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ABSTRACT

To detect functional somatic mutations in tumor samples, whole-exome sequencing
(WES) is often used for its reliability and relative low cost. RNA-seq, while generally
used to measure gene expression, can potentially also be used for identification of
somatic mutations. However there has been little systematic evaluation of the utility
of RNA-seq for identifying somatic mutations. Here, we develop and evaluate a
pipeline for processing RNA-seq data from glioblastoma multiforme (GBM) tumors
in order to identify somatic mutations. The pipeline entails the use of the STAR
aligner 2-pass procedure jointly with MuTect2 from genome analysis toolkit (GATK)
to detect somatic variants. Variants identified from RNA-seq data were evaluated by
comparison against the COSMIC and dbSNP databases, and also compared to
somatic variants identified by exome sequencing. We also estimated the putative
functional impact of coding variants in the most frequently mutated genes in GBM.
Interestingly, variants identified by RNA-seq alone showed better representation of
GBM-related mutations cataloged by COSMIC. RNA-seq-only data substantially
outperformed the ability of WES to reveal potentially new somatic mutations in
known GBM-related pathways, and allowed us to build a high-quality set of somatic
mutations common to exome and RNA-seq calls. Using RNA-seq data in parallel
with WES data to detect somatic mutations in cancer genomes can thus broaden the
scope of discoveries and lend additional support to somatic variants identified by
exome sequencing alone.

Subjects Bioinformatics, Genomics
Keywords RNA-seq, Cancer, Variants, Somatic mutations

INTRODUCTION

Cancer is among the leading causes of death worldwide, with 8.7 million deaths in

2015 (Global Burden of Disease Cancer Collaboration, 2017). As a genetic disease,
cancers are driven in part by the accumulation of somatic mutations, which incidentally,
also offer targets for new precision therapies directed against tumor-causing mutations
(The Cancer Genome Atlas Research Network et al.,, 2013; Yu, O’Toole ¢» Trent, 2015).

How to cite this article Coudray et al. (2018), Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data.
Peer] 6:€5362; DOI 10.7717/peer;j.5362


http://dx.doi.org/10.7717/peerj.5362
mailto:vishy@�utexas.�edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5362
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

Peer/

Cancer cells typically accumulate somatic alterations that impact specific pathways
implicated in cell growth, survival, angiogenesis, motility and other hallmarks of cancer
(Hanahan ¢ Weinberg, 2011). Advances in next-generation sequencing technologies have
allowed increasingly fast, accurate and cost-efficient analysis of DNA and RNA samples,
which has driven the identification of key cancer-driving mutations (Raphael et al., 2014).
These findings are beginning to pave the way for new targeted therapies in many
cancers, but significant challenges remain (Paez et al., 2004; Taylor, Furnari ¢

Cavenee, 2012).

The actual cancer-driving mutations need to be differentiated from somatic passenger
mutations caused by impaired DNA repair mechanisms, inherited or de novo germline
mutations and neutral polymorphisms, and artefacts that can arise from sequencing
errors, PCR or misalignment (Berger et al., 2016; Sahni et al., 2013; Takiar et al., 2017).
Moreover, the complex structure of tumors increases the complexity of the analysis,
as tumors are typically heterogeneous, containing normal cells as well as distinct clonal
lineages of tumor cells (Meacham ¢ Morrison, 2013). Somatic alterations typically range
from substitution mutations and small insertions/deletions (indels) to chromosome
rearrangements and copy number variations (CNVs) (Rhee et al., 2017).

To detect mutations in a tumor sample, whole exome sequencing (WES) has
generally been favored over whole genome sequencing (WGS) for its relatively low cost,
although dropping costs of WGS encourage its use for somatic mutation identification
(Alioto et al., 2015; Puente et al., 2011). Whole-transcriptome (RNA-seq) data has
typically been used to measure gene expression and identify transcript and splicing
isoforms. Nevertheless, it is possible to identify genomic variants from RNA-seq
(Piskol, Ramaswami & Li, 2013). Previous studies examining the use of RNA-seq for
somatic mutation detection have focused on the characteristics of mutational changes
seen in RNA-seq versus WES, but these studies have been limited with regard to cancer
type, and there has been little systematic evaluation of the biological novelty and
significance of tumor somatic variants detected by RNA-seq (O'Brien et al., 2015).

