting some specific details of the

dominance of rivalrous stimuli. Some of these accounts take

neural noise to be the factor that triggers switches [45], whereas

others suggest the driving factor is predictions in the frontal

cortex in triggering switches [43,46,47]. In addition, there are

Bayesian approaches to adaptation itself [48]. The sampling

accounts in this application avoid the problem for sampling

mentioned earlier of explaining perceptual decision rather

than perception, because the rivalrous states are first and fore-

most rivalrous perceptions rather than perceptual decisions,

and also obtain when there is no task [49]. However, what is
most obviously probabilistic about rivalry is the transitions

between perceptions, because one cannot predict the time or

length of one episode of dominance on the basis of those

that preceded it [50]. Sampling accounts can model probabilistic
transitions among non-probabilistic representations rather

than probabilistic representations [51]. One could say that

Bayesian theories of perceptual transitions involve ‘implicit’

probabilistic representation [51], but it is explicit perceptual

representation that leads to the question of the title of this

article. Further, Bayesian models do not supplant models that

appeal to adaptation and competition (reciprocal inhibition),

but rather provide a framework for integrating rivalry with

other perceptual phenomena [52].

Interestingly, in some perceptual situations, not only is the

losing representation suppressed—its putatively probabilistic

aspect is repressed too. Hakwan Lau and Megan Peters and

their colleagues recorded from intracranial electrodes in epi-

lepsy patients as they were viewing noisy stimuli that could

either be faces or houses. They found that face/house decisions

were based on the strength of both face and house represen-

tations but that confidence judgements did not take into

account the strength of the decision-incongruent represen-

tation [53]. The face representation can beat out the house

representation by a slight margin but only the strength of the

face representation is involved in determining confidence.

This result is compatible with probabilistic representation but

suggests limitations on it.1 Like Trump, consciousness likes

winners, not losers, even if the losers are almost on a par

with the winners, probabilistically speaking.

In a binocular rivalry set-up if the two pictures are locally

compatible, the perception will reflect merger of the pictures.

For example, a male and a female face that are locally compa-

tible will be seen as a combined androgynous face [55].

(Local compatibility has to do with whether small patches

are lighter or darker than the background. If they are locally

of opposite polarity (one patch lighter, one darker), then

they are incompatible.) So, in a binocular set-up, competing

images can lead to rivalry or to merging, depending on local

compatibility. Merging can sometimes involve patches of

both stimuli. These two modes are often contrasted, with

only rivalry being classified as ‘winner-takes-all’. But merging

can also be considered as a kind of winner-takes-all process

that is different from rivalry in which the male and female

faces are losers and the androgynous face is the winner.
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A similar process occurs in perception of motion direc-

tion. When neurons representing opposite directions are

stimulated, the result is that one direction wins. When neur-

ons represent different but not opposite directions, there is a

kind of vector averaging process [8]. In both cases, varying

representations give way to a single winner. Using electrodes

that stimulate areas of MT in monkey cortex, Nichols and

Newsome were able to show that when there are activations

representing directions that differ by more than 1408, one

direction is completely suppressed (as in rivalry), whereas

when they differ by less than 1408, the result is a perception

that averages the vectors.

The proposal then is that we should think about population

codes in terms of competition for dominance. What is conscious

is the result of competition, the competing representations prior

to that resolution being unconscious. Competing represen-

tations resolve either with the weak dying out so that the

strong can live or with merging or averaging. The big advan-

tage of the framework of competition over sampling is that

competition does not require a perceptual decision.

Why are the losing representations not represented in

consciousness? It may be that consciousness requires a mini-

mal level of strength of activation or local recurrent circuits,

both of which have independent support [56,57]. The

global workspace and higher order accounts are alternatives.

My hope is that getting clear about the role of competition in

perception will help to guide research on this question.

Advocates of sampling may say that competition is just an

implementation of sampling and that losing representations are

just representations that represent low probabilities. Further,

the strongest activations do not always win, and that could

be used to suggest probabilistic representation. Although the

strongest, most skilled and heaviest wrestler probably will

win, that does not show that the wrestlers represent probabil-

ities or that representations of probabilities are involved in

wrestling matches. One event can be more probable than

another without any representation of probabilities. To reiter-

ate: the competition framework does not require the

imposition of cognitive categories and so is distinct from the

sampling framework.

I do not deny that competition can be understood in prob-

abilistic terms. Winning a competition could be described as

a probabilistic decision. Any detailed model of competition

could be described in probabilistic terms. My conclusion is

not that the probabilistic view is false but that it should be

understood instrumentally rather than as describing actual

probabilistic representations. As I will argue in the next sec-

tion, the best attitude towards the Bayesian formalism is an

‘as if’ or instrumentalist attitude, and that attitude is very

common in Bayesian writing.

