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Abstract
Obesity and its multiple metabolic sequelae, including type 2 diabetes, cardiovascular disease, and fatty liver disease, are
becoming increasingly widespread in both the developed and developing world. There is an urgent need to identify new
approaches for the prevention and treatment of these costly and prevalent metabolic conditions. Accomplishing this will
require the use of appropriate animal models for preclinical and translational investigations in metabolic disease research.
Although studies in rodent models are often useful for target/pathway identification and testing hypotheses, there are
important differences in metabolic physiology between rodents and primates, and experimental findings in rodent models
have often failed to be successfully translated into new, clinically useful therapeutic modalities in humans. Nonhuman
primates represent a valuable and physiologically relevant model that serve as a critical translational bridge between basic
studies performed in rodent models and clinical studies in humans. The purpose of this review is to evaluate the evidence,
including a number of specific examples, in support of the use of nonhuman primate models in metabolic disease research,
as well as some of the disadvantages and limitations involved in the use of nonhuman primates. The evidence taken as a
whole indicates that nonhuman primates are and will remain an indispensable resource for evaluating the efficacy and
safety of novel therapeutic strategies targeting clinically important metabolic diseases, including dyslipidemia and
atherosclerosis, type 2 diabetes, hepatic steatosis, steatohepatitis, and hepatic fibrosis, and potentially the cognitive decline
and dementia associated with metabolic dysfunction, prior to taking these therapies into clinical trials in humans.
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Introduction/History
Nonhuman primates (NHPs) have been utilized for over 50
years to investigate the regulation of metabolism and the phys-
iology and secretion of metabolically important pancreatic, gas-
trointestinal, and adipocyte hormones and have served as
critically important models of the pathophysiology and treat-
ment of metabolic diseases, in particular type 2 diabetes and
cardiovascular disease. NHPs differ significantly from labora-
tory rodents and are metabolically more similar to humans in a
number of characteristics, including the major site of de novo
lipogenesis (liver vs. adipose tissue) and major classes of circu-
lating lipoproteins and in the physiology of thermogenesis and
insulin-meditated glucose utilization. The goal of this article is
not to provide a comprehensive review of the literature on
NHPs in metabolic disease research, but rather to present an
overview of the use and importance of NHPs for investigating
the etiology, pathophysiology, and treatment of obesity and
components of the metabolic syndrome, including lipid disor-
ders, cardiovascular disease, type 2 diabetes, and fatty liver dis-
ease. We will also discuss some of the important methodology
and approaches employed for metabolic disease research in
NHPs and provide several examples where studies in NHPs
have provided important advances in the prevention and man-
agement of these diseases.

The NHPs most commonly employed for metabolic disease
research include rhesus macaques (Macaca mulatta), cynomolgus
macaques (Macaca fascicularis), baboons (Papio species), and African
Green Monkeys (Chlorocebus species), although a number of other
species, including marmosets (Callithrix species), are sometimes
employed. There are currently seven National Primate Research
Centers (NPRCs), which include California (Davis), Oregon
(Beaverton/Portland), Southwest (San Antonio), Washington
(Seattle), Tulane (New Orleans), Yerkes (Emory University, Atlanta),
and Wisconsin (Madison), supported by the National Institutes of
Health (NIH), several of which currently have programs and
research scientists actively engaged in metabolic disease research
(NPRC, https://nprcresearch.org/primate/). In addition, there are sev-
eral of other academic (e.g., Wake Forest University Primate Center)
and private (e.g., Crown Biosciences) facilities inside and outside of
the United States that maintain colonies of obese and diabetic
NHPs for metabolic disease research. The facilities and animals at
the US NPRCs are available for collaborative research projects with
academic investigators and collaborations and contract studies
with pharmaceutical and biotechnology partners. In addition, the
NPRCs offer Pilot Research Programs intended to provide funding
for investigators new to NHP research who are interested in trans-
lating and expanding their experimental findings into NHP models
and to generate preliminary data in NHPs needed to apply for larger
funding mechanisms.

Endocrine and Metabolic Studies in Nonobese
Animals
Studies in nonobese NHPs have been useful for translating
physiology in the normal nondisease state from rodent models
to primates, including humans. For example, NHPs have been
valuable in understanding the regulation of food intake by gas-
trointestinal peptides, including cholecystokinin (Moran et al.
1993), glucagon-like peptide-1 agonists (Scott and Moran 2007),
and peptide-YY (Moran et al. 2005). In addition, the actions and
regulation of leptin and its pharmacokinetics have been widely
interrogated in rhesus macaques (Adams et al. 2008; Ahren
et al. 2000; Ramsey et al. 1998; Tang-Christensen et al. 1999) as

well as adiponectin biology in baboons (Tejero et al. 2004a).
Studies performed in NHPs have also proven important for es-
tablishing the role of the autonomic nervous system in post-
prandial insulin secretion (D’Alessio et al. 2001) and the
regulation of glucagon secretion during insulin-induced hypo-
glycemia (Havel and Valverde 1996) as well as compensatory
insulin secretion in glucocorticoid-induced insulin resistance
(Cummings et al. 2013). To highlight the importance of the NHP
as a clinically relevant model, several of these studies in NHPs
have directly led to very similar studies in humans (Ahren and
Holst 2001; Havel and Ahren 1997). Furthermore, studies of
long-term energy restriction in aging NHPs (rhesus macaques)
performed at the Wisconsin NPRC and the National Institute of
Aging, NIH have also been prominent in translating effects on
healthy life span and metabolic outcomes originally observed
in rodents to primate models (Colman et al. 2009; Kemnitz
2011; Mattison et al. 2012, 2017; Ramsey et al. 2000).

Spontaneous Versus Diet-Induced NHP
Models of Metabolic Disease
Obesity and its metabolic sequelae are quite uncommon in NHPs
living in the wild as a consequence of high levels of physical
activity as well as the energy expended in thermoregulation. In
addition, the amount and types of foods that wild animals con-
sume do not typically promote positive energy balance and
weight gain, although obesity has been observed in wild NHPs
that have access to palatable foods with high caloric content
(Kemnitz et al. 2002). In captive animals, the prevalence of obesity
increases, even in animals housed in large outdoor enclosures
with free access to both physical activity and ad libitum intake of
standard laboratory “monkey chow” diets that are typically low in
fat and added sugars. However, rates of obesity in NHPs housed
in groups in outdoor facilities are considerably lower compared
with animals housed indoors in smaller enclosures. Obesity in
indoor-housed animals is considerably more prevalent, and
many of these animals are often restricted below ad libitum food
intake to prevent them from becoming obese.

Due to the longer periods of time for obesity and related meta-
bolic diseases to develop and progress in most NHP species when
consuming standard low-fat/low-sugar laboratory NHP diets
(~15% of calories from fat and 50–60% of calories from carbohy-
drates as starch), experimental diets that are high in fat and/or
simple sugars are being increasingly used to induce rapid weight
gain and accelerate metabolic disease progression in NHPs. One
commonly used experimental diet is a high-fat, high-sugar
(HFHS) diet, ranging from 30% to 40% of calories from fat and
increasing percentages of calories from simple sugars. For exam-
ple, Higgins and colleagues demonstrated that total and truncal
fat mass and fasting plasma triglyceride (TG) concentrations were
all more than doubled, and circulating adiponectin concentra-
tions were decreased by ~30% after only 8 weeks of exposure to a
HFHS diet in adult male baboons compared with those consum-
ing a standard control diet (Higgins et al. 2010). HFHS diets have
also been used in common marmosets (Callithrix jacchus), result-
ing in increased body fat and glucose dysregulation for periods up
to 1 year in duration (Wachtman et al. 2011). In a unique NHP
model, a similar HFHS diet (~35% of calories from fat and 46% of
calories from carbohydrates in the form of sucrose and fructose;
TestDiet 5L0P) has been fed to female Japanese macaques to
investigate the effects of diet-induced maternal obesity and meta-
bolic perturbations during pregnancy on metabolic disease trans-
mission to their offspring (Aagaard-Tillery et al. 2008; Grant et al.
2012; Pound, Comstock et al. 2014). HFHS diets have been useful
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in investigating the effects of resveratrol supplementation on a
number of metabolic outcomes in rhesus macaques, including
preservation of β-cell differentiation (Fiori et al. 2013), adipose tis-
sue insulin signaling and inflammation (Jimenez-Gomez et al.
2013), and attenuation of arterial inflammation and aortic wall
stiffening (Mattison et al. 2014).