Here, we assessed the utility of RNA-seq for somatic mutation detection in glioblastoma
multiforme (GBM), the most common and deadliest form of adult primary brain cancer.
GBM shows a median overall survival of only 14-15 months (Stupp et al., 2009).
Standard of care for GBM has not changed for many years, and emerging new targeted
therapies (mostly targeting angiogenesis-related pathways) unfortunately encounter
problems of drug resistance (Stavrovskaya, Shushanov ¢ Rybalkina, 2016), making the
discovery of new target genes of great importance. We focused on the use of the
STAR aligner (Dobin et al., 2013) which is fast and is transcript-aware, and therefore
has the potential to give additional information about mutations in cancer-activated
transcripts that might be missing in WES, and MuTect2 from GATK (Cibulskis et al.,
2013) which has been widely used for mutation identification. Our analysis showed
that RNA-seq is able to detect novel, GBM-related somatic mutations and can thus
complement exome and whole-genome sequencing in identifying somatic mutations

in tumor genomes.
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MATERIALS AND METHODS

Methods overview, sample preparation, data origin and databases
used

We developed a new pipeline to detect somatic mutations in RNA-seq data, combining
RNA-seq alignment using a STAR 2-pass procedure with somatic mutation detection
using MuTect2 for variant calling (Cibulskis et al., 2013). Variants from RNA-seq and
WES were compared, first, on a pair of RNA-seq/WES from a GBM tumor that had
already been analyzed in our laboratory (Hall et al., 2018) and then on a set of nine pairs of
RNA-seq and WES data from GBM tumors analyzed by the Cancer Genome Atlas
(TCGA) (Brennan et al., 2013). We compared and evaluated RNA-seq and WES mutations
in four steps. First, we estimated the proportion of germline or somatic mutations by
comparison of identified variants to the dbSNP database (Kitfs et al., 2013) which
catalogs known germline variants, and the Catalogue Of Somatic Mutations in Cancer or
COSMIC database (Forbes et al., 2015), respectively. The use of these databases allowed
us to evaluate whether a variant was a germline (included in dbSNP but not in COSMIC)
or a somatic mutation (included in COSMIC but not in dbSNP). Second, somatic
mutations detected in RNA-seq-only data were consolidated to highlight mutations
present in multiple tumor samples. Third, their functional impact on proteins was
evaluated by using two scoring systems: SIFT and functional analysis through hidden
markov models (FATHMM) with cancer-weights (FATHMMcw) (Ng ¢ Henikoff, 2003;
Shihab et al., 2013b). Fourth, we focused on mutations affecting a set of 29 genes already
shown to be implicated in GBM by a previous TCGA study (Cancer Genome Atlas Research
Network, 2008). Mutations falling into coding regions of these 29 genes and showing high
likelihood of altered protein function were assumed to be the best GBM-related mutations
and potential cancer-drivers. Finally, we repeated this analysis on an independent validation
dataset consisting of 15 pairs of RNA-seq and WES data from TCGA.

We generated paired RNA-seq and WES data from one GBM tumor (SD01) collected at
St. David’s Medical Center (Austin, TX, USA) after written informed consent, in a study
approved by the Institutional Review Boards of St. David’s Medical Center and of the
University of Texas at Austin (approval numbers AMIRB 10-5-03 and 2012-01-0040).
For WES and RNA-seq, we used the exome capture kit NimbleGen SeqCap EZ (Roche,
Pleasanton, CA, USA) and the NEBNext small RNA kit (NEB, Ipswich, MA, USA),
respectively. Sequencing was carried out at the NGS Core Facility of the MD Anderson
Cancer Center Science Park on an Illumina HiSeq 2500. Data is available in dbGaP
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001389.v1.p1).
For GBM data from TCGA, BAM files resulting from alignment were downloaded from the
Genomic Data Commons data portal and used directly in the subsequent analysis pipeline
since they were already aligned with STAR. To evaluate variants, two databases were
used: dbSNP (Kitts et al., 2013) with the b147 build on the GRCh38 reference (37 x 10°
variants), and the COSMIC database v78 (Forbes et al., 2015), which contains 3.3 x 10°
known somatic variants. We carried out all analyses using the GRCh38 primary assembly
reference acquired from GENCODE (Harrow et al., 2012). ANNOVAR (v.2016Feb01)
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Figure 1 Pipeline used to detect RNA-seq variants. (A) Principal steps in the pipeline used to identify
and annotate somatic mutations. Mutation calling was done for each paired tumor sample/matched-
normal. An RNA-seq-specific panel-of-normals (PoN) and a WES-specific PON were generated.
(B) Distinction between pipelines and their associated methodologies for SD01 and TCGA samples, and
the difference between RNA-seq and WES pipeline used in this study.
Full-size K&l DOT: 10.7717/peerj.5362/fig-1

(Wang, Li ¢ Hakonarson, 2010) was used to annotate variants relative to RefSeq

annotations (release 73) (O'Leary et al., 2016).

A pipeline to detect variants from RNA-seq data with STAR 2-pass and
GATK MuTect2 and distinguish GBM-related mutations

The general pipeline used is shown in Fig. 1, with slight differences between samples
(SDO01 and TCGA) or techniques (RNA-seq and WES) as depicted in Fig. 1B.

The workflow was adapted from GATK best practices for variant calling (Van der

Auwera, 20145 Van der Auwera et al., 2013) but using MuTect2 for variant calling.

