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STUDY QUESTION: What are the separate and combined effects of mild hyperandrogenemia and consumption of a high-fat
Western-style diet (WSD) on white adipose tissue (WAT) morphology and function in young adult female nonhuman primates?

SUMMARY ANSWER: Combined exposure to mild hyperandrogenemia and WSD induces visceral omental (OM-WAT) but not subcuta-
neous (SC-WAT) adipocyte hypertrophy that is associated with increased uptake and reduced mobilization of free fatty acids.

WHAT IS KNOWN ALREADY: Mild hyperandrogenemia in females, principally in the context of polycystic ovary syndrome, is often
associated with adipocyte hypertrophy, but the mechanisms of associatedWAT dysfunction and depot specificity remain poorly understood.

STUDY DESIGN, SIZE AND DURATION: Female rhesus macaques were randomly assigned at 2.5 years of age (near menarche) to
receive either cholesterol (C; n = 20) or testosterone (T; n = 20)-containing silastic implants to elevate T levels 5-fold above baseline. Half of
each of these groups was then fed either a low-fat monkey chow diet or WSD, resulting in four treatment groups (C, control diet; T alone;
WSD alone; T + WSD; n = 10/group) that were maintained until the current analyses were performed at 5.5 years of age (3 years of treat-
ment, young adults).

PARTICIPANTS/MATERIALS, SETTING AND METHODS: OM and SC-WAT biopsies were collected and analyzed longitudinally
for in vivo changes in adipocyte area and blood vessel density, and ex vivo basal and insulin-stimulated fatty acid uptake and basal and
isoproterenol-stimulated lipolysis.

MAIN RESULTS AND THE ROLE OF CHANCE: In years 2 and 3 of treatment, the T + WSD group exhibited a significantly greater
increase in OM adipocyte size compared to all other groups (P < 0.05), while the size of SC adipocytes measured at the end of the study was
not significantly different between groups. In year 3, both WAT depots from the WSD and T +WSD groups displayed a significant reduction
in local capillary length and vessel junction density (P < 0.05). In year 3, insulin-stimulated fatty acid uptake in OM-WAT was increased in the
T + WSD group compared to year 2 (P < 0.05). In year 3, basal lipolysis was blunted in the T and T + WSD groups in both WAT depots
(P < 0.01), while isoproterenol-stimulated lipolysis was significantly blunted in the T and T +WSD groups only in SC-WAT (P < 0.01).

LIMITATIONS, REASONS FOR CAUTION: At this stage of the study, subjects were still relatively young adults, so that the effects of
mild hyperandrogenemia andWSD may become more apparent with increasing age.

WIDER IMPLICATIONS OF THE FINDINGS: The combination of mild hyperandrogenemia and WSD accelerates the development
of WAT dysfunction through T-specific (suppression of lipolytic response by T), WSD-dependent (reduced capillary density) and combined
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T +WSD (increased fatty acid uptake) mechanisms. These data support the idea that combined hyperandrogenemia and WSD increases the
risk of developing obesity in females.
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National Institutes of Health.
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Introduction
Polycystic ovary syndrome (PCOS) is a common disorder of repro-
ductive age associated with ovarian dysfunction and infertility, which
results in metabolic disturbances (Solomon, 1999) such as obesity and
insulin resistance (IR) (Wagenknecht et al., 2003; Escobar-Morreale
and San Millan, 2007; Diamanti-Kandarakis and Dunaif, 2012). The
diagnosis of PCOS has evolved over time, with the original NIH criteria
requiring clinical or biochemical hyperandrogenism and evidence of
oligo-ovulation and the exclusion of other disorders. The subsequent
Rotterdam criteria required two out of three symptoms (hyperandro-
genemia, oligo- or anovulation or polycystic ovaries), while the later
Androgen Excess/PCOS Society criteria specified excess androgen
levels, altered ovulation and/or polycystic ovaries and exclusion of
other disorders (Rosenfield and Ehrmann, 2016).
Hyperandrogenemia is the most common primary diagnostic param-