There are a number of experimental studies that purport to

show probabilistic representations in human visual cortex. van

Bergen et al. [34] start by conceding, of the probabilistic hypo-

thesis that ‘direct neural evidence supporting this hypothesis is

currently lacking’. They purport to remedy this situation. They

showed subjects randomly oriented grids while doing brain

scans (fMRI), focusing on early visual cortical areas (V1,V2,

V3). Subjects were required to rotate a bar to match the orien-

tations they saw, giving the experimenters a behavioural

measure of precision of response. Using fMRI, they were able

to decode the orientations subjects were seeing. They measured

the ‘cortical uncertainty’ of orientations in an individual per-

ception. The measure they adopted is not easy to describe in
a non-technical way but what is easy to describe is the way

they chose among various candidates: by looking for the

measure of uncertainty in an individual perception that corre-

lated best with variation from perception to perception. This

variation is depicted in figure 4. The width of the distribution

in the graph of actual orientation versus decoded orientation

is a measure of ‘cortical uncertainty’ over time.

There are three results, all involving the notion of ‘cortical

uncertainty’. My response to those results is that what they

call ‘cortical uncertainty’ is equally well described as ‘degree

of cortical competition’. One reason that the dots in figure 4

are scattered instead of clustered tightly is that neurons respond

to many different orientations, creating many competing rep-

resentations for each stimulus. Of course, degree of cortical

competition can be regarded as an implicit representation of

uncertainty. But, merely implicit probabilistic representation

does not give rise to the puzzle of the title of this article.

The first of van Bergen et al.’s three results has to do

with something called the ‘oblique effect’, a phenomenon not

mentioned here so far (and one that has nothing to do with

the discussion of orientations earlier). The phrase ‘oblique

effect’ refers to the phenomenon that subjects are more accurate

in reporting cardinal (horizontal and vertical) orientations

than for oblique orientations. The van Bergen result is that

their measure of cortical uncertainty was higher for oblique

than for cardinal grids. They say cortical uncertainty explains

behavioural uncertainty. However, degree of cortical compe-

tition gives essentially the same explanation, but without

commitment to probabilistic representation.

van Bergen et al. also showed (this is the second result)

that when they presented the same orientation repeatedly,

subjects’ behavioural precision was predicted by the cortical

uncertainty. Again, this fact can be seen as behavioural

precision predicted by degree of cortical competition.

The third result is the most impressive. They argue that

the visual system tracks its own uncertainty. It is well

known that subjects’ orientation judgements are biased

towards oblique and against cardinal orientations (a different

sort of oblique effect). They found that when cortical uncer-

tainty was high, the bias towards oblique orientations was

stronger than when cortical uncertainty was low, suggesting

that the visual system monitors its own uncertainty on a trial-

by-trial basis, relying more on bias when cortical uncertainty
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is high. But ‘monitoring competition’ and ‘monitoring

uncertainty’ can be descriptions of the same facts.

Similar points apply to the observation that the weight

given to different senses when they are integrated in perception

depends on the relative reliability of those senses and how

quickly it can be computed [58,59]. ‘Monitoring reliability’

and ‘monitoring competition’ can refer to the same process.

van Bergen et al. conclude that this is ‘strong empirical

support for probabilistic models of perception’ (p. 1729),

but their results do not distinguish between instrumentalist

and realist construals of this claim.

There are independent grounds for caution in conclud-

ing that perceptual representations are probabilistic or that

uncertainty is represented in perception. A useful corrective

comes from a recent study of pea plants that shows that

growth of roots of pea plants involves sensitivity to variation

in nutrients [60].

Individual pea plants had their roots separated into differ-

ent pots as indicated in figure 5. The conditions could be

rich (lots of nutrients) or poor, and variable (i.e. fluctuating)

or constant. In rich conditions, the plants grew a larger mass

of roots in the constant pot; in poor conditions, the plants

grew a larger mass of roots in the variable plot. As the authors

note, the plants were risk prone in poor and risk averse in

rich conditions, fitting the predictions of risk sensitivity

theory. Were the plants monitoring the uncertainty in nutrients

reaching their roots? The plants have no nervous system and no

one has found anything that could be called a representation of

uncertainty. Any talk of plants ‘monitoring’ uncertainty would

have to be regarded as ‘as if’ talk unless there is evidence to the

contrary. I suggest we should take a similar attitude towards

the sensitivity to uncertainty shown in the van Bergen study:

it should be understood in an ‘as if’ framework unless we

have evidence for a more realistic interpretation.