The process first involved trimming the adapters with cutadapt (v1.10) (Martin, 2011)

from fastq files, removing sequences that were shorter than 36 bases after trimming, and
removing rRNA and tRNA sequences by aligning with BWA (v0.7.12-r1039) (Li &

Durbin, 2009) to a reference built with known rRNA/tRNA. Filtered reads were then
aligned with STAR aligner (v2.4.2a) using a 2-pass procedure (Dobin ¢» Gingeras, 2015).

Before variant calling, aligned reads in BAM format were sorted, duplicate reads were

flagged (MarkDuplicates, Picard v2.5.0), the base scores recalibrated (BaseRecalibrator,

GATK v3.6) and RNA-seq reads were split into exons (SplitNCigarReads, GATK v3.6).
Variant calling was done with MuTect2 in tumor versus normal mode as described below.
Variants recovered in VCF files were then separated into RNA-seq-only, Intersection and
WES-only. ANNOVAR (v.2016Feb01) (Wang, Li ¢» Hakonarson, 2010) was used to
annotate variants relative to RefSeq annotations (release 73) (O’'Leary et al., 2016).

SIFT score/prediction (v2.3) (Ng ¢ Henikoff, 2003), and FATHMM score/prediction
with cancer weights (v2.3) (Shihab et al., 2013a, 2013b) were used to evaluate the
functional impact of non-synonymous SNVs and frameshift indels. Finally, a set of

29 genes known to be related to GBM (Cancer Genome Atlas Research Network, 2008) was
used to evaluate GBM-related mutations in specific pathways.
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Variant calling using MuTect2 from genome analysis toolkit

MuTect2 infers genotypes with two log-odd ratios (Cibulskis et al., 2013) which

score the confidence that a mutation is present in the tumor sample (TLOD score)
and is absent from the matched-normal sample (NLOD score). The thresholds used
by MuTect2 to consider a variant as being real and somatic (leading to the annotation
“PASS”) are by default TLOD > 6.3 and NLOD > 2.2. For dbSNP variants, a higher
NLOD threshold of 5.5 is used, except if the variant is also present in the COSMIC
database.

Building a panel of normals for variant calling with MuTect2

The creation of a Panel of Normals (PoN) is an optional step that improves variant calling
by filtering out method-specific artefacts, by doing variant calling (MuTect2) on a set of
normal samples (Fig. 1A). The samples for the PoN should ideally be obtained through
protocols and data processing steps closely matched to the tumor sample. For this reason,
two PoN were built, one with RNA-seq data from normal samples and another with
WES data from normal samples. Then, variants identified by MuTect2 in at least two
normal samples were compiled together into one PoN VCEF file. Although using 30 normal
samples is recommended by GATK, we used only 12 normal samples as they were matched
to the 12 GBM tumor samples from TCGA.

MuTect2 filters

Based on the TLOD score, MuTect2 will reject a variant when a specific TLOD > 6.3
threshold is not reached, suggesting insufficient evidence of its presence in the tumor
sample (t_lod_fstar filter). homologous_mapping_event is a filter that detects
homologous sequences and filters out variants falling into sequences that have three or
more events observed in the tumor. clustered_events is a filter for clustered artifacts.
str_contraction filters out variants from short tandem repeat regions.
alt_allele_in_normal filters out variants if enough evidence is shown of its presence in
the normal sample (NLOD threshold > 2.0). multi_event_alt_allele_in_normal filters
out a variant when multiple events are detected at the same position in the matched-
normal sample. germline_risk filters out variants that show sufficient evidence of
being germline based on dbSNP, COSMIC and the matched-normal sample (NLOD
value). panel_of_normals filters out variants present in at least two samples of the
panel of normals.

RefSeq annotations with ANNOVAR

ANNOVAR (v.2016Feb01) (Wang, Li & Hakonarson, 2010) was used to annotate the
variants in the VCF file with RefSeq Genes annotations (release 73 with reference
GRCh38) (O’Leary et al., 2016) and SIFT scores/predictions (v2.3) (Ng ¢» Henikoff, 2003).
RefSeq gives the closest gene name, or the two closest genes whenever a variant falls within
intergenic regions. RefSeq also gives information about the type of mutation and the
eventual amino acid change, whenever a variant falls in a coding region. For effects on
alternative splicing, RefSeq gives a list of all possible transcripts.
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Scoring non-synonymous SNVs and indels with SIFT score

One way to assess the functional impact of an amino-acid (AA) change is to use SIFT
(Ng & Henikoff, 2003), which uses homologous sequence comparison. SIFT (v2.3) gives
a score based on the frequency at which an AA appears at a specific location in functionally
related protein sequences. The AA change is given a predicted score: Tolerated (p > 0.05)
or Deleterious (p < 0.05). Low scores typically occur in highly conserved regions that
tend to be intolerant to most substitutions. On the contrary, unconserved regions tend
to be more tolerant to AA changes. SIFT indel has been developed for scoring
frameshifting indels (Hu ¢ Ng, 2013), which relies on a different algorithm based on a
machine learning model. It gives a prediction of damaging or neutral along with a
confidence score.