Furthermore, in a well-characterized NHP model of metabolic
syndrome, consumption of 300 kcal/day from flavored fructose-
sweetened beverages for up to 1 year results in increased energy
intake (Figure 1A) and body weight gain (Figure 1B), along with
decreased energy expenditure (Figure 1c) and increased fat mass
(Figure 1D), impaired glucose tolerance (Figure 1E), and insulin

resistance (Figure 1F). These changes are accompanied by dyslipi-
demia, with hypertriglyceridemia and reduced HDL-C, decreased
adiponectin, and elevation of some markers of inflammation in
adult male rhesus macaques (Bremer et al. 2011). The animals
largely compensate for the energy consumed from the sugar-
sweetened beverages by decreasing their intake of the solid
chow diet, but remain in positive energy balance consuming
~30 kcal/day more than before the introduction of the beverages.
This, combined with an approximately 12% decrease of energy
expenditure, leads to the rapid gain of body weight and fat
mass. Interestingly, most of the weight gain and accompanying
metabolic disarrangements occur during the first 3 to 6 months
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Figure 1 The effect of a high-fructose diet on energy intake from sugar (fructose), chow, and total energy intake (A) body weight (B), energy expenditure (C), and fat

mass by DEXA (D) over 12 months in rhesus macaques (n = 29) that developed diet-induced metabolic syndrome. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 versus baseline by lin-

ear mixed model. Plasma glucose (E) and insulin (F) responses during intravenous glucose tolerance tests in rhesus macaques at baseline and at 6 and 12 months on

the high-sugar (fructose) diet with diet-induced metabolic syndrome. Error bars show SEM. Data are from Bremer et al. 2011.
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on the diet, so long-term dietary interventions are not necessar-
ily required to induce weight gain and components of the meta-
bolic syndrome in this NHP model. Importantly, NHP models
with diet-induced metabolic alterations will continue to be the
primary source of animals used for metabolic disease research,
and most of the research studies discussed in the remainder of
this review will be from investigations performed in such models.

Metabolic Syndrome Specific Features
Obesity

As introduced above, there is a significant body of literature
clearly demonstrating that NHPs are susceptible to the sponta-
neous development of obesity and its associated comorbidities
(Hansen 2017; Pound, Kievit et al. 2014). Obesity in NHPs is also
readily inducible via the consumption of diets high in saturated
fats and/or simple sugars. Similar to spontaneous obesity,
these diets result in the accumulation of adipose tissue in vis-
ceral depots, insulin resistance, hypertension, dyslipidemia,
and various other symptoms (Bremer et al. 2011; Chadderdon
et al. 2014; Higgins et al. 2010; Kievit et al. 2013; Li et al. 2013).
The exposure of both baboons and rhesus macaques to a diet
high in simple carbohydrates and saturated fats results in rapid
increases in percent body fat; in the case of rhesus macaques,
total fat mass increases by an average of 15–20% (Bremer et al.
2011; Li et al. 2013), which is accompanied by the expected dys-
regulation of lipid and glucose metabolism and other key indi-
cators of negative effects on cardiometabolic health (Bremer
et al. 2011; Higgins et al. 2010). Along with an adverse impact
on lipid and glucose metabolism, increasing adiposity in NHPs
has also been shown to have the same relationships with the
expression of adipokines (e.g., leptin and adiponectin) as well
as a number of inflammatory cytokines (e.g., TNF-α and IL-6)
observed in humans (Bremer et al. 2011; Cole et al. 2003;
Comuzzie et al. 2003; Higgins et al. 2010, 2014; Tejero et al.
2008), including an increased recruitment of macrophages into
the adipose tissue depots (Tejero et al. 2008).

Along with studies utilizing NHPs to investigate the physio-
logical and metabolic processes underlying obesity and its
associated endophenotypes, studies using NHPs have also pro-
vided important insights into the genetic and epigenetic factors
that also contribute to the risk for developing obesity (Cai et al.
2004; Schwartz 1989; Tejero et al. 2004a, 2004b; Voruganti et al.
2007, 2008). For example, Jaquish and colleagues (Jaquish et al.
1997) reported a genetic contribution accounting for 51% of the
total variance in mean adult body weight and 12% of the vari-
ance in body weight stability in baboons, demonstrating a sub-
stantial genetic component to variations of body weight in
these animals, a finding consistent with what has been re-
ported in numerous studies of the genetics of obesity in hu-
mans. Additional work in baboons found significant additive
genetic heritabilities for serum leptin levels (h2 = 0.21), weight
(h2 = 0.62), fat mass (h2 = 0.41), fat free mass (h2 = 0.32), and the
ratio of fat free mass (h2 = 0.84) (Comuzzie et al. 2003). Later
studies in vervet monkeys have also provided significant in-
sights into the genetic contributions to obesity (Gray et al. 2009;
Kavanagh et al. 2007). The interaction of consuming a highly
palatable diet and changes of social status on central reward
pathways in female rhesus macaques has also recently been
reported (Michopoulos et al. 2016), suggesting that it is likely to
be a useful model for investigating the interactions between
stress, hedonic eating, and the development of obesity (Morris
et al. 2015). To summarize, it is clear that the species of NHPs

most widely used in biomedical research are highly susceptible
to diet-induced obesity and its adverse metabolic sequelae and
will be valuable in translating new molecular targets and phar-
macologic and surgical therapies from rodents to humans, as
well as in understanding their mechanisms in an animal model
that more fully recapitulates that pathophysiology of obesity in
humans.

Metabolic Syndrome Components

Visceral Adiposity
In some of the earliest studies on obesity in adult rhesus maca-
ques it was reported that the distribution patterns of adipose
tissue in the obese animals closely reflects the adipose tissue
distribution in many obese humans, with increased adipose tis-
sue mass preferentially distributed in the abdominal region
(Kemnitz et al. 1989), a pattern later confirmed in baboons and
vervet monkeys as well (Morris et al. 2015). In addition to the
demonstration that NHPs tend to accumulate fat centrally, as
seen in humans with metabolic syndrome, this accumulation
is also associated with the same adverse effects on glucose and
lipid metabolism accompanying the metabolic syndrome in hu-
mans. Kemnitz and Francken (Kemnitz and Francken 1986)
divided a cohort of rhesus macaques into nonobese, moder-
ately obese, and very obese (30–61% body fat), and reported
strong correlations of body adiposity with fasting insulin and
TG concentrations despite similar food intake between the
groups. Likewise, results from studies in baboons and vervet
monkeys support the relationship between increasing fat accu-
mulation, particularly centrally deposited fat, and increasing
insulin resistance and adverse lipid profiles (Chavez et al. 2008,
2009; Comuzzie et al. 2003; Kavanagh et al. 2007). However, in a
study by Bodkin and colleagues (Bodkin et al. 1993), they re-
ported that although there is a linear relationship between the
development of insulin resistance and body fat percentage in
rhesus macaques, there did not appear to be a clear relation-
ship between of degree of central obesity and the severity of
insulin resistance. These findings suggest that although body
fat percentage (i.e., obesity) is an important contributor to the
development of insulin resistance, a number of other factors
are involved as well (Bodkin et al. 1993; Tigno et al. 2004). With
the increased availability and use of advanced imaging techni-
ques (e.g., computerized tomography and magnetic resonance
imaging) for assessing and distinguishing between subcutane-
ous and visceral abdominal fat distribution in NHPs, the role of
intra-abdominal fat deposition in contributing to the metabolic
sequelae of inflammation, insulin resistance, and hepatic fat
accumulation will be more clearly defined.