The conclusion of Dener et al. (p. 1766) fits with my meth-

odological suggestion:
Plants’ risk sensitivity reinforces the oft-repeated assertion that
complex adaptive strategies do not require complex cognition
(adaptive strategies may be complex for us to understand, without
necessarily being complex for organisms to implement). Bacteria
. . . fungi . . . , and plants generate flexible and impressively com-
plex responses through ‘decision’ processes embedded in their
physiological architecture, implementing adaptive responses
that work well under a limited set of ecological circumstances
(i.e. that are ecologically rational)
In sum, sensitivity to uncertainty does not require representation

of anything, including uncertainty.
7. Why Bayesian approaches do not require
probabilistic representation

One argument for probabilistic representation in perception is

that Bayesian models of perception have been highly successful

and that they (putatively) presuppose probabilistic represen-

tation. I will argue that on the most plausible construal of

Bayesian models, they do not presuppose probabilistic rep-

resentation. Bayesian accounts of visual perception compute

the probability density functions of various configurations of

stimuli in the environment on the basis of prior probabilities

of those environmental configurations and likelihoods of

visual ‘data’ if those environmental configurations obtain.

(Visual data are often taken to be activations in early vision.)

Bayes’ theorem states that the probability of a hypothesis

about the environment (e.g. that there is a certain distribution

of colours on a surface) given visual data is proportional to

the prior probability of that hypothesis multiplied by the

probability of the visual data given the hypothesis. If h is

the environmental hypothesis, e is the evidence from visual

data and p(hje) is the probability of h given e, then p(hje) is

proportional to p(ejh) � p(h). p(ejh) is the ‘likelihood’ (of the

visual data given the environmental hypothesis) and p(h) is

the prior probability of the environmental hypothesis. (An

equivalence rather than a statement of proportionality

requires a normalizing factor, so that probabilities sum to 1.)

In Bayesian updating, the system uses the previous

probability of the environmental hypothesis as the prior in

changing the hypothesis about the environment in response

to new visual data. So, Bayesian updating requires multiplying

one’s current prior probability estimate times one’s current esti-

mate of likelihood to get the probability of the environmental

hypothesis, given current stimulation. Then the posterior prob-

ability of the environmental hypothesis becomes the new prior.

The most plausible version of these theories are hierarchical

in that the visual system is divided into stages with distinct

priors and likelihoods at each stage. In the ‘predictive coding’

version of the account, predictions in the form of priors are

sent down the visual hierarchy (i.e. towards the sense

organs) while error signals (the prediction minus the data)

are sent upwards [52,61].

What would show that something that deserves to be called

Bayesian inference actually occurs in perception? In the most

straightforward implementation, there would have to be per-

ceptual representations of prior probabilities for alternative

hypotheses, perceptual representations of likelihoods and

some process that involves something that could be described

as multiplication of these values. (Additional arithmetic com-

plexity would be added by utility functions that compare the

utility of the various environmental hypotheses.)

It is common for those who emphasize Bayesian processes

in perception to appeal to global optimality. Many perceptual
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processes are Bayes optimal but many are not. As Rahnev &

Denison [62] note in a review of suboptimal processes in

perception, there is an extensive literature documenting subop-

timal performance. In any case, Bayes optimality is neutral

between instrumentalist and realist construals.

Often, Bayesian theories of perception are held as compu-

tations in an ideal observer, an observer who uses Bayesian

principles to optimally compute what is in the environment

on the basis of visual data. Ideal observer theories are instru-

mentalist in that they are not committed to the representation

in real visual systems of priors or likelihoods or their multi-

plication within the system. Bayesian models, construed

from the ideal observer point of view, do not licence attribu-

tions of probabilistic representation [63,64]. For example,

Maloney & Mamassian [65] show how non-Bayesian

reinforcement learning can result in behaviour that comports

well with an ideal Bayesian observer.

Sanborn & Chater [66] argue that an approximation pro-

cess that samples from representations but does not compute

over probabilities would mimic standard probabilistic falla-

cies in reasoning. They suggest implementation of the

sampling process in a connectionist network of a sort that

would not plausibly support probabilistic representation.

However, some Bayesian accounts are more ‘realist’ about

priors and likelihoods (and utilities) that are represented expli-

citly in perceptual systems. A major problem with realist

theories in which Bayesian inference literally takes place in

the brain is that the kind of Bayesian computations that

would have to be done are known to be computationally

intractable [66]. So, any realist version of Bayesianism will

have to tell us what exactly is supposed to be involved in the

computations.