Scoring non-synonymous SNVs and indels with FATHMM
cancer-weighted scores

Functional analysis through hidden markov models (FATHMM v2.3) also uses
homologous protein sequences to find the probability of an amino acid substitution

at a given position. The algorithm relies on Hidden Markov models to compute
probabilities, its final scores being a ratio between the probability of the wild-type and
the mutant AA. The version used here (Shihab et al., 2013b) also incorporates cancer
weights (FATHMMcw), the frequency of cancer-associated variants from the CanProVar
database and wild type weights, the frequency of neutral polymorphisms from UniRef
database falling in the same protein region as the variants. The final score is an indication
whether an AA substitution is deleterious and associated with cancer (prediction
CANCER given for score < —0.75) or neutral (prediction PASSENGER given for score >
—0.75). FATHMM for indels (Shihab et al., 2015) works on indels shorter than 20 bp
and emits a prediction (pathogenic or neutral) together with a confidence score
(expressed in %).

Criterion to build a set of 29 genes previously shown to be altered

in GBM

A set of 29 genes that were shown to be the most frequently mutated genes in GBM
by a TCGA study on 91 GBM samples (Cancer Genome Atlas Research Network, 2008)
was used to look for somatic mutations in GBM-related pathways. Genes selected to be
part of the set were ARF, BRCA2, CBL, CDK4, CDKN2B, CDKN2C, EGFR, EP300,
ERBB2, ERBB3, FGFR2, IRS1, MDM2, MDM4, MET, MSH6, NF1, P16, PDGFRB,
PIK3C2B, PIK3C2G, PIK3CA, PIK3R1, PRKCZ, PTEN, RB1, SPRY2, TP53 and

TSC2. These genes were shown to bear mutations in at least 2% of samples, the most
altered being ARF (49%), EGFR (45%), PTEN (36%) and TP53 (35%). The “Best
GBM-related mutation” (Table 1) is indicated when a mutation was included in this
set of 29 genes, part of COSMIC database but not in dbSNP, resulted in an AA change
and retained based on both SIFT and FATHMM scores as being functionally deleterious
for protein function.
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Table 1 “Best GBM-related mutations” from coding regions of SD01 and TCGA samples.

Gene  Sample AA FATHMM SIFT AF Coverage
change score score (Tumor) (Tumor)
EGFR SDO01 RNA-seq only A702S  —0.97 (CANCER)  0.01 (Del) 0.015 852
EGFR SDO1 Intersection A289V  —1.04 (CANCER) 0.002 (Del) 0.072 125
EGFR  GBMO1 Intersection G63R  —1.93 (CANCER) 0.0 (Del) 0.175 296
TP53  GBMOI Intersection G105R  —10.02 (CANCER) 0.0 (Del) 0.44 50
TP53  GBMO02 RNA-seq only 12545  —9.48 (CANCER) 0.0 (Del) 0.949 390
TSC2  GBMO02 RNA-seq only V296fs  71% (pathogenic) 85.8% (Dam) 0.137 55
PTEN GBMO2 Intersection D107Y -3.06 (CANCER) 0.0 (Del) 0.69 92
PTEN GBMO3 Intersection R173H —6.42 (CANCER) 0.0 (Del) 0.331 173
PTEN GBMO04 Intersection D326fs  88% (pathogenic) 85.8% (Dam) 0.393 146
PTEN GBMO07 WXS only R130Q —5.84 (CANCER) 0.0 (Del) 0.713 190
NF1 GBM10 WXS only C622F  —0.83 (CANCER)  0.01 (Del) 0.403 389
Notes:

All variants shown were included in COSMIC and in a set of 29 GBM-related genes but not dbSNP. All variants are
deleterious based on scoring by SIFT and FATHMM with cancer weights. For SIFTindel and FATHMM indels, the score
is given as a confidence score of the prediction. AF (Allele Fraction, tumor) shows the proportion of altered reads in
tumor samples, with Coverage (tumor) being the total number of reads at the variant position.

RESULTS

Read counts and variant features highlight differences between
RNA-seq and WES variants in TCGA samples

In the majority of samples, RNA-seq showed fewer uniquely mapped reads than WES
(Fig. 2A; Fig. S1). Secondary alignments and unmapped reads were generally higher in the
RNA-seq data, which could be due in part to unmapped splice junction reads and
mismatches in RNA-seq due to RNA editing. Adenosine to inosine is the most common
form of RNA editing in humans, leading mainly to A > G and T > C base substitutions
(Picardi et al., 2015), which were clearly enriched in RNA-seq compared to WES data
(Fig. 2B). RNA editing site databases like DARNED (Kiran et al., 2013), RADAR
(Ramaswami & Li, 2014) or Inosinome Atlas (Picardi et al., 2015) could potentially be used
to filter out such variants (Piskol, Ramaswami ¢ Li, 2013).

