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Abstract

Objectives:  Manganese (Mn) is a known neurotoxicant, and given its health effects and ubiquitous 
nature in metal-working settings, identification of a valid and reproducible biomarker of Mn expo-
sure is of interest. Here, global metabolomics is utilized to determine metabolites that differ between 
groups defined by Mn exposure status, with the goal being to help inform a potential metabolite 
biomarker of Mn exposure. 
Methods:  Mn exposed subjects were recruited from a Mn steel foundry and Mn unexposed subjects 
were recruited from crane operators at a metal recycling facility. Over the course of a work day, each 
subject wore a personal inhalable dust sampler (IOM), and provided an end of shift urine sample that 
underwent global metabolomics profiling. Both exposed and unexposed subjects were divided into 
a training set and demographically similar validation set. Using a two-sided adjusted t-test, relative 
abundances of all metabolites found were compared between Mn exposed and unexposed training 
sets, and those with a false discovery rates (FDR) <0.1 were further tested in the validation sets.
Results:  Fifteen ions were found to be significantly different (FDR < 0.1) between the exposed and 
unexposed training sets, and nine of these ions remained significantly different between the exposed 
and unexposed validation set as well. When further dividing exposure status into ‘lower exposure’ and 
‘higher exposure’, several of these nine ions exhibited an apparent exposure–response relationship.
Conclusions: This is the first time that metabolomics has been used to distinguish between Mn 
exposure status in an occupational cohort, though additional work should be done to replicate these 
findings with a larger cohort. With metabolite identification by name, empirical formula, or pathway, 
a better understanding of the relationship between Mn exposure and neurotoxic effects could be elu-
cidated, and a potential metabolite biomarker of Mn exposure could be determined.
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Introduction

Manganese (Mn) is an established neurotoxicant asso-
ciated with deleterious cognitive (Mergler et al. 1994; 
Bouchard et al. 2007; Bowler et al. 2007) and motor 
(Roels et al. 1985; Roels et al. 1987; Lucchini et al. 
1999) health outcomes. Environmental Mn exposures, 
from traffic or industrial sources, have been shown 
to increase the prevalence of Parkinsonian disorders  
(Finkelstein and Jerrett 2007; Lucchini et al. 2007). 
The American Conference of Governmental Industrial 
Hygienists (ACGIH) has recommended an 8-hour time 
weighted average threshold limit value (TWA TLV) of 
100 µg/m3 for inhalable Mn based on neurological end-
points.

While Mn is ubiquitously found in ambient air, 
drinking water, and foods common to a Western diet, it 
is in occupational settings where chronic, elevated expo-
sures are most frequently found. Elevated exposures, 
encountered in either community or occupational set-
tings, make Mn a public health concern in need of fur-
ther investigation.

Given the negative health effects related to Mn expo-
sure, research has focused on finding both exposure and 
disease biomarkers for Mn and its related neurological 
disorders in readily available biofluids such as blood, 
plasma, and urine, or by using imaging techniques such 
as magnetic resonance imaging (MRI) or positron emis-
sion tomography (PET) scans (Apostoli, Lucchini, and 
Alessio 2000; Zheng et al. 2011; O’Neal and Zheng 
2015; Baker, Criswell, et al. 2015; Baker et al. 2016). 
However, a lack of understanding of the timing between 
exposure and uptake (Roth 2006; Baker et al. 2014), 
natural human variability in Mn (Järvisalo et al. 1992; 
Baker, Simpson, et al. 2015), and costs or contraindi-
cations associated with MRI or PET scans (e.g. metal 
chips in eyes) make many biomarkers of Mn exposure 
and effect impractical for use in a field or clinical setting. 
Thus, the critical barrier to identifying a reliable, repro-
ducible, and easily accessible biomarker of Mn exposure 
still remains largely unsolved. As such, there is a criti-
cal need in the fields of environmental health, neurology, 
toxicology, and public health to develop informative 
peripheral biomarkers of Mn exposure and its related 
diseases, and to better understand the underlying patho-
physiology of Mn neurotoxicity.

Global metabolomics is one promising approach to 
identifying a biomarker of Mn exposure. Metabolomics 
is the study of the small molecules (<1000 daltons) in 
biological systems, often important in metabolic function 
and signaling, or representing a fingerprint of a specific 
cellular process (Wishart 2010). Global metabolomics is 

typically an exploratory analysis method and is a means 
of hypothesis generation because selection of putative bio-
markers in biofluids using this approach is inherently sta-
tistical, based on comparisons between thousands of ions. 
Therefore, the false positives in the analysis represent ions 
that are statistically significant but are not related to the 
exposure in question. Results from metabolomics stud-
ies tend to have limited utility unless the selected putative 
ions can be replicated in an independent sample and the 
chemical nature and biological role of the ions identified 
(Broadhurst and Kell 2006).

