
Systems biology

Interactive network visualization in Jupyter

notebooks: visJS2jupyter

Sara Brin Rosenthal*, Julia Len, Mikayla Webster, Aaron Gary,

Amanda Birmingham and Kathleen M. Fisch

Department of Medicine, Center for Computational Biology and Bioinformatics, University of California San Diego,

La Jolla, CA 92093, USA

*To whom correspondence should be addressed.

Associate Editor: Oliver Stegle

Received on May 10, 2017; revised on September 8, 2017; editorial decision on September 12, 2017; accepted on September 13, 2017

Abstract

Motivation: Network biology is widely used to elucidate mechanisms of disease and biological

processes. The ability to interact with biological networks is important for hypothesis generation

and to give researchers an intuitive understanding of the data. We present visJS2jupyter, a tool de-

signed to embed interactive networks in Jupyter notebooks to streamline network analysis and to

promote reproducible research.

Results: The tool provides functions for performing and visualizing useful network operations in

biology, including network overlap, network propagation around a focal set of genes, and co-

localization of two sets of seed genes. visJS2jupyter uses the JavaScript library vis.js to create

interactive networks displayed within Jupyter notebook cells with features including drag, click,

hover, and zoom. We demonstrate the functionality of visJS2jupyter applied to a biological ques-

tion, by creating a network propagation visualization to prioritize risk-related genes in autism.

Availability and implementation: The visJS2jupyter package is distributed under the MIT License.

The source code, documentation and installation instructions are freely available on GitHub at

https://github.com/ucsd-ccbb/visJS2jupyter. The package can be downloaded at https://pypi.py

thon.org/pypi/visJS2jupyter.

Contact: sbrosenthal@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Networks are ubiquitous in biology, from protein–protein inter-

actions to metabolic, neuronal and signaling networks (Barabasi

et al., 2004, Kreeger and Lauffenburger, 2010). Interacting with net-

works in real time can help generate hypotheses, reveal underlying

biological mechanisms, and provide an intuitive understanding of

data that static forms cannot. Here, we present a light-weight tool,

visJS2jupyter, which integrates the flexibility and aesthetic benefits

of networks rendered in vis.js (visjs.org) directly into Jupyter note-

book cells (Perez and Granger, 2007). In contrast to the static net-

works produced by existing Python network visualization tools,

such as NetworkX (Schult and Swart, 2008), visJS2jupyter networks

are interactive. The tool also provides options to export networks

for further analysis and biological interpretation in Cytoscape

(Shannon et al., 2003), or Cytoscape.js (Franz et al., 2015). We thus

enable a seamless transition from the powerful and reproducible de-

velopment and data analysis environment of Jupyter notebooks to

interactive network analysis and visualization, within the same cod-

ing environment.

2 Main features

Drawing basic networks
Drawing basic but easily adaptable interactive networks in Jupyter

notebook cells is a main functionality of visJS2jupyter. Users

provide as input a network in NetworkX format, and a list of

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 126

Bioinformatics, 34(1), 2018, 126–128

doi: 10.1093/bioinformatics/btx581

Advance Access Publication Date: 14 September 2017

Applications Note

https://github.com/ucsd-ccbb/visJS2jupyter
https://pypi.python.org/pypi/visJS2jupyter
https://pypi.python.org/pypi/visJS2jupyter
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx581#supplementary-data
Deleted Text: -
Deleted Text: ,
Deleted Text: F
Deleted Text: :
https://academic.oup.com/

node-specific and edge-specific attributes to display, including label,

position, color, size and shape. The NetworkX graph object flexibly

stores nodes (represented by any Python object), and node attri-

butes, along with edges and edge attributes which link the nodes.

These attributes may be passed along to visJS2jupyter for visualiza-

tion. Other optional arguments apply general styles to the graph,

such as edge styles, highlight colors, and physics properties. We also

provide functionality to map scalar NetworkX node or edge attri-

butes to any Python colormap, along with options for scaling and

transforming the attribute. See the supplemental information for a

short programming example.

Network visualizations
The visualizations module builds on basic drawing functions in

order to perform operations on graphs and to visualize their results.

The module includes three functions. The first of these, ‘draw_gra-

ph_overlap’, displays nodes and edges which are shared between

two networks, along with the nodes and edges unique to a single

network. The second, ‘draw_heat_prop’, allows for investigation of

the local network neighborhood of a set of seed genes by simulating

a network propagation simulation (Vanunu et al., 2010) (alterna-

tively referred to as heat propagation). Finally, ‘draw_colocaliza-

tion’, enables examination of the shared network neighborhood

between two sets of seed genes by running a network propagation

simulation from each set of seed genes and displaying the product of

the resulting heat vectors. Genes which are nearby to both sets of

seed genes will have higher combined heat values. This method is

similar to that proposed in (Paull et al., 2013). Resulting networks

can also be exported to Cytoscape for further visualization and

analysis.

Implementation
The open-source visJS2jupyter package is written in Python and is

specifically designed to be used within a Python-kernel Jupyter note-

book. It uses the vis.js (http://visjs.org/) browser-based visualization

library written in JavaScript to provide interactive network graphics.

vis.js was selected because it was more easily integrated into the

Jupyter framework than other browser-based javascript libraries,

such as cytoscape.js. Network and data manipulations are imple-

mented using NetworkX, NumPy and Pandas libraries. Its function-

ality operates on graphs in the standard NetworkX format.