The proportion of variants filtered by the different MuTect?2 filters are shown in Fig. 2C.
MuTect2 generates two log-odd ratios, TLOD and NLOD, which can be used to infer the
somatic origin of a variant (Materials and Methods). RNA-seq variants showed lower
TLOD scores and slightly higher NLOD scores than WES variants. Low read counts or
poor base qualities supporting the altered allele in tumor can lead to low TLOD values.
Fewer RNA-seq variants met the TLOD threshold (Fig. 2C, TLODfstar). Interestingly,
TLOD scores of COSMIC variants were higher than non-COSMIC variants (Fig. 52),
suggesting that TLOD reflects the higher true positive rate. On the other hand, variants
that also occur in the matched-normal samples could be filtered by the AltAlleleiInNormal
MuTect2 filter based on NLOD values. RNA-seq data from TCGA samples showed
particularly low numbers of variants excluded by this filter (Fig. 2C), which could be due
to coverage differences between tumor RNA-seq and matched-normal (the latter being
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WES data). Thus, distinct variant features given as an output by MuTect2 could be used to
build a variant filtering model (Ding et al., 2012).

Variants accepted as true and somatic (PASS) by MuTect2 were higher in RNA-seq
than WES for all TCGA samples (Fig. 2D). The overlap between RNA-seq and WES
was small in all samples, but interestingly, the overlap increased with increasing

significance of the variants. An average of only 6.60% of WES variants retained by
MuTect2 (PASS) were also present in RNA-seq, while 15.9% of WES variants from coding
regions and 17.2% of functional mutations were common to RNA-seq (Fig. 2D).
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Coverage differences between RNA-seq and WES could partially explain the phenomenon.
A previous study indeed found that ~71% of RNA-seq variants fell outside the WES
capture boundaries (O'Brien et al., 2015). Moreover, they showed that a high proportion of
RNA-seq-only variants were missed by WES because of their low allele fraction (AF).

As expected, the RNA-seq/WES intersection was enriched in variants from coding
regions (89.7% of coding variants), since both RNA-seq and WES query exons. RNA-seq
data also showed an unexpected level of intronic/intergenic variants. Intronic mRNA reads
could partly come from unspliced RNA (pre-mRNA). A previous study has indeed
detected many intronic mRNA variants, which could come from inefficient splicing in
cancer (Sowalsky et al., 2015). On the other hand, intergenic RNA-seq variants could
come from unannotated genes, non-coding RNA, retrotransposons, splicing errors
(Pickrell et al., 2010) and sequencing/mapping errors.

Allele fraction and coverage are useful features to further classify
variants

In theory, heterozygous mutations would show an AF around 0.5. However, somatic
mutations from cancer cells are expected to appear at lower frequencies, as tumor samples
are heterogeneous and not pure clones. Moreover, CNVs can lead to gain/loss of
chromosomes and/or duplications of genes (Yin et al., 2009). RNA-seq-only variants
showed a surprising AF distribution in that 38.2% showed an AF > 0.95 (Figs. 3A and 3B)
versus only 0.50% of WES-only variants. These high AF RNA-seq-only variants showed
low coverage, and the majority of them occurred in intronic/intergenic regions (85.6%
of RNA-seq-only variants with AF > 0.95). Conversely, we also found a high number

of RNA-seq-only variants showing AF < 0.05 (36.3% of RNA-seq variants representing
4,267 variants in nine TCGA samples). In comparison, WES-only data showed only

502 variants (22.8%) with AF < 0.05. Low AF RNA-seq-only variants mainly originated
from coding regions (81.1% of RNA-seq-only variants with AF < 0.05) and often showed
high coverage, which distinguished them from WES-only variants (Fig. 3A). We examined
the coverage data for RNA-seq-only variants with AF < 0.05 and coverage > 500, and
found only one variant (out of 2,192) that was also present in WES data, and showing only
one altered read. This region of high coverage/low AF is of particular interest as it is likely
to contain true somatic mutations that are missed in WES data.

COSMIC/dbSNP overlap can be used as an indicator of the
somatic/germline content in TCGA samples

For each of the three classes of variants—WES-only, Intersection and RNA-seq-only—we
examined the proportion in different genomic regions (Fig. 3C), potential for affecting
protein function (Fig. 3D) and representation in dbSNP and COSMIC databases (Fig. 3E).
The proportion of variants included in the dbSNP database is potentially an indicator
of germline content among identified variants, while the overlap with the COSMIC
database can serve as an indicator of somatic mutations (Fig. 3E). It must be noted