Glucose Intolerance/Insulin Resistance
Plasma glucose concentrations in normal-weight rhesus maca-
ques are somewhat lower (averaging 60–80mg/dL) than those
typically measured in humans (Bremer et al. 2011). This is likely
due to an overnight fast being a fairly long fasting period for these
relatively smaller (10–15 kg) animals. Normal fasting plasma glu-
cose in baboons, which are larger (25–35 kg) animals, is closer to
that in humans (averaging 80–100mg/dL) (Higgins et al. 2010).
Fasting plasma glucose concentrations do not typically increase
noticeably in diet-induced obese NHPs unless they develop overt
type 2 diabetes (with fasting glucose concentrations >125mg/dL).
For example, impaired fasting glucose levels with intermediate
glucose concentrations of 100–125mg/dL were observed after 6
months in rhesus macaques that later developed diabetes after
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12 months on a high-sugar (fructose beverage) diet (Bremer et al.
2011). Impaired glucose tolerance during a dynamic intravenous
glucose tolerance test (IVGTT) is also observed in rhesus maca-
ques with diet-induced obesity/metabolic syndrome with a rela-
tively modest (~20%) increase of the glucose area under the curve
(AUC) over a 60-minute period following i.v. glucose administra-
tion (Bremer et al. 2011). In contrast, larger compensatory in-
creases of plasma insulin excursions (ΔAUC insulin +75%)
maintain glucose tolerance in the presence of marked insulin
resistance. Interestingly, a paradoxical improvement (i.e., lower-
ing) of glucose excursions during a standard meal test was
observed in rhesus macaques with glucocorticoid (dexametha-
sone)-induced insulin resistance (Cummings et al. 2013). This
improvement is likely the result of an overcompensation of meal-
induced insulin secretion, which at least in part may be mediated
by increased glucose-dependent insulinotropic polypeptide, as
postprandial glucose-dependent insulinotropic polypeptide
release was approximately doubled when the animals received
dexamethasone (Cummings et al. 2013).

Obese NHPs are insulin resistant as demonstrated by the use
of hyperinsulinemic-euglycemic clamps, IVGTTs, and fasting
insulin concentrations (see below). The natural history and pro-
gression of obesity and insulin resistance to type 2 diabetes in
rhesus macaques has been well described by Barbara Hansen and
colleagues (Hansen and Bodkin 1986, 1990). As alluded to above,
the harbinger of metabolic disease in diet-induced obesity, and
metabolic syndrome is the hypersecretion of insulin, manifested
by fasting hyperinsulinemia and increased first- and second-
phase insulin secretion during an IVGTT (Bremer et al. 2011).
Insulin resistance as assessed by fasting hyperinsulinemia occurs
very early (within the first 4 weeks) during the progression of diet-
induced metabolic syndrome, at a time when there has only been
a small amount of proportional weight gain (PJ Havel, JL Graham,
AA Bremer, unpublished data). Furthermore, the prevention of
insulin resistance in diet-induced obese and insulin-resistant rhe-
sus macaques by dietary omega-3 fatty acids from fish oil and an
improvement in metabolic responses to pharmacological inter-
ventions is evident by both reductions of fasting plasma insulin
concentrations and reduced first- and second-phase glucose-
induced insulin secretion during dynamic metabolic testing (e.g.,
IVGTTs) (Bremer et al. 2014; Swarbrick et al. 2009).

Dyslipidemia/Hyperlipidemia and Atherosclerosis
There is a long history of using NHPs to study the effects of diet
on lipid and lipoprotein risk factors for cardiovascular disease,
particularly atherosclerosis. Seminal studies started during the
1960s by Dr. Henry McGill and colleagues in San Antonio estab-
lished the relationship between diet and serum cholesterol le-
vels and experimental atherosclerosis in baboons (Strong and
McGill 1967; Strong et al. 1966). This work was continued by Dr.
John VandeBerg and co-workers (Babiak et al. 1985; Mott et al.
1992; Shi et al. 2014). The most frequently used animal model
to study the pathophysiology and potential treatment of ath-
erosclerosis and other cardiometabolic outcomes is the mouse.
Although mice do not normally develop atherosclerosis, genetic
deletions of ApoE or the LDL receptor in mice result in the
development of atherosclerosis, and these models have been
extensively used to investigate the molecular mechanisms of
plaque development (reviewed in Getz and Reardon 2012).
However, despite the insight into the pathways contributing to
the development of atherosclerosis obtained from rodent mod-
els, there are several important differences in lipoprotein meta-
bolism between mice and humans that underscore the

importance of performing atherosclerosis research in animal
models (i.e., NHPs) more similar to humans.

Dyslipidemia, particularly increased circulating TGs and low
levels of HDL-C, are hallmark components of the metabolic
syndrome. Importantly, NHP models demonstrate patterns of
lipid dysregulation that are very similar to those in humans
(Shamekh et al. 2011). For example, in a recent study comparing
detailed plasma lipid profiles in four species of lean and dysli-
pidemic NHPs versus several nonprimate models (including
several strains of mice, rats, rabbits, pigs, and dogs) with those
in dyslipidemic humans concluded that the NHP species more
closely matched the fasting lipid profiles and responses to
statin treatment to dyslipidemic humans than any of the other
models (Yin et al. 2012). Specifically, NHPs were more similar to
humans in the total amount of cholesterol present in the non-
HDL-C fractions (i.e., LDL-C and VLDL-C), which are associated
with the development of atherosclerotic plaques (Yin et al.
2012). Therapeutically, nondiabetic hyperlipidemic rhesus ma-
caques respond to treatment with a fibrate drug (fenofibrate),
which acts in part via activation of PPARα, with decreases of TG
and LDL-C and an increase of HDL-C, similar to the responses
observed in humans (Winegar et al. 2001).

Although hyperlipidemia, especially increases of circulating
TGs, occurs in NHP species spontaneously as the animals age and
metabolic dysfunction progresses (Hannah et al. 1991), the onset
and severity of dyslipidemia can be accelerated by feeding the an-
imals diets high in fat, sugar, or both fat and sugar. Rhesus maca-
ques fed an ad libitum chow diet accompanied by 500mL/day of
a flavored beverage sweetened with 15% fructose providing 300
kcal/day (~30% of energy requirements) (Bremer et al. 2011) pro-
vide a good example of the onset and progression of dyslipidemia
in a NHP model of diet-induced metabolic syndrome. In that
model, fasting TG concentrations increase from an average pre-
diet baseline level of ~80mg/dL into the metabolic syndrome
range (>150mg/dL) within 1 month on the high-fructose diet (PJ
Havel, JL Graham, AA Bremer, unpublished data; Havel et al.
2017). Fasting plasma TG remains elevated in the animals main-
tained on the high-sugar diet for 6 and 12 months and is accom-
panied by a ~15% decrease of plasma HDL-C concentrations
(Bremer et al. 2011). Low HDL-C concentrations are one of the
key-defined components of metabolic syndrome in humans.
Furthermore, the increase in fasting TG and decrease in HDL-C le-
vels are much more marked in animals that develop overt diabe-
tes after 1 year on the high-fructose diet; this is indicative of
diabetic dyslipidemia, as has been previously reported during the
natural history of the progression from insulin resistance to overt
type 2 diabetes in middle-age rhesus macaques (Hannah et al.
1991). In addition, plasma concentrations of apolipoprotein-C3,
which inhibits TG clearance via inhibitory actions on lipoprotein
lipase and activation of hepatic de novo lipogenesis (Zheng
2014), increase rapidly by ~40% within 1 month on a high-
fructose diet and remain elevated during chronic fructose con-
sumption (Bremer et al. 2014). Interestingly, the increases of
ApoC3 in fructose-fed rhesus macaques are highly predictive
(r = 0.74, p < 0.0001) of the increases of fasting plasma TG, while
the concurrent increases of Apo-E and fasting insulin concentra-
tions are not (PJ Havel, JL Graham, AA Bremer, unpublished data;
Havel et al. 2017). The adverse effects of high-sugar diets on
ApoC3 as a lipoprotein risk factor for cardiovascular disease in
rhesus macaques are therefore similar to those observed in hu-
mans (Stanhope et al. 2013, 2015). In addition to the more well-
known lipid and lipoprotein risk factors for cardiovascular disease,
it has been shown that several specific forms of sphingolipids/cer-
amides are increased in obese and diabetic rhesus macaques
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consuming a high-fat/high-fructose diet and that some of these
increases appear to be related to alterations of glucose homeosta-
sis (Brozinick et al. 2013).