eter in all cases, however. Mild (3 to 4-fold elevation) hyperandrogen-
emia can present as early as adolescence and persists into adulthood
(Burt Solorzano et al., 2012). While hyperandrogenemia is reported to
play a central role in the pathogenesis of IR in PCOS women (Azziz
et al., 2009; Diamond et al., 1998; Polderman et al., 1994), its mechan-
isms with regard to female metabolism remain poorly understood.
Weight loss can reduce ovarian and metabolic dysfunction (Barber and
Franks, 2013; Lim et al., 2013), resulting in improved insulin sensitivity
and reduced hyperandrogenemia (Pasquali et al., 1989; Holte et al.,
1995; Gambineri et al., 2004; Mehrabani et al., 2012; Thomson et al.,
2008), suggesting that obesity may exaggerates hyperandrogenemia-
related symptoms in PCOS patients.
Clinical and animal studies demonstrated that PCOS and hyperandro-

genemia are associated with the development of white adipose tissue
(WAT) dysfunction characterized by local IR (Ciaraldi et al., 1992;
Ciaraldi et al., 2009; Dunaif et al., 1992), low-grade inflammation
(Spritzer et al., 2015), reduced insulin-mediated inhibition of lipolysis
(Marsden et al., 1994; Moro et al., 2009), increased intra-abdominal fat
mass (Dumesic et al., 2016) and abdominal subcutaneous (SC) adipocyte
hypertrophy (Manneras-Holm et al., 2011; Dumesic et al., 2016). The
WAT present in PCOS women exhibits increased expression of fatty
acid transporters and reduced levels of hormone-sensitive lipase (HSL)
(Seow et al., 2009) and the insulin-dependent glucose transporter-4
(GLUT-4) (Chen et al., 2013; Wu et al., 2014). PCOS-relatedWAT dys-
function also includes altered adipokine secretion (Spritzer et al., 2015),
reduced expression of lipogenic and developmental genes (Chazenbalk
et al., 2012) and altered adipogenesis (Keller et al., 2014). Although these

studies demonstrated the development of multiple WAT alterations in
the presence of hyperandrogenemia, it remains to be determined
whether the observed changes are primarily the result of increased vis-
ceral adiposity, which is also associated with the PCOS phenotype
(Manneras-Holm et al., 2011; Dumesic et al., 2016).
The development of nonhuman primate (NHP) models of PCOS

(Abbott et al., 2013) has provided valuable translational tools for delin-
eating tissue-specific mechanisms contributing to PCOS-related patholo-
gies in humans. Pilot studies employing chronic, mild elevation of androgen
in prepubertal rhesus macaques maintained through young adulthood
demonstrated that these female monkeys developed metabolic and ovar-
ian dysfunction when exposed to a high-fat/calorie-dense Western-style
diet (WSD) as young adults (Varlamov et al., 2013; McGee et al., 2014).
These findings revealed, for the first time, that diet can directly modulate
reproductive and metabolic symptoms associated with hyperandrogen-
emia. In the present study, prepubertal female rhesus macaques were
maintained on a control diet orWSD in the presence or absence of chron-
ically elevated testosterone (T) levels similar to those in young women
predisposed to PCOS through puberty and into early reproductive age.
We used this study design to address the hypothesis that androgen excess
would accelerate WSD-induced WAT dysfunction and to delineate diet-
and androgen-specific mechanisms of metabolic dysfunction.