that with the increasing coverage in dbSNP of variants from ever-increasing numbers
of human genomes, inclusion in dbSNP cannot always rule out a somatic variant
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(Nadarajah et al., 2016). Nevertheless, their overlap is small, at least in the versions of the
databases we used, with only 0.15% of dbSNP variants included in COSMIC (Fig. S3).
Coding variants identified by both RNA-seq & WES (Intersection) showed a particularly
high proportion (87.7%) included in COSMIC but not in dbSNP (COSMIC-only),
which may be considered the most likely candidates for somatic mutations. A high
proportion of WES-only coding variants (39.5%) and a low proportion of RNA-seq-only
coding variants (3.0%) were likewise found in COSMIC-only but although the proportions
were very different, both WES-only and RNA-seq-only variants contained the same
order-of-magnitude COSMIC-only variants (Fig. 3E). Thus, RNA-seq-only identified
138 COSMIC-only variants from coding regions that were therefore missed by WES-only.
Because COSMIC contains variants discovered mainly by WES, it is possible that many
of the RNA-seq-only variants unknown to both COSMIC and dbSNP, representing
96.4% of RNA-seq-only variants from coding regions (4,402 variants in nine samples),
could include many bonafide cancer somatic mutations. We therefore explored this
possibility further.

Genes showing somatic mutations in multiple TCGA samples only in
RNA-seq data

There were 63 genes with RNA-seq-only variants that were mutated in five or more
tumors, and many genes from this group have been implicated in cancer (Fig. 4). For
example, a set of three complement related genes—complement C3, a-2 macroglobulin
and the complement lysis inhibitor SP-40/clusterin (CLU)—that have been implicated
in various cancers including gliomas (Reis et al., 2018; Saratsis et al., 2014; Shinoura et al.,
1994; Suman et al., 2016) were present in this group, and interestingly, these three
proteins have been recently shown to form a network of related biomarkers in B-ALL
(Cavalcante et al., 2016). One tumor contained a cluster of highly mutated genes (Fig. 4,
bottom left), including SPARC and FLNA, which are associated with cell-matrix
interactions and cell motility (Neuzillet et al., 2013; Xu et al., 2010), and thus possibly
involved in metastasis. On the other hand, MAGED1 was linked with cell-death
mechanisms (Mouri et al., 2013), which are often disrupted in cancer. One frameshift
insertion was detected in the ARF1 gene located at the exact same position (G14fs) in all
nine samples. This was a COSMIC-only variant with plausible AF and coverage.
Despite high coverages in WES at the variant position, the insertion was never present
in WES data, and since indels have been shown to be more prone to artefacts

(Kroigard et al., 2016), it was not retained in Tables 1 and 2 (see below). Note that the
mutational landscape presented here is distinct from the one obtained by a TCGA study
on WES data (Brennan et al., 2013), which is not surprising as RNA-seq-only data is
likely interrogating other regions of the genome relative to WES.

Analysis of somatic mutations found by RNA-seq without a
corresponding matched normal sample

The SD01 GBM tumor sample had no corresponding matched normal to enable reliable
distinction of somatic mutations from germline variants, so it presented unusual
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challenges. However, it is worthwhile to consider such samples because often, RNA-seq
data may be available from a tumor without a corresponding matched normal sample.
The total number of variant called in SDO1 was much higher than the average TCGA
sample (by 10.5-fold for RNA-seq and 17.7-fold for WES). SD01 had a similar number of
aligned reads as the TCGA samples for both RNA-seq and WES, so the higher number
of somatic variants could be in part due to the absence of matched-normal, the small panel
of normals used and/or by a higher underlying mutation rate in this specific tumor.
MuTect2 variant calling was carried out in tumor-only mode and only relied on TLOD
values without distinction between somatic and germline variants. Many dbSNP variants
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Table 2 Variants unknown by both COSMIC and dbSNP and candidates to be new GBM-related functional somatic mutations.

Gene Sample AA FATHMM SIFT score COSMIC AF Coverage
change score (Tumor) (Tumor)
EGFR SD01 RNA-seq-only S229fs 93% (pathogenic) 85.8% (Dam) No (5229C) 0.045 169
EGFR SD01 RNA-seq-only W477fs 51% (neutral) 85.8% (Dam) No (W477%) 0.046 447
PIK3C2 SD01 WES-only 1255N —3.49 (CANCER) 0 (Del) No 0.433 64
CDKN2C GBMO02 RNA-seq-only V130A —0.21 (PASSENGER) 0.03 (Del) No 0.027 470
PDGFRB GBMO02 RNA-seq-only V840A —2.34 (CANCER) 0.23 (Tol) No 0.021 262
RB1 GBMO03 RNA-seq-only L872fs 77% (pathogenic) 85.8% (Dam) No 0.035 355
EGFR GBMO05 RNA-seq-only M600T —1.69 (CANCER) 0.38 (Tol) No (M600V) 8.1E-03 6,240
EGFR GBMO5 RNA-seq-only L718R -2.85 (CANCER) 0 (Del) No (L718M) 4.5E-03 4,792
PDGFRB GBMO06 RNA-seq-only Q1075R —1.25 (CANCER) 0.52 (Tol) No 0.058 90

Notes:

Variants included in the set of 29 GBM-related genes and not included in COSMIC or dbSNP are shown, although COSMIC contained alternative variants at the same
positions for four mutations that were found by RNA-seq-only. For SIFTindel and FATHMM indels, the score is given as a confidence score. AF (tumor) shows the
proportion of altered reads in tumor samples, with Coverage (tumor) being the total number of reads at the variant position. Allele Fraction and Coverage was used to
further exclude potential artifacts, which are not listed here.

