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Abstract

Summary: To serve numerous functional roles, RNA must fold into specific structures.

Determining these structures is thus of paramount importance. The recent advent of high-

throughput sequencing-based structure profiling experiments has provided important insights into

RNA structure and widened the scope of RNA studies. However, as a broad range of approaches

continues to emerge, a universal framework is needed to quantitatively ensure consistent and

high-quality data. We present SEQualyzer, a visual and interactive application that makes it easy

and efficient to gauge data quality, screen for transcripts with high-quality information and identify

discordant replicates in structure profiling experiments. Our methods rely on features common to

a wide range of protocols and can serve as standards for quality control and analyses.

Availability and Implementation: SEQualyzer is written in R, is platform-independent, and is freely

available at http://bme.ucdavis.edu/aviranlab/SEQualyzer.

Contact: saviran@ucdavis.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1. Introduction

RNA serves many important functions in cells, which require fold-

ing into specific structures. This necessitates identification of RNA

structures. Data from structure profiling experiments have yielded

important insights into RNA structure (Mortimer et al., 2014) and

helped improve computational structure-prediction accuracy

(Deigan et al., 2009; Lorenz et al., 2015). Experiments use reagents

that modify RNA residues in a structure-dependent manner (Weeks,

2010). Modifications are detected as terminations or mutations via

reverse transcription and subsequent sequencing (Kutchko and

Laederach, 2016). Noise in detection is measured using a control

assay. These measurements are then combined to yield final chem-

ical reactivity scores, which bear structural information for each

residue. A wide range of recent and emerging techniques harness

high-throughput sequencing to probe structure in a massively paral-

lel fashion, driving the field towards transcriptome-wide (TW)

studies (Lu and Chang, 2016). Whereas quality control of structural

data has been traditionally addressed with visual inspection or sim-

ple tests, the scale and complexity of recent datasets preclude such

approaches. This poses a need for automated quality control and ex-

periment design (Aviran and Pachter, 2014; Choudhary et al.,

2016). Here, we present SEQualyzer (Structure-profiling

Experiment Quality Analyzer), which serves this need by providing

easy-to-interpret quality metrics and visualizations thereof in an

interactive R Shiny application. SEQualyzer rapidly and quantita-

tively evaluates data reproducibility to identify transcripts of high

quality, making use of novel metrics developed in previous work

(Choudhary et al., 2016). It further provides data summaries, allow-

ing complete flexibility to optimize reactivity scoring schemes.

SEQualyzer is applicable to a range of protocols notwithstanding

differences in reagents, modification detection methods, priming

strategies, sequencing choices (single-end or paired-end), or scoring
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schemes (see Manual for diverse examples). It thus has the potential

to serve as the go-to tool for quality control and analyses.

2. Methods

2.1 Data input
SEQualyzer takes read counts information (single/paired-end) for

single or multiple transcripts and replicates thereof. Inputs are tal-

lied stop counts at each residue in a format that is easy to conform

to (see SEQualyzer Manual). Users can either process raw reads into

such format independently or use the StructureFold platform for this

purpose (Tang et al., 2015). Optional inputs are local coverages at

each residue (see Supplementary Information). Sequence informa-

tion is input in FASTA format.

2.2 Reactivity scoring strategies
Users have flexibility to optimize reactivity scores, choosing between

difference (Aviran et al., 2011; Tang et al., 2015) or ratio (Talkish

et al., 2014) of detection frequencies in modified and control assays.

One can also choose to subsequently apply standard normalization

routines and/or log-transform read counts or reactivities (Sloma and

Mathews, 2015).

2.3 Quality measures
We calculate quality estimates, namely signal-to-noise ratio (SNR)

and Coverage Quality Index (CQI), as previously described

(Choudhary et al., 2016). SNR is calculated for each residue as the

ratio of mean to standard deviation of a reactivity score, obtained

from experimental or simulated replicates. It can be adapted for dif-

ferent purposes:

1. To evaluate replicates, per-residue SNR is calculated from simu-

lated replicates, obtained via bootstrap (as in Fig. 1). Results are

plotted and summarized as mean of SNR values across residues.

Optionally, a formula to estimate SNR (see Supplementary

Information) can rapidly evaluate large-scale datasets.

2. To gauge replicate agreement, SNR is applied to real replicate

data.

3. To facilitate identification of discordant replicates, pairwise

comparisons are illustrated as a correlation matrix and pairwise

mean SNR.

4. To identify regions with poor-quality data, rolling mean SNR is plot-

ted for a user-defined window size. For example, in Figure 1, rolling

mean SNR indicates that data quality decreases towards 5’ end and is

poor for almost half the length of the hepC IRES domain.

5. To obtain high-level summaries, SNR histograms are generated.

6. To sift through TW data, transcripts are scored and ranked by

their mean SNR values.

While SNR measures variability, CQI assesses the coverage

required to ensure user-specified data quality. Users provide an ac-

ceptable percentage error in the mean reactivity. A significance level,

representing the probability that reactivities can be reproduced

within allowed range of error, is also input. From these parameters,

we calculate the variance, assuming reactivities would be normally

distributed around observed values if the experiment were to be re-

peated. Next, to estimate desirable local coverage, we use a formula

that links it with variance, reactivity and noise at each residue (see

Supplementary Information). Taking ratio of desired to observed

coverages provides indices for all residues of a transcript. We sum-

marize the indices for three reactivity categories—high, medium and

low—as 95th percentile of the indices per category, which we call

CQI. CQIs less/more than 1 indicate sufficient/insufficient coverage.

Additionally, SEQualyzer depicts error bars around reactivities and

summarizes data as stop or mutation counts, local coverage, reactiv-

ity distributions and read count tallies for A, C, G and U.

Summaries of the distribution of reads among transcripts are pro-

vided as Lorenz curve and histogram of coverages.

2.4 Application features
Quality metrics are implemented for visualization in R Shiny interface.

Starting from TW data, users can filter transcripts based on coverage,

length, or mean SNR, can easily switch between selected transcripts

listed in a menu, and can zoom into regions of transcripts. Thus,

SEQualyzer enables users to scope data from residue level to whole

transcriptome level. By using the R parallel package, we speed up boot-

strap and other time-consuming computations. Users can choose to in-

clude sequence information in plots as well as save all analyses.

3. Conclusions

SEQualyzer provides insights into the quality of high-throughput

RNA structural data and helps identify high-quality components in

an interactive and efficient framework. Its outputs permit easy qual-

ity evaluation and identification of discordant replicates. Metrics

such as CQI can be used as a guideline for experiment design. Since

SEQualyzer is applicable to a range of assays, it will help bridge dif-

ferences in protocols and standardize how quality is assessed. As

new data formats and quality control standards emerge, SEQualyzer

can be readily extended to be even more comprehensive.
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