Typically, global metabolomics has been used to 
identify biomarkers or physiological alterations related 
to health effects, such as for neurologic diseases (Ibáñez 
et al. 2012; Hassan-Smith et al. 2012; Sato et al. 2012; 
Zhang, Sun, and Wang 2013), cancers (Zhang et al. 
2012; Wang, Zhang, and Sun 2013), and, of particular 
relevance to Mn, Parkinson’s Disease (Bogdanov et al. 
2008; Michell et al. 2008; Ahmed et al. 2009). While 
using metabolomics to distinguish between patients and 
controls is more common, using metabolomics to distin-
guish between exposed and non-exposed persons is a rel-
atively novel concept (especially in occupational settings) 
and is a key approach in exploring the exposome—the 
biological signatures of lifelong environmental expo-
sures within individual physiological histories (Wild 
2005). Walker et al. (2016) used a metabolome-wide 
association study (MWAS) framework to investigate 
metabolic changes in plasma related to trichloroethylene 
exposure in an occupationally exposed cohort, and were 
able to link measured exposure to internal dose and 
measured endogenous metabolites. However, the other 
few human metabolomics studies investigating biomark-
ers of exposure have looked only at dietary exposure 
to vitamins or minerals, not chemical exposures in an 
environmental or occupational setting (Astle et al. 2007; 
Johansson-Persson et al. 2013). Few studies have inves-
tigated metabolomics related to Mn exposure, and those 
that have analyzed biofluids or tissues collected from 
model organisms, not biofluids collected from humans 
exposed in an occupational setting (Dorman et al. 2008; 
Fordahl et al. 2012; Kumar et al. 2015; Neth et al. 
2015). Our study of occupational exposed workers is 
particularly important given the substantial limitations 
in available biomarkers of acute and chronic exposure to 
Mn. The objective of this work is to report on the use of 
a metabolomics analysis approach to investigate the dif-
ferences between occupational groups classified by Mn 
exposure status, which could in turn inform a biomarker 
of exposure to Mn. Work presented here represents a 
novel method for exposure assessment in environmental 
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and occupational health studies and the first time, to our 
knowledge, that metabolomics has been applied in an 
occupational setting to distinguish between exposed and 
unexposed workers.

Methods

During 1 week in October 2014, subjects were recruited 
from two Puget Sound worksites; Mn exposed subjects 
(n = 20) worked at a Mn foundry and Mn unexposed 
subjects worked as crane operators in a metal recycling 
facility (n = 17). Data were collected on worker demo-
graphics including age, race, and ethnicity. No exclu-
sions were made on the basis of race, ethnicity, or gender, 
though all enrolled subjects identified as male. For each 
enrolled subject at both worksites, a personal, full-shift, 
inhalable dust sample was collected using an Institute of 
Occupational Medicine (IOM, Edinburgh, UK) sampler, 
and a single spot urine sample was collected at the end of 
the same day. The study protocols were approved by the 
University of Washington Institutional Review Board.

To increase the validity of our findings, both the Mn 
exposed and unexposed groups were divided into a train-
ing set (n = 12 in the Mn exposed group, n = 10 in the Mn 
unexposed group) and a demographically similar valida-
tion set (n = 8 in the exposed group, n = 7 in the unex-
posed group). Urine samples were processed and analyzed 
without regard to exposure status. After metabolomics 
data extraction and preprocessing (as described below), 
statistical analysis of the training data set yielded puta-
tive ions related to Mn exposure and a separate analysis 
was performed to compare the relative abundance of the 
selected significant ions in the validation data set.

Mn exposure assessment
Personal full-shift inhalable dust sampling was con-
ducted at each location using IOM inhalable dust sam-
plers according to the UK Health and Safety Executive’s 
Methods for the Determination of Hazardous Substances 
14/4 (Mark and Vincent 1986; Health and Safety Execu-
tive 2014). The collected inhalable dust samples were 
analyzed at the University of Washington Environmental 
Health Laboratory for total Mn using inductively coupled 
plasma mass spectrometry and adjusted for field blanks 
handled in the same manner as the filters deployed in the 
field. Measured inhalable Mn concentration were normal-
ized to 8-hour time weighted average concentrations. For 
the 37 subjects enrolled, three subjects were missing IOM 
samples (one from the foundry, and two from the scrap 
metal recycling yard). Missingness was due to pump fail-
ure in the field and is believed to be completely at random.

To explore exposure–response relationships, subjects 
were divided into three categorical exposure levels based 
on job title and results from inhalable dust sampling: No 
Exposure (operators at the scrap metal recycling yard, 
n = 10 in the training set and n = 7 in the validation 
set), Lower Exposure (forklift operators, foundry help-
ers, and molders at the foundry, n = 7 in the training set 
and n = 3 in the validation set), and Higher Exposure 
(melters or pourers at the foundry, n = 5 in the training 
set and n = 5 in the validation set).