Michael Rescorla argues for a realist version of Bayesianism

in which priors are explicitly represented [64,67]. He does not

say explicitly that likelihoods are explicitly represented and

that the multiplication of one by the other is real. Rescorla’s

argument is based on the fact that we have good Bayesian

models of how priors evolve in response to changing environ-

mental conditions. For example, such models predict that if one

exposes a subject to stimulation in which luminance and stiff-

ness are correlated, the priors will change so that stiff objects

are seen as more luminant. And, this prediction is born out.

Further, the ‘light comes from overhead’ prior can be changed

by experience. Overall, he says, a realist interpretation yields

explanatory generalizations that would be missed on an instru-

mentalist interpretation. The principle is that the best

explanation of successful prediction is that the entities referred

to in the theories that generate the prediction really exist and to

a first approximation really have the properties ascribed to

them in the theory [68]. The specific application here is that

our ability to predict how priors will change supports the

hypothesis that priors are really represented in perception.

I find this argument unconvincing because whatever it is

about the computations of a system that simulates the effect of
represented priors (for example, the proposal by Sanborn &

Chater) might also be able to simulate the effect of change
of priors. Without a comparison of different mechanisms

that can accomplish the same goal, the argument for realism

is weak.

Further, perception is an inherently noisy process in part

because the neural processing is characterized by random

fluctuations. The representations must be regarded as approxi-

mate. But what is the difference between approximate
implementation of Bayesian inference and behaving roughly

as if Bayesian inference is being implemented [7,64]? Until

this question is answered, the jury is out on the dispute

between realist and anti-realist views.

Recent debates about Bayesianism in perception have

appealed to David Marr’s famous three levels of description

of perception. The top level, the computational level, specifies

the problem computationally, whereas the next level down, the

algorithmic level, specifies how the input and output are rep-

resented and what processes are supposed to move from the

input and output. To use one of Marr’s examples, in the charac-

terization of a cash register, the computational level would be

arithmetic. One variant of the algorithmic level would specify a

base 10 numerical system using Arabic numerals plus the tech-

niques that elementary school students learn concerning

adding the least significant digits first. An alternative to this

type of algorithm and representation might use binary rep-

resentation and an algorithm level involving AND and X-OR

gates [69]. The lowest level, the implementation level, asks

how the algorithms are implemented in hardware. In an old-

fashioned cash register, implementation would involve gears

and in older computer implementations of binary arithmetic,

magnetic cores that can be in either one of two states [70].

Many prominent Bayesians say that most Bayesians are

working at the computational level. For example, Griffiths

et al. [2]: ‘Most Bayesian models of cognition are defined at

Marr’s [71] “computational level,” characterizing the problem

people are solving and its ideal solution. Such models make

no direct claims about cognitive processes—what Marr

termed the “algorithmic level”’.

In sum, the Bayesian perspective is powerful, but it does

not require a realist or algorithmic interpretation. Instrumen-

talist versions of Bayesianism as giving explanations at

Marr’s computational level are well supported and are not

committed to probabilistic representations.
8. Conclusion
My proposal is that competition among unconscious represen-

tations yields conscious representations through winner-takes-

all processes of elimination or merging. The competition

framework does not require any particular task or cognitive

categorization and in that respect is better than the sampling

framework. The process can be considered Bayesian but

only on an instrumentalist interpretation pitched at Marr’s

computational level rather than the algorithmic level.

Perhaps, the strongest challenge to my account is Bayesian

sampling accounts of competition, especially the use of

sampling models to predict some of the details of binocular riv-

alry [45,46]. However, (i) the conflict between different

Bayesian models (noise versus predictions as the driving

factor), (ii) the fact that probabilistic transitions in rivalry do

not require probabilistic representations, (iii) the point made

in connection with pea plants, and (iv) the strong consider-

ations in favour of the computational rather than algorithmic

level in Bayesian explanations counter the challenge.

To head off one misinterpretation, I am not suggesting

that there is a single stage of processing (a ‘Cartesian theatre’

[72]) where competition is resolved. The competition at any

stage of the visual hierarchy may perhaps be resolved at

the same stage or at a higher stage, but that does not entail

that there is a single stage at which everything is resolved.
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In sum, my answer to the question ‘If perception is prob-

abilistic, why doesn’t it seem probabilistic?’ is that we would

do well to think of probabilities in perception instrumentally,

avoiding the realist interpretations that motivate the question

of the title.
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Endnote
1Mudrik et al. [54] showed that boosting the contrast of the sup-
pressed image makes it more likely to be seen consciously. I
suppose someone might claim that contrast reflects probability but
an alternative description is that the higher the contrast the more
competitively efficacious the representation.
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