Materials andMethods

Animals
This study was approved by the Oregon National Primate Research
Center (ONPRC) Institutional Animal Care and Use Committee (IACUC)
and conforms to current Office of Laboratory Animal Welfares (OLAW)
regulations as stipulated in assurance number A3304-01. Female rhesus
macaques were pair-housed, with the cage size adjusted to animal weight
according to the USDA Cage Size Guide, eighth Edition, beginning at 2.5
years of age (n = 40). The experimental design is described in Fig. 1.
Females were maintained on either a typical chow diet (n = 20) consisting
of two daily meals of fiber-balanced monkey diet (15% calories from fat,
27% from protein and 59% from carbohydrates; no. 5052; Lab Diet, St.
Louis, MO), supplemented with fruits and vegetables, or a WSD (n = 20),
containing 36% calories from fat, 18% from protein and 45% from carbohy-
drates (TAD Primate Diet 5LOP, 5A1F, Lab Diet), as previously reported
(Grayson et al., 2010). Animals consumed chow or WSD ad libitum. Daily
caloric intake was not statistically different between experimental groups
at any time point examined in the study (True et al., 2017); thus, the WSD
is isocaloric. Subsets of females consuming each diet were randomly
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selected to receive testosterone (T; n = 20) or cholesterol (C; n = 20)
implants as reported elsewhere (McGee et al., 2014). These treatments
resulted in experimental groups designated chow + C (C), chow + T (T),
C + WSD (WSD) and T + WSD (n = 10/ group). Androgen levels of T-
treated animals were maintained 5-fold higher than control monkeys,
which exceeds the 2-fold increase in T levels observed in post-pubertal
women (Diamanti-Kandarakis and Panidis, 2007; Dumesic et al., 2016).
However, the T values achieved in the present study are similar to those
observed in obese PCOS women (Eagleson et al., 2003) (True et al.,
2017).

Wat biopsies
WAT biopsies were collected at the beginning of the study (year 0) and
repeated annually (Fig. 1). In years 0 and 1, animals had small volumes of
OM-WAT and had undeveloped SC-WAT, imposing some restrictions on
a number of assays that could be conducted (see ‘Results’ for details). At
the year 1 time point, animals exhibited no metabolic phenotype so WAT
samples were not analyzed. WAT biopsies were collected by laparoscopy
as previously described (Cameron et al., 2016). In brief, anesthetized ani-
mals were positioned in dorsal recumbency followed by sterile preparation
and draping of the abdomen. A Verres needle was inserted via a 1-cm sub-
umbilical skin incision, followed by insufflation to 15 mm Hg pressure with
CO2 gas. The needle was removed and an 11-mm trocar/sheath and
10-mm telescope was inserted by puncture at the same site. A right para-
lumbar 5-mm accessory port was placed, through which a cutting biopsy

grasper was inserted. Pinch-biopsy forceps were used to retrieve an OM-
WAT biopsy from the falciform ligament. Grasping forceps were used to
grab a small section of omentum, which was pulled through the side port
and a 1 × 2 × 1 cm3 tissue block was removed via sharp and blunt dissec-
tion. Abdominal SC-WAT biopsies were retrieved from the site of the
scope incision. The abdomen was rinsed with warm saline, and the laparo-
scopic instruments were removed. The incision was closed with inter-
rupted 4-0 Monocryl in the rectus fascia and skin.

Histological staining
At biopsy, 200–500-mg fragments of SC-WAT and OM-WAT were fixed
in zinc formalin (Fisher Scientific, Hampton, NH, USA) at 4°C for 48 h,
transferred to 70% (v/v) ethanol, embedded in Paraplast wax (Leica,
Wetzlar, Germany) using a Tissue-Tek VIP six automatic tissue processor
and embedding center (Sakura Finetek USA, Inc., Torrance, CA, USA),
and 5-μm sections were prepared using on a micron rotary microtome.
Slides were stained with a Masson Trichrome Stain Kit (IMEB Inc., San
Marcos, CA, USA) according to the manufacturer’s instructions. Images
were acquired using an Olympus BX61VS slide scanner (Olympus, Tokyo,
Japan) equipped with a ×20 UPLANSAPO NA 0.75 dry objective.