Blood Pressure/Hypertension
Elevated blood pressure is a key component of the metabolic
syndrome, and NHP models have successfully been used to
evaluate the hemodynamic effects of existing and novel thera-
pies aimed at treating hypertension, a common cause of mor-
bidity and mortality in humans. Importantly, the use of NHPs
in preclinical studies permits continuous cardiovascular telem-
etry and the assessment of hemodynamic parameters that are
often not practical to perform in humans. Implantable teleme-
try devices have successfully been used in NHP models (Chaves
et al. 2006; Kievit et al. 2013; Regan et al. 2009) and permit the
recording of arterial blood pressure, heart rate, the PR interval,
the QRS interval, and the QT interval in freely moving animals,
thus preventing the confounding influence of anesthesia. The
QT interval in NHP can also be corrected for heart rate using
methods established in beagles using telemetry (Miyazaki and
Tagawa 2002). Furthermore, the log(QT) can be expressed as a
function of the log(HR) for each animal with an implantable
telemetry device and fit with a linear regression analysis
(Miyazaki and Tagawa 2002).

As an example of the utility of using NHPs in the evaluation
of hypertension, extensive preclinical studies in the cynomol-
gus monkey were recently performed to demonstrate the early
clinical profile of a highly selective and potent oral inhibitor of
aldosterone synthase (CYP11B2) (Bogman et al. 2017). The find-
ings of this study not only support investigating the suppres-
sion of aldosterone production as a treatment option for
hypertension in humans, but further suggest that selective in-
hibitors of aldosterone synthase can be developed using NHPs
as the relevant preclinical model to mechanistically investigate
the antihypertensive effects of aldosterone inhibition. Moreover,
the cynomolgus monkey model has been used successfully to
characterize inhibitors of CYP11B1 and CYP11B2, and cynomol-
gus monkey CYP11B assays have been shown to be suitable sur-
rogates for the human enzymes (Cerny et al. 2015). The effects
of other pharmacological agents, for example, pioglitazone to
reduce blood pressure (Kemnitz et al. 1994) and a melanocortin-
4 receptor agonist to increase blood pressure (Kievit et al. 2013),
have also been studied in NHP models.

Diabetes Mellitus

Type 1 Diabetes
Although much of the current focus on diabetes is centered on
type 2 diabetes, there is also a rising incidence of type 1 diabetes
in many countries around the world. Not only is the incidence
increasing, there has also been a shift towards a younger age of
onset (Dahlquist 2006). One hypothesis for this observation is that
obesity and increased early growth rates lead to pancreatic hyper-
function and increased presentation of autoantigens from ß-cells,
potentially accelerating an autoimmune response (Dahlquist
2006). However, other hypotheses exist and myriad other factors
(besides diet and obesity) are most likely involved. Furthermore,
the incidence rate for type 1 diabetes varies markedly between
countries; it is highest in Scandinavian countries, followed by
European countries, North America, and Australia, and lowest in
Asian countries. The reasons for this geographic variation in inci-
dence rates remain unresolved, but may be related to genetic sus-
ceptibility (e.g., HLA-DR-DQ genotypes) and environmental and

lifestyle factors, including diet, hygiene, and childhood infections
(Katsarou et al. 2017). Nevertheless, the growing prevalence of
type 1 diabetes warrants the development and use of animal
models sufficiently close to humans in which the pathogenesis
and complications of type 1 diabetes can be fully investigated.

While autoimmune diabetes is not well recognized in NHPs,
chemically induced islet lesions using the β-cell toxin strepto-
zotocin (STZ), or surgical pancreatectomy (both partial and
total), have long been used to produce and model type 1 diabe-
tes in a number of NHP species, including rhesus macaques
(Pitkin and Reynolds 1970), baboons, cynomolgus macaques,
and vervet monkeys (Frost et al. 2015; Graham et al. 2012;
McCulloch et al. 1988; Zhu et al. 2014). In addition, STZ-induced
diabetic vervet monkeys have been demonstrated to be a useful
animal model of type 1 diabetes (Kavanagh et al. 2011). NHP
models of type 1 diabetes are also a valuable tool for under-
standing mechanisms underlying diabetic complications such
as diabetic nephropathy (Birrell et al. 2002; Rincon-Choles et al.
2012) and neuropathy (Pare et al. 2007), common to both type 1
and type 2 diabetes in humans, as well as new therapeutic ap-
proaches for the treatment of diabetic complications. For exam-
ple, the vervet monkey model of type 1 diabetes has also been
used to demonstrate brain-wide insulin resistance, tau phos-
phorylation changes, and hippocampal neprilysin and amyloid-
beta alterations similar to what has been reported in humans
(Morales-Corraliza et al. 2016). Moreover, NHP models of type 1
diabetes have been useful for investigating cell-based thera-
pies, including pancreatic islet transplantation (Pathiraja et al.
2017; Zhu et al. 2014), the viability and glucose-lowering effects
of islet allografts (Thomas et al. 2001) and xenografts (Kirchhof
et al. 2004), and novel gene therapy approaches (Chen et al.
2014) for the management of type 1 diabetes.

Type 2 Diabetes
Diabetes secondary to insulin resistance and inadequate
β-cell/islet compensation has been reported to spontaneously
develop in a number of captive NHP species (Pound, Kievit et al.
2014). There is a high prevalence of type 2 diabetes in Macaca ni-
gra (Howard 1986) as well as a significant prevalence in rhesus
macaques (Macaca mulatta) (Hansen 1996). The progression of
obesity accompanied by insulin resistance and hyperinsuline-
mia to inadequate islet compensation leading to β-cell failure
and overt diabetes in aging rhesus macaques has also been
well characterized in longitudinal studies and is similar to the
progression observed in cross-sectional studies in humans
(Hansen 1989; Kahn and Porte 2003). Furthermore, the presence
of islet amyloidosis characteristic of type 2 diabetes in humans
is also observed in diabetic monkeys, implicating a similar eti-
ology of islet lesions in monkeys and humans (Clark et al. 2001;
de Koning et al. 1993; Spijker et al. 2015).