3 Example use case

Network propagation methods (e.g. Vanunu et al., 2010) allow for

exploration of the genetic landscape of diseases by prioritizing likely

disease-related genes and identifying possible drug-repurposing can-

didates (Novarino et al., 2014). We demonstrate the network propa-

gation functionality of visJS2jupyter by prioritizing genes of interest

in autism (see supplemental information for the Jupyter notebook to

reproduce this analysis). A comparison of network propagation to

other gene prioritization methods may be found in Börnigen et al.

(2012) and Guala and Sonnhammer (2017).

The function draw_heat_prop simulates heat propagating from a

set of seed nodes on a background interaction network. Beginning

with the list of all known autism disease risk genes (859 genes) from

the SFARI database (Banerjee-Basu and Packer, 2010), and using

the STRING database (Szklarczyk et al., 2014) as a background

interaction network converted to NetworkX format, we randomly

selected 25 of these genes to use as seed nodes. We then ran dra-

w_heat_prop (Fig. 1A) to identify potentially related genes and

create a fully interactive network visualization of the autism sub-

network. After propagation, we measured how many of the left-out

set are recovered. On average, 23 (out of 751 autism risk genes con-

tained in the STRING interactome) known disease risk genes are re-

covered in the top 200 highest ranking genes when the simulation is

seeded with 25 known disease genes (Fig. 1B). To establish a base-

line for comparison, we also ran a control condition in which we

measured the number of disease risk genes which were recovered in

N genes randomly selected from the interactome and compared to

the number recovered in the N highest ranking network propagation

genes. This experiment was repeated k¼100 times for each value of

N (100<N<2000, Fig. 1B). Consistently, we recovered many

more autism genes from network propagation than from the control

condition (p¼1E-32, top 200 genes, rank-sum test), demonstrating

that the network propagation method successfully prioritizes

disease-related genes.

4 Conclusions

This tool brings the processes of building, interacting with and ana-

lyzing networks together in Jupyter notebooks, thus streamlining

network analysis workflows. Together with flexible drawing of net-

works, the more advanced network functions enable interpretation

of biological network data. Further examples of how the functions

of visJS2jupyter may be used to produce interactive networks with

layered and integrated biological attributes are provided in the

visJS2jupyter GitHub repository.

Funding

This work was partially supported by the National Institute of Health

[UL1TR001442] of CTSA.

Conflict of Interest: none declared.

Fig. 1. Network propagation visualization used to prioritize autism risk genes.

(A) Autism sub-network, created by randomly selecting 25 known autism risk

genes (triangles) as seeds for the heat propagation simulation. Here we dis-

play the largest connected component of the autism sub-network. Top 100

related genes are shown as circles, color-coded with decreasing propagated

heat value (color online). Nodes with bold outlines are recovered autism risk

genes. (B) Validation of heat propagation as method of gene prioritization.

Top curve shows average number of autism risk genes in a set that are recov-

ered in the top N genes based on propagation from 25 randomly selected

genes in that set, while the bottom curve denotes the number of autism risk

genes recovered in N randomly selected genes (Color version of this figure is

available at Bioinformatics online.)

visJS2jupyter 127

Deleted Text: ,
Deleted Text: :
Deleted Text: :
http://visjs.org/
Deleted Text: U
Deleted Text: C
Deleted Text: (
Deleted Text: ,
Deleted Text: (
Deleted Text: Figure
Deleted Text: Figure
Deleted Text: Figure
Deleted Text: The project described
Deleted Text: , Grant
Deleted Text: The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

References

Banerjee-Basu,S. and Packer,A. (2010) SFARI Gene: an evolving database for

the autism research community. Dis. Models Mech., 3, 133–135.

Barabasi,A. et al. (2004) Network biology: understanding the cell’s functional

organization. Nat. Rev. Genet., 5, 101–113.

Börnigen,D. et al. (2012) An unbiased evaluation of gene prioritization tools.

Bioinformatics, 28, 3081–3088.

Franz,M. et al. (2015) Cytoscape.js: a graph theory library for visualization

and analysis. Bioinformatics, 32, 309–311.

Guala,D. and Sonnhammer,E. (2017) A large-scale benchmark of gene priori-

tization methods. Sci. Rep., 7, 46598.

Kreeger,P. and Lauffenburger,D. (2010) Cancer systems biology: a network

modeling perspective. Carcinogenesis, 31, 2–8.

Novarino,G. et al. (2014) Exome sequencing links corticospinal motor neuron

disease to common neurodegenerative disorders. Science, 343, 506–511.

Perez,F. and Granger,B. (2007) IPython: a system for interactive scientific

computing. Comput. Sci. Eng., 9, 21–29.

Paull,E.O. et al. (2013) Discovering causal pathways linking genomic events

to transcriptional states using Tied Diffusion Through Interacting Events

(TieDIE). Bioinformatics, 29, 2757–2764.

Schult,D. and Swart,P. (2008) Exploring network structure, dynamics, and

function using NetworkX. In Proceedings of the 7th Python in Science

Conferences (SciPy 2008), pp. 11–16.

Shannon,P. et al. (2003) Cytoscape: a software environment for integrated

models of biomolecular interaction networks. Genome Res., 13,

2498–2504.

Szklarczyk,D. et al. (2014) STRING v10: protein–protein interaction net-

works, integrated over the tree of life. Nucleic Acids Res., 43, D447–D452.

Vanunu,O. et al. (2010) Associating genes and protein complexes with disease

via network propagation. PLoS Comput. Biol., 6, e1000641.

128 S.B.Rosenthal et al.