Lipolysis assay
At biopsy, 100 to 500-mg fragments of SC-WAT and OM-WAT were
placed in 10 ml of M199 media (General Electric Company, Boston, MA,
USA) at room temperature and transported to the laboratory within
30 min. 50 ± 5-mg WAT explants (three basal and three isoproterenol-
stimulated replicates) were placed into a 48-well plate containing 0.2 ml
incubation medium (Hank’s Salt [HBSS], 0.2% BSA [Sigma-Aldrich, St,
Louis, MO, USA] and 5 mM glucose), and incubated at 37°C free-floating
for 2 h with or without 10 μM isoproterenol (Sigma-Aldrich) in an atmos-
phere with 5% CO2 at 37°C. Glycerol release was determined using a gly-
cerol detection kit (Sigma-Aldrich). Glycerol concentrations were
calculated using glycerol standards (Sigma-Aldrich) and normalized to wet
tissue weight.

Fluorescent fatty acid uptake and isolectin
staining
At biopsy, 100–200 mg of WAT were collected in M199 media at room
temperature and separated into smaller explants for two basal and two
insulin-stimulated samples. WAT explants were incubated free-floating in
a 48-well plate filled with 0.4 ml incubation medium (M199 medium, 0.1%
(w/v) fatty acid-free BSA [Sigma-Aldrich], 20 mM HEPES [pH 7.4], supple-
mented with penicillin, streptomycin and fungizone, with or without 10 nM
human insulin [Sigma-Aldrich]) for 2 h. Fluorescently labeled fatty acid
BODIPY-500/510 C1, C12 (BODIPY-C12; Life Technologies, Waltham,
MA, USA) was prepared in advance by diluting a 2.5 mM methanol stock
solution in incubation medium to a final concentration of 10 μM and incu-
bated for 15 min, protected from light, in a 37°C water bath. One hundred
μl of diluted BODIPY-C12 and 2 μl of live-cell staining dye Calcein Red-
Orange AM (Life Technologies) were added to each well containing WAT
explants and incubated for 15 min at 37°C. Media was removed by aspir-
ation and explants were rapidly washed three times with incubation
medium at 37°C and incubated in 0.4 ml basal or insulin-containing incuba-
tion medium for additional 30 min. This incubation step allows the trans-
location of BODIPY-C12 fluorescence associated with micro-lipid droplets
(mLDs) into the interior of central lipid droplets (cLDs) and the incorpor-
ation of BODIPY-C12 into cellular triglycerides (Chu et al., 2014;
Varlamov et al., 2015). Medium was removed by aspiration, the WAT
explants were fixed at room temperature with 4% paraformaldehyde
(Sigma-Aldrich) in PBS for 20 min, washed four times with PBS, and
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Figure 1 Study design. Female rhesus macaques were started at
2.5 years of age and maintained for 3 years on a standard chow or
Western-style diet (WSD). The study involved four experimental
groups: C, control animals; T, animals with chronically elevated tes-
tosterone (T) levels; WSD and T + WSD; n = 10/group (see the
‘Results’ section for details). Visceral omental-white adipose tissue
(OM-WAT) biopsies were collected in years 0, 2 and 3, and sub-
cutaneous (SC)-WAT biopsies in years 2 and 3. WAT biopsies were
subjected to morphological analysis for the assessment of adipocyte
size (cell area) and capillary network properties (see ‘Materials and
Methods’ for details), and also analyzed ex vivo to quantify basal (Bas)
and insulin-stimulated (Ins) fatty acid (FFA) uptake and lipolysis (gly-
cerol release) under basal (Bas) and isoproterenol (Iso)-stimulated
conditions.
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stained, protected from light, for 1 h on a rocking platform with 20 μg/ml
Isolectin GS-IB4, Alexa FluorTM 647 conjugate (Life Technologies).
Explants were washed four times with PBS and immediately analyzed by
confocal microscopy. Each WAT explant triple-labeled with BODIPY-
C12, calcein and isolectin was placed into a 35-mm glass-bottom imaging
culture dish (MatTek, Ashland, MA) containing 100–200 μl of glycerol and
sandwiched with the upper coverslip, allowing a tight contact between the
outer layer of WAT explant and the bottom coverslip. Confocal micros-
copy was performed using a Leica SP5 AOBS spectral confocal system as
described (Chu et al., 2014) with the following modifications. Three-
channel optical sections were collected in a sequential mode, at 2-μm
intervals, using HC PL FLUOTAR 10.0 × 0.30 and ×20 PL APO NA 0.70
dry objectives.