* Indicates a nonsense mutation.

were indeed observed (Fig. S4). The distribution of SD01 variants by chromosome showed
a remarkably high number of variants on Chromosome 7 (Fig. S5), which could reflect
amplification of Chromosome 7, a common feature in GBM (Cancer Genome Atlas
Research Network, 2008). SDO1 also showed a higher density of transition variants (T > C,
C>T, A>Gand G > A), which tend to be less deleterious, as expected for germline
variants (Campbell ¢» Eichler, 2013). Nevertheless, SD01 RNA-seq-only variants included
several interesting candidate somatic mutations. One of these RNA-seq-only mutations
was EGFR-A702S, found in COSMIC but not in dbSNP, and retained by both SIFT and
FATHMM scores (see below). Two other frameshift insertions were also found by
RNA-seq-only data in EGFR (S229fs and W477fs), with COSMIC variants found at the
same AA coordinates (Table 2). Moreover, the intersection between RNA-seq and WES
data in SDO1 showed other interesting candidates, such as a point mutation in EGFR
(A289V—retained by both SIFT/FATHMM, and present in COSMIC but not in dbSNP).

Analyzing the functional impact of somatic mutations on protein
function in relation to cancer and GBM pathways

We used the algorithms FATHMM and SIFT to evaluate the potential impact of somatic
variants on protein function in cancer pathways (Materials and Methods). The FATHMM
and SIFT score distributions showed a significant difference only for FATHMM scores
between the Intersection and WES-only (Fig. 5). Many RNA-seq-only variants scored
below both FATHMM and SIFT thresholds, indicating they could be potential functional
mutations. The overall proportion of variants retained by FATHMM and SIFT was higher
for Intersection variants (11.8%, Fig. 5D), and slightly higher in RNA-seq-only than
WES-only. Mutations present among a set of 29 hand-curated GBM-related genes were
designated as the “best GBM-related mutations” (Table 1), and comprised 11 mutations.
RNA-seq-only detected three of these 11 mutations, while WES-only found two and

the Intersection between RNA-seq and WES found six of the 11 GBM mutations.
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These three RNA-seq-only mutations (EGFR-A702S, TP53-1254S and TSC2-V296fs)

are thus cancer-driver candidates found only by RNA-seq and should therefore motivate
the use of RNA-seq as they were missed by WES. Taken together, our results suggest
that the intersection between RNA-seq data and WES vyielded the highest quality
GBM-related mutations in TCGA samples, for three reasons. First, variants from
RNA-seq/WES intersection showed 90.5% of COSMIC-only variants (Fig. 3E), an average
much higher than WES-only or RNA-seq-only data. Second, coding variants from the
intersection also showed more evidence of functional alteration through their SIFT and
FATHMM scores (Fig. 5). Third, 6/11 of the “best GBM-related mutations” were identified
in the intersection (Table 1), even though it was the smallest group in term of variant
number. Thus combining RNA-seq and WES greatly improves the confidence in certain
variants discovered by WES, particularly in highly expressed genes.

New somatic/GBM-related mutations evaluation from unknown
variants

Another group of findings are shown in Table 2 as being potentially undiscovered variants,
as they were neither in COSMIC nor in dbSNP, but affected one of the 29 GBM-related
genes and retained either by SIFT or FATHMM scores. These mutations are therefore
the best candidates for being new discoveries as they implicate known GBM-related
pathways. RNA-seq-only data allowed the discovery of 8/9 potentially new mutations,
against only one new variant in WES-only data, which suggests that variant calling from
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RNA-seq has considerable potential to generate new discoveries, including in already
well known pathways. For example, an RNA-seq-only variant, EGFR-L718R, showed
22 variant reads out of a total of 4,792 (AF 4.5 x 10™%). WES showed 101 reads at the
same position, giving a probability of only 0.39 of at least one variant read occurring in
the WES data (based on binomial probability). Interestingly, COSMIC has cataloged a
different variant, L718M at the same position (Table 2).

In order to confirm the overall findings from the preceding analysis, we repeated the
entire pipeline on an independent validation dataset comprising 15 GBM tumors
downloaded from TCGA. The overall characteristics of the variants in this validation
dataset, as well as the genomic locations, the nature of variants found in the WES,
RNA-seq-only and Intersection sets, and the identities of genes showing significant
RNA-seq-only variants matched well with our previous analysis (Fig. S6).