Diabetes associated with insulin resistance can also be induced
by administering nicotinic acid to baboons with reduced β-cell
mass produced with a low dose of STZ (McCulloch et al. 1991).
However, this model is less representative of type 2 diabetes in
humans due to the chemically induced islet lesion. Importantly,
the more usual progression from prediabetes to overt diabetes
with fasting hyperglycemia (>125mg/dL) can be hastened in
NHPs by feeding the animals a HFHS or high-sugar diets. For
example, ~15% (4 of 29) of rhesus macaques fed a high-sugar
diet from fructose-sweetened beverages develop type 2 diabetes
within 1 year on the diet (Bremer et al. 2011). The monkeys that
developed diabetes had higher fasting insulin concentrations,
impaired glucose-stimulated insulin secretion during an IVGTT,
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and lower adiponectin levels than the monkeys that only
became more insulin resistant with compensatory increases in
fasting insulin concentrations and glucose-stimulated insulin
secretion during the 1-year dietary intervention period. While
the diabetic animals exhibited a marked decline in glucose-
stimulated insulin secretion with the onset and progression of
diabetes, the insulin-resistant nondiabetic animals also demon-
strated a decrease of glucose-stimulated insulin secretion
between 6 and 12 months on the diet, indicative of a progres-
sion towards inadequate β-cell compensation and suggesting
that many more of these monkeys would likely have developed
overt diabetes if they had continued to consume the high-sugar
diet for a longer period of time. This scenario is very similar to
what is observed in the natural progression of prediabetes to
overt type 2 diabetes in humans (Kahn and Porte 2003). To
summarize, it is clear that NHPs develop both spontaneous and
diet-induced type 2 diabetes that is quite similar to the patho-
physiology of the disease in humans, making them the most
representative translational model for investigating its etiology,
prevention, and therapeutic management.

Gestational Diabetes and Fetal Programming
NHP models have also been used to better elucidate the mech-
anisms underlying how poor maternal health affects fetal
programming and imparts risk for future metabolic disease in
the offspring (Friedman 2015). Specifically, the Japanese
macaque model referenced above has demonstrated that con-
sumption of a maternal Western-style diet causes placental
dysfunction, tissue-specific changes in the mitochondria in the
offspring, widespread inflammation, hepatic steatosis, and broad
developmental changes in the liver, skeletal muscle, brain, and
pancreas (reviewed in Friedman 2015). Furthermore, these in
utero perturbations are accompanied by significant and persistent
changes in the epigenome, the microbiome, and offspring behav-
ior (Friedman 2015). The observation that these abnormalities in
the offspring persist even after being weaned to a healthy diet
after lactation further suggests that gestational and lactational
dietary exposures are significant and possibly permanent contri-
butors to the offspring’s health and may initiate the development
of pathways that drive health risks. Furthermore, this NHP model
evaluating the impact of a western-style diet and maternal obe-
sity on metabolic systems in the offspring has demonstrated the
impact of maternal diet on fetal nonalcoholic fatty liver disease
(NAFLD). Importantly, NAFLD is the most common liver disease
in children and adults and the leading cause of liver transplanta-
tion (Pacifico et al. 2008; Welsh et al. 2013) and is a frequent
comorbidity of obesity and type 2 diabetes.

Fatty Liver Disease

As introduced above, NAFLD, along with its sequelae, including
nonalcoholic steatohepatitis (NASH), has emerged as the most
prevalent liver disease, and new approaches for managing NAFLD
and NASH are needed. As far back as the mid-1970s it was noted
that NHPs, like humans, were susceptible to the accumulation of
excess lipids in the liver (Kritchevsky et al. 1973). More recently,
however, studies in a number of NHP species have focused specif-
ically on the pathogenesis of NAFLD and NASH (Bose et al. 2010;
Cydylo et al. 2017; Kamath et al. 2011; Kavanagh et al. 2013;
Nagarajan et al. 2008). For example, Bose and colleagues (Bose
et al. 2010) reported that dedifferentiation of adipocytes is associ-
ated with changes in monocyte chemoattractant protein-1 and
overall insulin resistance and that such changes could potentially

contribute to the development of NAFLD. Other studies in the
baboon model (Kamath et al. 2011) demonstrated that defects in
hepatic long-chain fatty acid metabolism along with increased
hepatic TG accumulation resulted in significant hepatic insulin
resistance; these studies also demonstrated that liver fat accumu-
lation was associated with both hepatic and peripheral insulin
resistance and suggest that insulin resistance could be a major
contributor leading to fatty liver in these animals. In addition, the
common marmoset exhibits increased hepatocellular lipid accu-
mulation and a number of indices in inflammation, indicating
they are also likely to be a valuable NHP model of NAFLD/NASH
(Kramer et al. 2015).

Recent studies in vervet monkeys have shown that dietary
exposure to fructose also leads to increased fat in the liver and
hepatic damage (Kavanagh et al. 2013) and even fibrosis
(Cydylo et al. 2017). In addition, histopathology of the liver of
aged bonnet macaques shows diffused microvesicular and
macrovesicular fatty changes; perivenular, portal, and perisinu-
soidal fibrosis with fatty degeneration of hepatocytes; and im-
munostaining consistent with NAFLD, suggesting that aged
bonnet monkeys may also serve as a unique animal model for
studies related to NAFLD (Nagarajan et al. 2008). Diets high in
fructose-containing sugars have also been reported to increase
liver fat in several studies in humans (Maersk et al. 2012;
Schwarz et al. 2015). Rhesus macaques fed a high-sugar diet
from beverages sweetened with fructose or high fructose corn
syrup exhibit liver TG content that is increased 5- to 10-fold
compared with normal-weight chow-fed control animals
within 2 to 3 months on the diet (PJ Havel, JL Graham, AA
Bremer, unpublished data), suggesting that this diet-induced
NHP model will be useful for studies investigating the patho-
physiology and treatment of NAFLD. Importantly, a significant
advantage of using NHP models in the study of NAFLD/NASH is
the ability to perform serial laparoscopic liver biopsies, not only
for liver fat content, but also to assess fibrosis and the expres-
sion of genes and proteins potentially involved in de novo lipo-
genesis, impaired fat oxidation, and inflammation. NHPs can
also be used as a model to investigate the effects of liver trans-
plantation (Luo et al. 1998).

Specific Approaches
Clamps/IVGTTs

Measurements and accurate assessments of glucose tolerance
and insulin sensitivity are central in the investigational evalua-
tion of metabolic status in humans and in studies in NHP mod-
els of metabolic disease. Hyperinsulinemic-euglycemic clamps,
often considered to be the optimal method for assessing insulin
sensitivity, have successfully been used in NHP species
(Kavanagh et al. 2007; Lee et al. 2011; Standaert et al. 2002). In
addition, a hyperinsulinemic, hypoglycemic clamp approach
has been utilized to study the influence of the autonomic ner-
vous system in regulating increased glucagon secretion during
hypoglycemic counterregulation in rhesus macaques (Havel
and Valverde 1996). In addition to clamps, intravenous glucose
tolerance tests (IVGTTs) with Minimal Model analysis originally
developed and validated for use in dogs and humans (Ader
et al. 1985; Pacini and Bergman 1986) have been used to com-
pare parameters of insulin sensitivity and glucose effectiveness
in control and energy-restricted rhesus macaques (Gresl et al.
2003). IVGTTs can also be used to assess insulin sensitivity
based on a calculated index of insulin sensitivity (ISI) using the
slope of glucose disappearance and the insulin AUC in rhesus
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macaques. This method has been validated against the deuter-
ated glucose disposal technique (Beysen et al. 2007) and is
highly correlated with the ISI index from the IVGTT in rhesus
macaques (r = 0.97, p < 0.001, PJ Havel, JL Graham, AA Bremer,
unpublished data). IVGTTs have been used to assess the effects
of a high-sugar diet on the progression of insulin resistance
and type 2 diabetes in a rhesus macaque model of metabolic
syndrome (Bremer et al. 2011) as well as measures of improved
insulin sensitivity in response to insulin sensitizers or weight
loss (Kemnitz et al. 1994; Kievit et al. 2013). As observed with
type 2 diabetes in humans (Kahn and Porte 2003), glucose-
stimulated insulin secretion deteriorates over time, and first-
phase insulin secretion is largely absent in rhesus macaques
chronically fed a high-sugar diet during the progression to
overt diabetes (Bremer et al. 2011).