Image analysis
Confocal optical sections were merged to generate the sum of z-
projections using FIJI (https://imagej.net/Fiji/Downloads). Adipocyte area
and single-cell BODIPY fluorescence (integrated density) were calculated
semi-automatically using an open source Cell Magic Wand plugin for FIJI.
Average adipocyte area in each animal was calculated as average values of
20–50 adipocytes per each depot. Blood vessel characteristics were
assessed by isolectin channel using an open source software AngioTool as
described (Zudaire et al., 2011). Total vessel length in a WAT volume of
1550 μm × 1550 μm × 100 μm was calculated using ×10 images (sum of z-
projections). Junction densities were calculated as a number of junctions in
μm2 of WAT.

Statistical analysis
OM-WAT adipocyte area and OM-WAT fatty acid uptake were analyzed
using the Mixed Models function of SAS (version 9.4, SAS Institute Inc.,
Cary, NC, USA). Factors interrogated included time, steroid, diet, steroid
by diet and steroid by diet by time. OM and SC-WAT glycerol release in
years 2 and 3 of treatment was analyzed using the Linear Models function
of SAS for each year individually. Factors interrogated included iso-
proterenol, diet, steroid and diet by steroid. SC-WAT adipocyte area,
OM- and SC-WAT vessel and capillary junction density at year 3 were also
analyzed using the Linear Models function of SAS. Factors interrogated
included diet, steroid and diet by steroid. When significant (P < 0.05) fac-
tors were identified, all post-hoc analyses were then performed between
relevant treatment groups using the least squared means function of SAS.

Results

Adipocyte size and wat morphology
The four treatment groups started with equally sized OM adipocytes
that displayed progressive cellular hypertrophy over the course of the
study (Fig. 2A). The C and T + WSD groups exhibited statistically sig-
nificant increases in adipocyte size in years 2 and 3, while in the T
group the increase in adipocyte size was only statistically significant
when year 3 was compared to year 0. In the WSD group the increase
in adipocyte size was statistically significant in year 2 but not in year 3.
In years 2 and 3, the T + WSD group had statistically significantly lar-
ger OM adipocytes compared to all other groups (Fig. 2A). The mor-
phological analysis of OM-WAT collected in year 2 showed no
obvious signs of WAT fibrosis, with the exception of blood vessel-
associated collagen beds (Fig. 2C). There was no significant difference in
SC adipocyte size in year 3 (Fig. 2B). In year 3, in every experimental
group, SC adipocytes were larger than OM adipocytes (Fig. 2A and B),

which is consistent with previous human studies (Tchernof et al., 2006;
Michaud et al., 2014; Muir et al., 2016). Importantly, the relative differ-
ence in SC and OM adipocyte size was minimal in the T + WSD group
compared to other groups (Fig. 2A and B).

Vessel density inWAT
Double-staining of BODIPY-C12-labeled (see next section) WAT
explants collected in year 3 with Isolectin GS-IB4 revealed an extensive
capillary network surrounding individual OM (Fig. 3A–D) and SC (data
not shown) adipocytes. Typically, blood vessels formed junctions
demarcating the boundaries between adjacent adipocytes (Fig. 3A–D,
asterisks). Quantification of capillary length and junctions revealed that
the overall effect of diet (WSD and T +WSD) on vessel length and junc-
tion densities was significant or a strong trend for both OM-WAT and
SC-WAT and the WSD groups displayed reduced vessel length and junc-
tional densities (Fig. 3E–H). Although OM adipocytes in the T + WSD
group were larger compared to theWSD group (Figs 2A and 3C and D),
their capillary network properties, including vessel junction densities and
vessel length, were similar (Fig. 3E and F). Similarly, WSD reduced vessel
length and junction densities in SC-WAT (Fig. 3G and H).