DISCUSSION

Although WES has been the mainstay of somatic mutation identification in cancer
genomes, our study suggests that variant calling from RNA-seq offers a valuable
complement. RNA-seq revealed new variants that were clearly associated with GBM
biology, were found at the same positions as previously known variants, and yet were
missed by WES. A major reason for the ability of RNA-seq to identify new somatic
variants likely comes from the higher sequencing coverage of strongly expressed genes.
Oncogenes in cancers, such as EGFR in GBM, are likely to be highly expressed, and
RNA-seq naturally provides better coverage of such genes than WES, and hence higher
statistical confidence to detect variants. Additionally, even when tumor cells expressing active
oncogenes comprise only a subset of the tumor, RNA-seq reads can capture this
overrepresentation when RNA is isolated from the bulk tumor, whereas DNA used for WES
cannot. In this regard, RNA-seq is likely to be advantageous even over whole-genome
sequencing, where it is harder to achieve the same depth of coverage over all genes as WES.
The RNA-seq variants we identified in our analysis did not appear to have
significantly lower quality than WES variants, although we saw a high number of variants
with AF > 0.95 and low coverage in RNA-seq data. Based on MuTect2 output, RNA-seq
detected more somatic mutations than WES in the TCGA samples. However, some
RNA-seq variants could be considered questionable, since RNA-seq data has been shown
to be more prone to false positive calls (Cirulli et al., 2010), in part due to errors during the
RNA to cDNA conversion, mapping mismatches, or RNA editing processes (Danecek
et al., 2012). Indels are also a source of possible artefacts (Kroigard et al., 2016) even though
the local de novo assembly done by MuTect2 should reduce this artefact. Comparison of
variants with known somatic mutations from the COSMIC database showed that WES-
only data contained more COSMIC variants than RNA-seq-only in TCGA samples (323
versus 138; Fig. 3E). However, this representation is likely to be skewed by the fact that
COSMIC variants were primarily discovered by WES. Variants in coding regions were
represented in the same proportions in RNA-seq and WES (see Fig. 3C) and
overrepresented in the intersection, suggesting that RNA-seq and WES coverage have a
higher overlap in coding regions, and making it possible to compare mutations found in
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both datasets within coding regions. We focused on variants causing an AA change, for
which functional impact could be estimated with the scoring systems SIFT and FATHMM.
To assess the identification of potential cancer-drivers that were specific to GBM, we
evaluated the recovery of variants in 29 genes within specific pathways previously shown to
be altered in GBM by a TCGA study (Cancer Genome Atlas Research Network, 2008). By
this measure, RNA-seq-only data detected three out of 11 possible variants while WES-
only detected two out of 11, even though COSMIC variants have been primarily discovered
through WES. The intersection recovered six out of these 11 variants (see Table 1).
Strikingly, RNA-seq-only data outperformed WES-only in discovering new mutations
falling into these 29 GBM-related genes (8/9 findings). RNA-seq-only is thus able to not
only detect already known mutations, but detect potentially new mutations falling into
known GBM-related pathways, despite the high sequencing depth of WES. In sum RNA-
seq was able to find nine of 11 key known mutations and eight new discoveries, justifying
its use for variant discovery in cancer. RNA-seq data had the potential to better detect
variants showing very low allelic fraction (Cirulli et al., 2010), when more reads were
available in highly expressed genes. Analysis on the coverage indeed showed numerous
variants showing low AF and high coverage and therefore likely to be missed by WES
alone. Additionally, a previous study has shown that RNA-seq-only variants tend to be
missed by WES mainly because they fall outside WES capture kit boundaries (~71% of
RNA-seq-only variants versus WES), and tend to be located in highly expressed genes,
which are more likely to be related to cancer than unexpressed genes, the ones falling into
WES-only data (Cirulli et al., 2010).

Several ways of improving the detection of cancer-related mutations using RNA-seq are
possible. First, it may be possible to optimize the pipeline by reducing artefacts and
germline content. A recent study developed a pipeline for analysis of variants in RNA-seq
data (Piskol, Ramaswami ¢ Li, 2013). They used an indel realignment step and called
variants in a more permissive way for RNA-seq but at the same time requiring better base
quality scores. After variant calling, they filtered out known RNA editing sites using the
RADAR database (Ramaswami ¢ Li, 2014). Second, a variant filtering step using a
machine-learning approach could be used to train a model with MuTect2 output features
specifically for RNA-seq data (Spinella et al., 2016). Third, RNA-seq read generators such
as BEERS (Grant et al., 2011) or Flux simulator (Griebel et al., 2012) could be used to
optimize the pipeline by fine-tuning the sensitivity/specificity.

CONCLUSIONS

Somatic mutations in tumors can be identified from RNA-seq data as a complement to
exome sequencing. Some mutations we identified in GBM based on RNA-seq data
occurred in genes known to be related to GBM and were missed by exome sequencing
alone. In many cases, different variants at the same positions were cataloged in the
COSMIC database of somatic mutations in cancer. The use of RNA-seq can thus
potentially reveal new somatic mutations underlying cancer. Our work suggests that since
the majority of studies on cancer-driving mutations used WES-only, they are likely to have
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missed some key driver mutations that might be found using complementary RNA-seq
datasets from the same tumors.
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