Several surrogate measures of SI, including the fasting insu-
lin concentration, the homeostasis assessment model, and the
quantitative insulin-sensitivity check index, have been com-
pared with hyperinsulinemic-euglycemic clamps in a large
number (n = 199) of lean and obese rhesus macaques (Lee et al.
2011). Fasting insulin (1/fasting insulin) levels had the highest
correlation with the clamp SI, which is not completely surpris-
ing since, in the nondiabetic state, these surrogate markers are
largely determined by fasting insulin concentrations. Changes
of fasting insulin levels also changed in parallel with the insu-
lin AUC and SI index in fructose-fed rhesus macaques (Bremer
et al. 2011) and predicted the protection against diet-induced
insulin resistance in animals receiving omega-3 fatty acids
from fish oil (Bremer et al. 2014) or treatment with antisense
oligonucleotides targeting protein-tyrosine phosphatase-1ß
(Swarbrick et al. 2009). Therefore, fasting insulin concentrations
can be used as an index of insulin sensitivity in NHP studies in
which clamps and glucose tolerance tests are not logistically
possible. In addition to clamps and IVGTTs, oral glucose toler-
ance tests and meal tolerance tests, either by orogastric gavage
or free-fed in chair-trained animals, can be used to assess glu-
cose tolerance, insulin secretion, and nutrient-induced pancre-
atic and gastrointestinal hormone release before and during
interventions in NHPs (Cummings et al. 2013; D’Alessio et al.
2001; Dunning et al. 2003).

Imaging in NHPs for Metabolic Studies

Cutting-edge imaging technology is increasingly being applied
in a wide-range of studies on metabolic and cardiovascular dis-
ease processes and outcomes. NHPs represent an optimal ani-
mal model to study these diseases based on their physiological
and metabolic similarity to humans. In addition, their anatomi-
cal structure and relatively larger body size also make them
well-suited for a number of imaging modalities. Below we
review a selection of published studies that demonstrate the
range of imaging studies being performed across a variety of
NHP species in metabolic disease research.

Body composition in animals can be assessed via several
techniques. Somatometry, the least invasive method, can pro-
vide an estimate of the body composition based on measures
like crown-rump length, skin fold thickness, body weight, and
body scores (with an NHP-specific rating of obesity on a scale of
1–5) but is susceptible to variation when compared with
imaging-based technologies (Colman et al. 1999; Sharma et al.
1996). Dual-energy X-ray absorptiometry (DEXA) scanning has
also been used to assess body composition, including lean body
mass versus fat mass and bone mineral density in a number of
studies in NHPs. For example, in rhesus macaques consuming

a standard primate chow diet ad libitum along with 300 kcal/
day of flavored sugar (fructose)-sweetened beverages for 1 year,
the fructose-fed animals gained an average of approximately
1.5 kg of body weight, mainly during the first 3 to 6 months on
the diet. DEXA scanning for body composition revealed that the
weight gain consisted almost entirely in increased body fat
mass, which was increased by ~1.5 kg during the time on the
diet (Bremer et al. 2011). An important limitation of DEXA scan-
ning for body composition is that although it can localize fat
mass to the truncal region, it does not distinguish whether the
truncal fat is distributed within intra- or extra-abdominal fat
regions. However, computerized tomography and MRI modali-
ties can be used to differentiate and quantify visceral and sub-
cutaneous fat depots. In one important study in older female
rhesus macaques, DEXA was used to measure total body fat
and MRI was used to assess subcutaneous and visceral fat,
while magnetic resonance spectroscopy was used to quantify
intra-hepatic and intra-myocellular lipid deposition (Chu et al.
2013). Subcutaneous fat area was associated with indices of
insulin resistance, but not after adjustment for total fat mass.
Interestingly, although visceral fat area was greater than sub-
cutaneous fat area in these animals, intra-hepatic fat accumu-
lation was most closely correlated with indices of impaired
insulin sensitivity, whereas visceral fat and muscle fat content
were not (Chu et al. 2013).

An additional noninvasive technique that has demonstrated
to be very informative is contrast-enhanced ultrasound. The
vascular endothelium plays a major role in the development of
atherosclerotic plaques often found in metabolic disease in
many species. Obesity, insulin resistance, and increased levels
of oxidative stress result in increased perfusion rates and vas-
cular inflammation, eventually leading to vascular dysfunction
and atherosclerotic lesions in several NHP species (for some ex-
amples, see Chadderdon et al. 2014; Frias et al. 2011; Mattison
et al. 2014; Shi et al. 2005; Shively and Clarkson 1988; Zheng
2014). Recent advances in ultrasound imaging techniques have
also allowed for detecting vascular inflammation using targeted
microbubbles (molecular imaging). For example, a recent study
by Chadderdon and colleagues (Chadderdon et al. 2014) demon-
strated endothelial inflammation that increased over the
course of 2 years in rhesus macaques consuming a diet high in
fat and simple carbohydrates. Furthermore, contrast-enhanced
ultrasound with microbubbles specifically targeted to P-selectin
and VCAM-1 showed that the development of insulin resis-
tance in the animals coincided with the development of vascu-
lar inflammation, carotid intimal thickness, and body weight
(Chadderdon et al. 2014).

Ultrasound is also used to investigate the elasticity of cer-
tain tissues in a technique called shear-wave elasticity (for
review, see Nowicki and Dobruch-Sobczak 2016). Each tissue
has a specific stiffness that can be altered when lesions or scar
tissue is present, allowing for quantitative assessment of tissue
damage in a noninvasive manner. Although current use in
NHPs is in its initial phases, shear-wave ultrasound in humans
has proven very valuable to quantify and monitor the develop-
ment of NAFLD (Palmeri et al. 2011) and adipose tissue (Sasso
et al. 2016). The application of this technique in NHPs will likely
be valuable for investigating the development, progression, and
treatment of NAFLD and hepatic fibrosis. The field of molecular
imaging using techniques such as contrast-enhanced ultra-
sound, shear-wave ultrasound, SPECT, and other imaging
modalities is an important area to expand, as these techniques
are readily applicable to the study of obesity in humans and
allow for noninvasive measurements in a longitudinal fashion.
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Other studies have examined cardiovascular function in
both diabetic and nondiabetic cynomolgus macaques. Using
echocardiographic instrumentation, Gu and colleagues (Gu
et al. 2015) demonstrated that significant differences in cardiac
function were evident between the two groups, with the dia-
betic animals exhibiting significant left ventricular (LV) dia-
stolic dysfunction, which included higher end-systolic volume
and lower end-diastolic volume and decreased ejection fraction
as well as a greater left arterial maximal dimension. Their
detailed statistical analysis of the data collected clearly demon-
strated a pattern of myocardial ischemia and cardiac remodel-
ing very similar to that observed in humans with LV
dysfunction (Gu et al. 2015). Importantly, the use of NHPs al-
lows investigators to concurrently obtain tissue samples (e.g.,
heart, vasculature, liver, kidney, etc.) at the time of imaging
that can be used to better assess the anatomical changes
observed with advanced imaging studies. In another imaging
study on cardiac remodeling in baboons exposed to intrauter-
ine growth restriction (IUGR), Kuo and colleagues (Kuo et al.
2017) used MRI to assess the cardiac changes in offspring of an-
imals exposed to a 30% maternal caloric restriction. Comparing
juvenile IUGR animals with age- and sex-matched controls, the
investigators reported that the IUGR animals displayed both
impaired systolic and diastolic cardiac function, including ejec-
tion fraction, 3-dimensional spericity indices, LV wall thick-
ness, and average filling rate. Perhaps most interesting result
was that the cardiac characteristics of the juvenile IUGR ani-
mals were consistent with the same traits assessed in a cohort
of geriatric baboons (Kuo et al. 2017). Based on these findings, it
is plausible that IUGR in this NHP model may lead to acceler-
ated cardiac remodeling (Kuo et al. 2017).