Free fatty acid uptake inWAT
To analyze the uptake and incorporation of free fatty acids into cellular
triglycerides, WAT explants were incubated ex vivo with basal or
insulin-containing media and labeled with the green fluorescent fatty
acid tracer BODIPY-C12, which is incorporated into cellular triglycer-
ides (Chu, et al., 2014; Varlamov et al., 2015). Co-staining of BODIPY-
C12-labeled OM-WAT explants with the live-cell marker Calcein
Red-Orange AM revealed that only red, live adipocytes accumulated
green fluorescent dye, while dead adipocytes (D) appeared dark
(Fig. 4A and B). In live adipocytes, intracellular BODIPY fluorescence
was distributed to clusters of small micro-lipid droplets (mLDs,
Fig. 4A, punctate peripheral staining) and the central lipid droplet
(cLD, Fig. 4A). An apparent intercellular heterogeneity in BODIPY-
C12 uptake and mLDs (Figs 4A and 3A–D) were previously reported
(Chu, et al., 2014; Varlamov et al., 2015). The quantification of basal
and insulin-stimulated BODIPY-C12 fluorescence taken up by individ-
ual adipocytes showed no differences between treatment groups in
year 2. However, only the T + WSD group demonstrated a statistic-
ally significant increase in the level of fatty acid uptake in year 3 com-
pared to year 2 (Fig. 4C).

Lipolysis
The lipolytic response of WAT to the β-adrenergic agonist iso-
proterenol was studied ex vivo using WAT biopsies collected in years
2 and 3. In year 2, there were no statistically significant differences
between treatment groups in isoproterenol-stimulated glycerol release
in OM-WAT and SC-WAT (Fig. 5A and C, ‘Iso’). In OM-WAT, there
was a significant combined effect of diet and T on basal lipolysis, with
the T +WSD group showing elevated basal glycerol release compared
to the T group (Fig. 5A). In SC-WAT, due to a small number of biopsy
samples collected, there were no group differences in basal lipolysis at
year 2, although both WSD and T + WSD groups displayed a trend
towards elevated basal lipolysis (Fig. 5C, ‘Bas’). By year 3, the patterns
of lipolytic responses changed dramatically compared to year 2. In
both WAT depots and under both dietary conditions, there was a
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significant inhibitory effect of T on basal glycerol release (Fig. 5B and
D, ‘Bas’). Also, both T and T + WSD groups displayed significantly
reduced isoproterenol-stimulated glycerol release in SC-WAT and a
trend towards reduction in OM-WAT (Fig. 5D and B, ‘Iso’).

Discussion
The present study was designed to discern the effects of WSD versus
hyperandrogenemia on WAT function in young female NHPs, using a
comprehensive approach of ex vivo and in vitro analyses of fat biopsies
from two distinct fat depots. OM-WAT biopsies were collected longi-
tudinally from the same anatomical sites, allowing the monitoring of
the natural age-dependent progression of adipose hypertrophy, as
well as the longitudinal assessment of various adipose-specific func-
tions. The data from this study and a companion study (True et al.,
2017) suggest that the combination hyperandrogenemia and WSD

accelerates the development of obesity (increase in BMI) and visceral
WAT hypertrophy (increase in OM adipocyte area), while there were
no significant effects of either treatment on SC-WAT hypertrophy
(Fig. 2). Metabolic and WAT-specific changes became pronounced
after 3 years of treatment, revealing several T-specific, diet-specific
and combined effects of treatment, in that: (i) T inhibited basal and
isoproterenol-stimulated lipolysis under both control diet and WSD
conditions; (ii) WSD significantly reduced local WAT blood vessel
length and junction densities, in the presence and absence of hyperan-
drogenemia; and (iii) only the combination of T and WSD resulted in
increased insulin-dependent fatty acid uptake ex vivo (Table I).

Adipocyte size
The present study indicates that hyperandrogenemia in the context of
an obesogenic diet is associated with the development of enlarged
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visceral adipocytes. Although previous studies demonstrated that
women with PCOS have increased visceral adiposity (Manneras-Holm
et al., 2011; Gourgari et al., 2015; Dumesic et al., 2016), the effects of
PCOS on the size of visceral adipocytes in humans is not yet reported.
Consistent with our studies, rodent models of PCOS (McNeilly and
Duncan, 2013) indicate that visceral adipocytes are also enlarged
(Manneras et al., 2008; Caldwell et al., 2014; Kauffman et al., 2015;
Nohara et al., 2013; Nikolic et al., 2015). Studies in sheep
(Padmanabhan and Veiga-Lopez, 2013) similarly reported enlarged adi-
pocytes in intra-abdominal depots of prenatally androgenized female off-
spring (Veiga-Lopez et al., 2013). Previous primate studies (Abbott
et al., 2013) did not observe significant effects of androgen excess on
adipocyte size. However, this is potentially due the shorter duration of
T + WSD treatment in one study (Varlamov et al., 2013; McGee et al.,
2014) and a separate study employed a nonobesogenic, low-fat monkey
chow diet in combination with prenatal T excess (Keller et al., 2014).
We did not detect significant differences between treatment groups

in the size of SC adipocytes. Although several studies indicate that

PCOS is associated with enlarged SC adipocytes (Ek et al., 1997;
Faulds et al., 2003; Manneras-Holm et al., 2011), a recent human study
showed no significant effect of PCOS on the average size of SC adipo-
cytes (Dumesic et al., 2016). However, the latter study reported the
presence of a subpopulation of smaller SC adipocytes without a
change in mean adipocyte size, which correlated with a degree of IR in
lean PCOS patients (Dumesic et al., 2016). Other studies also demon-
strated that IR in normal obese (McLaughlin et al., 2014) and PCOS
obese (Keller et al., 2014) patients is associated with accumulation of
small SC adipocytes. Consequently, subtle changes in SC adipocyte fat
storage due to androgen-mediated inhibition of preadipocyte differen-
tiation with an increased proportion of small SC adipocytes
(Chazenbalk et al., 2012; Dumesic et al., 2016; Keller et al., 2014)
could theoretically favor redistribution of free fatty acids to the visceral
compartment, linking SC abdominal fat functional abnormalities with
increased visceral adipocyte size.

WAT capillary system
WSD induced a significant reduction in capillary density in both WAT
depots. The reduction in blood vessel length and junction densities in
the WSD and T + WSD groups suggests that an obesogenic diet may
impair WAT vascular development and capillary network expansion.
Inadequate expansion of WAT capillary networks during diet-induced
obesity is the principal factor responsible for the development of local
hypoxia, inflammation and a major contributor to IR (Hosogai et al.,
2007; Pasarica et al., 2009; Hodson et al., 2013; Rausch et al., 2008).
The levels of the proinflammatory biomarker C-reactive protein (Pou
et al., 2007; Neeland et al., 2013) were significantly elevated in both
WSD groups (True et al., 2017). This increase in C-reactive protein
was correlated with reducedWAT capillary densities, which is thought
to contribute to systemic inflammation and hypoxia (Pasarica et al.,
2009). Increased angiogenesis can protect against WAT hypoxia and
metabolic complications in obese mice (Michailidou et al., 2012;
Robciuc et al., 2016). There are no recent reports directly addressing
vascular properties of WAT in PCOS patients and in related animal
models; however, there are in vitro studies suggesting an increase in
systemic angiogenesis in PCOS women (Tan et al., 2010). Alterations
in ovarian angiogenesis and vascularization are hypothesized to con-
tribute to ovarian dysfunction in PCOS, including the manifestation of
the PCO phenotype (Di Pietro et al., 2015). Future studies employing
functional in vivo and in vitro-based assays may distinguish whether
endothelial and vascular properties of WAT are differentially affected
by hyperandrogenemia and WSD, and if these effects are depot-
specific.