In addition, Kochunov and colleagues (Kochunov et al. 2017)
have utilized perfusion-weighted MRI to assess changes in
cerebral blood flow in response to alterations in glucose levels
in baboons. Following a 20-minute baseline assessment, they
exposed baboons to a hyperglycemic challenge over the course
of 40 minutes with scans taken every 7 seconds to map
changes in cerebral blood flow (CBF). As a result, they were able
to map changes in CBF across four clusters consisting of the
cerebral cortex, thalamus, hypothalamus, and mesencephalon.
Interestingly, they found that CBF in the hypothalamus fol-
lowed rises in systemic glucose levels, while CBF declined in
the other brain regions. Furthermore, CBF in the hypothalamus
was the first of the four regions to return to baseline following
exposure to hyperglycemia (Kochunov et al. 2017).

Energy Expenditure and Calorimetry

Monitoring and accurate assessments of energy expenditure
and metabolic rate are important components of metabolic
phenotyping studies in NHPs, particularly those assessing the
efficacy and mechanisms of pharmacological or (bariatric) sur-
gical interventions designed to produce weight loss in the man-
agement of obesity, particularly since both the interventions
themselves and the changes of weight can influence energy
expenditure. The two major approaches for assessing energy
expenditure in NHPs are the calorimetry chamber technique for
measuring oxygen consumption and carbon dioxide production
and the doubly-labeled water technique, which measures sta-
ble isotopic dilution to estimate carbon dioxide production
(Yamada et al. 2013). In addition, a multisensory activity moni-
tor using accelerometry and skin temperature responses
(Sensewear, BodyMedia, Inc) placed in specially designed jack-
ets has been used to estimate resting and total energy

expenditure in baboons (Casiraghi et al. 2013). However, an
advantage of indirect calorimetry is that the respiratory quo-
tient as well as rates of carbohydrate and lipid oxidation can be
calculated from measurements of oxygen consumption and
carbon dioxide production. For example, specifically designed
metabolic chambers were used to measure 24-hour energy
expenditure in rhesus macaques before and during consump-
tion of a high-sugar (fructose) diet and demonstrated that 24-
hour energy expenditure was decreased with the development
of diet-induced obesity and metabolic syndrome in this model
(Bremer et al. 2011). Indirect calorimetry and doubly-labeled
water have also been used to assess the influences of age and
sex on energy expenditure and the effects of long-term caloric
restriction in rhesus macaques (Blanc et al. 2003; Raman et al.
2007; Ramsey et al. 1997, 2000; Yamada et al. 2013).
Furthermore, these techniques have been used to demonstrate
that oxytocin administration increases energy expenditure in
diet-induced obese rhesus macaques (Blevins et al. 2015).

Examples of the Use of Nonhuman Primate
Models in Pharmaceutical Target Validation
In this section, we will highlight a number of selected examples
in which studies performed in NHP models have been valuable
as translational studies of novel therapeutics for metabolic dis-
eases. Specifically, NHPs have been used to evaluate the phar-
macological profiles of several new compounds for the
treatment of type 2 diabetes, including the insulin secretogogue
nateglinide (Dunning et al. 2003) and gemigliptin (LC15-0444), a
novel dipeptidyl peptidase-4 inhibitor (Kim et al. 2016). NHP
models are also useful to assess potential toxicities in new and
approved agents for the treatment of type 2 diabetes. For exam-
ple, glucagon-like peptide-1 (GLP-1) receptor agonists have
been implicated in preclinical and clinical studies as a potential
risk factor for acute pancreatitis; however, chronic dosing of cy-
nomolgus macaques with dulaglutide did not induce inflam-
matory or preneoplastic changes in the exocrine pancreas
(Vahle et al. 2015a). Moreover, the lack of an effect of dulaglu-
tide on thyroid C cells in cynomolgus macaques is consistent
with other studies in NHPs using GLP-1 receptor agonists and
suggests that NHPs are less sensitive than rodents to the induc-
tion of proliferative changes in thyroid C cells by GLP-1 receptor
agonists (Vahle et al. 2015b), again underscoring the impor-
tance of using animal models more directly relevant to humans
to evaluate novel therapies for metabolic diseases.

As an example of therapeutic validation, the administration
of an antisense oligonucleotide (ASO) targeting protein tyrosine
phosphatase 1β in liver and adipose tissue to obese insulin-
resistant rhesus macaques lowered plasma TG concentrations
and increased insulin sensitivity as demonstrated by decreases
of fasting insulin concentrations and an ISI index determined
from insulin responses during IVGTTs (Swarbrick et al. 2009).
Interestingly, treatment with the protein tyrosine phosphatase
1β ASO also resulted in increased circulating adiponectin levels,
mainly consisting of the more bioactive high-molecular-weight
form of adiponectin within 4 weeks, suggesting one potential
mechanism contributing to the insulin sensitizing effects of the
treatment (Swarbrick et al. 2009). Moreover, with respect to the
management of dyslipidemia, a recent study demonstrated that
antagonism of a microRNA expressed in the liver (mIR-33) in ver-
vets targeting genes involved in lipogenesis and fatty acid oxida-
tion improved the ratio of HDL-C to VLDL-C through modulating
oxysterol-binding protein like 6, providing a potentially novel

ILAR Journal, 2017, Vol. 58, No. 2 | 259



therapeutic to treat dyslipidemia in humans (Ouimet et al. 2016;
Rayner et al. 2011). Furthermore, supplementation with 4 g/day
of whole fish oil largely prevents the increases of plasma TG
(Figure 2A) and apolipoprotein-C3 (Figure 2B) concentrations and
the development of insulin resistance (Figure 2, C and D) (Bremer
et al. 2014) observed in the fructose-fed rhesus macaque model
of metabolic syndrome (Bremer et al. 2011). In addition, a high
dose of omega-3 FA-ethyl esters of EPA and DHA from fish oil
has previously been shown to interrupt the formation of vascular
lesions and thrombi, without marked effects on platelet function,
in baboons (Harker et al. 1991). These results suggest that the
doses of omega-3 fatty acids used in many studies in humans
are too low and indicate that diet-induced NHP models of meta-
bolic dysfunction will be valuable for identifying the bioactive
components and mechanisms by which marine-derived omega-
3 fatty acids exert their beneficial metabolic effects on dyslipide-
mia and insulin resistance (Lorente-Cebrian et al. 2013) and
potentially fatty liver disease as well (de Castro and Calder 2017).

A clear example of how the use of an NHP model can provide
important new insights into our understanding of molecular
pathways of potential pharmacological interest is demonstrated
by a study by Lin and colleagues (Lin et al. 2008) evaluating the
potential role of TrkB in appetite regulation. Previous studies in
rodents had reported that either peripheral or central stimulation
of TrkB by its natural ligands, BDNF or NT4, reduced body weight
and food intake. However, Lin and colleagues (Lin et al. 2008)

found that while central administration of TrkB produced an
anorexigenic effect leading to weight loss as seen in rodents,
peripheral administration produced an orexigenic effect resulting
in increased appetite and weight gain. As a result, these experi-
ments in baboons revealed the dual nature of the control of TrkB
signaling in energy homeostasis and pathways that could be tar-
geted for the treatment of either wasting disorders or obesity.
This discrepancy between the mechanism of action of a thera-
peutic between rodent and NHP models has also been observed
for other proteins, including orexin. For example, a study by
Ramsey and colleagues (Ramsey et al. 2005) demonstrated that
injection of orexin A into the central nervous system of rhesus
macaques resulted in significant decreases of food intake, con-
trary to the increase of food intake that is observed after a central
injection of orexin A in rats.

The melanocortin receptor 4 pathway has been an intrigu-
ing target for the treatment of obesity because of its crucial role
in the homeostatic regulation of energy balance via effects on
food intake and energy expenditure. Activation of this pathway
with melanocortin receptor 4 agonists can result in decreased
food intake and weight loss, but is often associated with detri-
mental side effects such as increased skin pigmentation and
elevations of blood pressure and heart rate (Greenfield et al.
2009). However, peptide-based agonists that retain similar bio-
logical properties as the endogenous hormone alpha-MSH can
induce weight loss through a combination of decreasing food
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Figure 2 The effect of fish oil on fasting plasma triglyceride (A) and apolipoprotein-CIII (B) concentrations in rhesus macaques fed a high-fructose diet for 6 months.

*P ≤ 0.05 between control and fish oil-treated groups by linear mixed model. Plasma glucose (C) and insulin (D) responses during an intravenous glucose tolerance test

(IVGTT) in control monkeys and monkeys supplemented with fish oil after 6 months on the high-fructose diet. Glucose excursions (C) did not differ between the two

treatment groups; however, glucose-induced insulin secretion (D) during the IVGTT was significantly increased after 6 months on fructose compared with the fish oil-

treated animals. Control group, n = 9; fish oil group, n = 10. Error bars show SEM. Data are from Bremer et al. 2014.
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intake and increasing energy expenditure in obese NHPs with-
out producing adverse cardiovascular effects (Chen et al. 2015;
Kievit et al. 2013). One such drug, setmelanotide, is currently in
clinical development for the treatment of metabolic disorders
resulting from specific genetic deficiencies (Kuhnen et al. 2016).

Advantages and Limitations of NHP Models
Important advantages of NHP models include their close genetic
identity and physiological similarity to humans. The baboon and
rhesus macaque genomes have been sequenced, and this infor-
mation can be used in target identification and validation studies.
Another advantage of studies in NHPs compared with humans is
that diet and pharmacological interventions can be well con-
trolled, whereas compliance with dietary and drug treatment re-
gimens is generally quite poor in free-living human subjects. In
fact, in dietary studies in NHPs, compliance with the dietary regi-
men can be known with near certainty. In addition, biopsies of a
variety of tissues including intra-abdominal adipose tissue, liver,
and kidney can be sequentially performed in studies of NHPs,
particularly when minimally invasive approaches (e.g., laparo-
scopic biopsies) are employed. In contrast, in humans, these sam-
ples can be obtained only in cross-sectional studies, usually at a
single time point during elective abdominal or bariatric surgery,
seriously limiting subject selection as well as the ability to assess
the longitudinal effects of different interventions. Tissues sam-
ples that cannot be accessed and studied in humans, including
specific CNS regions involved in energy balance, memory, and
cognition (e.g., hypothalamus, hippocampus and cortex), large
blood vessels, kidney, and pancreatic islets, can also be obtained
at the time of necropsy in NHP studies that are designed to have
a terminal endpoint.

The major disadvantages of using NHPs versus other animal
models include the limited number of animals available for
study and the expense of maintaining colonies of NHPs and in
performing experimental procedures in the animals. In addi-
tion, there are a relatively small number of facilities that have
the resources and technical expertise required to provide sup-
port for NHP research (e.g., the NPRCs). However, research stud-
ies utilizing other larger animal species such as pigs and dogs
(which are less closely related to humans) are also quite expen-
sive and require larger and more sophisticated facilities for
maintaining and studying these animals than those required
for studies performed only in rodent models.

Conclusions Regarding the Importance/Value
and Future of NHPs in Metabolic Disease
Research
Given the enormous impact of metabolic disease on human
health, and the investment in metabolic disease research by the
private and public sectors, reliable preclinical models of human
physiology and disease are needed. Importantly, NHPs provide
such a model. First, compared with rodents, NHPs exhibit greater
similarity to human physiology and susceptibility to metabolic
diseases (Gibbs et al. 2007; Rogers and Gibbs 2014) and have been
shown to be susceptible to adult-onset obesity, accompanied by
insulin resistance, dyslipidemia, hypertension, and type 2 diabe-
tes (Bodkin et al. 1996; Hansen and Bodkin 1993). Second, the
genomes of several NHP species commonly used in biomedical
research have been sequenced (Gibbs et al. 2007; Pennisi 2007),
enabling comparative genetic studies with humans. For example,
the human and rhesus macaque genomes are ~93% similar, and
each species is believed to have shared a common ancestor ~25

million years ago (Gibbs et al. 2007). In contrast, and again under-
scoring the importance of NHPs in biomedical research, rodents
are believed to have separated from humans more than 70 mil-
lion years ago (Gibbs et al. 2004; Kumar and Hedges 1998). Third,
NHPs have successfully been used to study complex human met-
abolic traits, and the results derived from studies in NHPs have
paralleled the results of later studies performed in humans
(Ahren and Holst 2001; Havel and Ahren 1997), reinforcing the
utility of NHPs as a preclinical animal model for investigating the
physiology of human metabolism and the pathophysiology of
metabolic dysfunction. Furthermore, NHP models provide unique
advantages over rodent models for not only understanding
human physiology, but also establishing the safety and efficacy
of novel therapeutic compounds in humans.

As discussed above, studies using NHPs are enhanced by
collaborations with investigators and access to facilities that
have the requisite expertise and resources to effectively and
ethically perform research in NHPs. While experimental inves-
tigations involving NHP species can often be more technically
complex when compared with studies in rodent models, they
remain far less expensive than performing similar clinical trials
in humans (Courtine et al. 2007). As has been noted by others
(Courtine et al. 2007), the financial cost associated with a single
human clinical trial could support many studies in NHPs. In
turn, these studies are likely to lead to greater and more rapid
advances in the evaluation and translation of novel therapies,
maximizing the cost/benefit ratio and the return on the initial
investments. Importantly, highly significant efficacy and safety
concerns that were not detected in rodent studies may be sub-
sequently identified in preclinical studies in NHPs, thereby pro-
tecting valuable time and financial resources and potentially
adverting adverse events incurred in the performance of unsuc-
cessful clinical trials in human subjects.

An important future direction for the use of NHPs is the inves-
tigation of the relationships between diet-induced metabolic dys-
function, cognitive decline, and dementia (including Alzheimer’s
dementia), since both insulin resistance without hyperglycemia
and overt diabetes are being increasingly recognized as important
independent risk factors for cognitive impairment and its decline
with aging (Diehl et al. 2017; Neergaard et al. 2017; Pugazhenthi
et al. 2016). Insulin resistance occurs in the brain, and insulin sig-
naling is impaired with the progression of diabetes in rodents
(Agrawal et al. 2014). Furthermore, the administration of
glucagon-like-peptide agonists has beneficial effects on the cen-
tral nervous system in rodents (Agrawal et al. 2014) and in hu-
mans (Talbot 2014; Tramutola et al. 2017). Importantly, insulin
signaling in the brain is involved in both cognitive function
(Kullmann et al. 2016) and in the central regulation of metabol-
ism, including hepatic glucose production and peripheral glucose
disposal (Schwartz et al. 2013). The decline of cognitive function
in NHPs has also been well described (Eberling et al. 1997; Moss
et al. 2007; Peters et al. 1996). There is evidence that feeding a
HFHS diet for 2 years can activate pathways involved in oxida-
tive stress, apoptosis, and inflammation (e.g., NF-κB) in the cor-
tex of middle-age male rhesus macaques (Bernier et al. 2016).
Conversely, ongoing studies at the Wisconsin Primate Center
have demonstrated that prolonged caloric restriction can protect
against age-related diseases, including inflammation in the cen-
tral nervous system (Sridharan et al. 2013), supporting the
hypothesis that nutritional status modulates the health of the
central nervous system. Important for understanding relation-
ships between structure and function, both cognitive function
and markers of synaptic morphology and plasticity can be stud-
ied in the same animal using NHP models (Hara et al. 2012, 2014,
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2016; Morrison and Baxter 2012). As such, performing these types
of studies in NHP with diet-induced metabolic dysfunction/meta-
bolic syndrome, including insulin resistance, glucose intolerance,
and dyslipidemia, will be important in understanding the impact
of dietary components (both harmful and protective) and their
metabolic sequelae in the etiology, prevention, and treatment of
cognitive decline and dementia in humans.
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