Free fatty acid uptake inWAT
The present report suggests that hyperandrogenemia is associated
with increased fatty acid uptake in OM-WAT, confirming a previous
pilot study that female NHPs exposed to chronic hyperandrogenemia
and acute WSD challenge display increased insulin-stimulated fatty
acid uptake and increased insulin signaling in visceral WAT (Varlamov
et al., 2013). Our findings are also consistent with published data
showing increased expression of the fatty acid transporter CD36 in
OM-WAT of PCOS women (Seow et al., 2009). Thus, increased
fatty acid influx may contribute to the increased visceral obesity
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observed in PCOS women consuming obesogenic diets. It is also
possible that increased fatty acid uptake is secondary to or con-
comitant with visceral adipocyte hypertrophy, which may develop
as a result of suppressed lipolysis in the background of lipid-rich
obesogenic diets.

WAT lipolysis
Hyperandrogenemia had an inhibitory effect on basal and
isoproterenol-stimulated lipolysis in both fat depots under both dietary
conditions. The suppression of fat cell lipolysis by androgen excess
may represent the principal pathophysiological mechanism contribut-
ing to increased obesity in PCOS patients. Earlier studies employing
SC-WAT biopsies obtained from women with PCOS and BMI-matched
controls demonstrated that the former developed catecholamine-
induced lipolytic resistance and had reduced β2-adrenergic receptor
levels (Ek et al., 1997). Other studies also reported a reduction in
β2-adrenergic receptors expressed in SC adipocytes of PCOS patients
and revealed additional defects such as a reduced capacity of

endogenous protein kinase A to activate HSL (Faulds et al., 2003), the
principal lipase responsible for the β-adrenergic lipolytic response in
WAT (Ryden et al., 2007).
The data on visceral WAT lipolysis are more controversial. Ek et al.

(2002) reported that OM-WAT obtained from PCOS patients had
increased catecholamine-induced lipolysis, although our and other
groups reported reduced HSL levels in visceral WAT in T-treated
female NHPs (Varlamov et al., 2013), as well as in WAT of PCOS
patients (Seow et al., 2009), respectively. Interestingly, OM-WAT
from the T + WSD group obtained in year 2 displayed elevated basal
lipolysis, while during the transition to year 3 this effect was reversed.
These differences may be related to the duration of treatment or age-
dependent remodeling of the local sympathetic innervation and ultim-
ately the β-adrenergic lipolytic response in WAT might be different in
younger versus older female primates (Zeng et al., 2015; Zhu et al.,
2016).
One possible mechanism driving the development of catecholamine

resistance in WAT is that elevated androgens induce the dysregulation
of sympathetic tone in WAT in PCOS patients. Developmental
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androgen excess is associated with increased sympathetic tone in SC
and visceral WAT in mice (Nohara et al., 2013). Alterations in WAT
sympathetic tone may represent a secondary effect of obesity and
require further investigations, including defining the distribution of the
local sympathetic innervation and the association with blood vessels,
combined with functional assessment of sympathetic function in WAT.

Conclusions and future directions
In the United States, 80% of women with PCOS suffer from obesity
and related metabolic complications (Legro et al., 1999; Dumesic
et al., 2015), while the mechanisms contributing to excess body fat in
these patients remain poorly understood. The present NHP study
sheds light on the pathogenesis of obesity and adipose dysfunction
observed in women with PCOS. The combined effects of hyperandro-
genemia and consumption of WSD on WAT identified in the present
study include impaired basal and β-adrenergic-stimulated lipolysis,
increased insulin-stimulated fatty acid uptake and reduced blood vessel
density (Table I), which collectively may contribute to the increased
WAT hypertrophy and obesity observed in PCOS women.
Future studies will address the depot-specific biochemical, transcrip-

tional and epigenetic effects of hyperandrogenemia and WSD.
Specifically, we will elucidate the mechanisms underlying visceral fat
hypertrophy and the potential development of adipocyte hyperplasia
in response to hypoandrogenemia and WSD. We will also evaluate
the effects of these treatments on the epigenetic profiles and differen-
tiation and functional properties of adipose mesenchymal stem cells in
this cohort of monkeys.
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