Urine preparation and metabolomics analysis
After collection in the field, urine samples were immedi-
ately stored on dry ice for transport to a −80°C freezer 
at the University of Washington. All samples were frozen 
upon arrival to University of Washington and remained 
frozen in the −80°C freezer until being thawed on wet 
ice for sample preparation. All urine samples were pre-
pared and analyzed on the same day, approximately 
1 month after collection in the field. The procedure is 
described in full in Tay-Sontheimer et al. (2014). In brief, 
200 µl urine was combined with 800 µl acetonitrile 
containing deuterated internal standards. After protein 
precipitation, samples were centrifuged and the superna-
tant was evaporated under nitrogen gas. Samples were 
reconstituted in methanol:water with 0.4% acetic acid, 
vortexed, centrifuged, and transferred to glass autosam-
pler vials. A pooled quality control sample was made 
from 10 randomly selected urine samples and prepared 
as described above. Samples were analyzed on an Agilent 
(Santa Clara, CA, USA) 1200 HPLC coupled to Agilent 
6520 Accurate Mass quadropole time-of-flight (Q-TOF) 
mass spectrometer, calibrated for accurate masses 
between m/z of 118 to 1700. A 3.5 μm, 2.1 × 30 mm 
Agilent Zorbax SB-C8 guard column and a 1.8 μm, 
2.1 × 50 mm Agilent Zorbax SB-Aq analytical column 
heated to 60°C were used. The mobile phase consisted 
of 0.2% acetic acid in water (A) and 0.2% acetic acid 
in methanol (B) with the gradient starting at 2% B and 
increasing to 98% B in 13 min, held at 98% B for 6 min, 
followed by re-equilibration to 2% B for 6.5 min at a 
flow rate of 0.6 ml/min.

Data were acquired over the 25 minute run in both 
electrospray ionization positive (ESI+) and negative 
(ESI−) modes to detect cations and anions, respectively.

Data preprocessing
Data from the quality control samples were assessed 
for signal stability and retention time shifting over the 
course of the run. Preprocessing of the raw data from the 
Q-TOF was done using the open-source package xcms in  
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R Studio, developed by the Scripps Center for Metabo-
lomics (Smith et al. 2006; Tautenhahn, Böttcher, and 
Neumann 2008). We used xcms for feature detection, 
retention time alignment, and recursive filling of missing 
peaks. The relative abundance of each ion was normal-
ized by dividing by the sum of the abundances of all ions 
detected. Signals were multiplied by 106 for convenience, 
were log10 transformed to better approximate Gaussian 
distributions, and are unitless. Features found in ESI+ 
and ESI− modes were combined, and further filtered into 
two data sets: the primary data set and the sensitivity 
analysis data set. When considering the percent of sam-
ples in which an ion was detected, 40 samples (37 subject 
and 3 pooled quality control samples) were included. The 
primary data set retained only those ions that were found 
in at least 50% of all samples (n = 20; P = 1736 ions), 
and the sensitivity data set retained those ions that were 
found in at least 25% of all samples (n = 10; P = 3380 
ions). After filtering, the primary data and sensitivity 
analysis data sets were each split into a training and a 
validation data set as described above.

Statistical analyses
Discovery of biomarkers of exposure
The primary data set, split into training and validation 
data sets, was used for the discovery of biomarkers of 
exposure. Using the training data, relative abundances of 
all ions were compared between Mn exposed and unex-
posed workers using a 2-sided t-test. P values were adjusted 
for multiple comparisons using the Benjamini–Hochberg 
method to control false discovery rates (FDR). Given the 
exploratory nature of these analyses and the desire to find 
identify a larger set of potential ions that could distinguish 
between groups defined by exposure, an FDR <0.1 was 
considered to be significant. Ions found to be significantly 
different between the exposed and unexposed workers in 
the training group were subsequently tested in the valida-
tion set. Since the number of statistical comparisons was 
more limited in the validation set (n = 15), the unadjusted 
P values are reported. For those ions in the 50% (primary) 
data set that were found to be significantly different in the 
training group and were also significantly different in the 
validation group, the exposure–response relationship was 
explored categorically by comparing relative abundances 
in the three categories of exposure: No Exposure, Lower 
Exposure, and Higher Exposure.

Sensitivity analysis
The biomarker discovery process was repeated in the sen-
sitivity data set with a 25% filtering step (i.e., less strin-
gent) to see how changing the filtering criteria affected the 
number of ions found to be different between Mn exposed 

and Mn unexposed subjects. For the sensitivity analysis 
an FDR<0.05 and <0.01 in addition to an FDR <0.1 was 
considered to be the threshold for significance, to see how 
changing this criteria affected the number of ions found to 
be different between Mn exposed and unexposed subjects.

Results

Subject demographics for the Mn exposed and unex-
posed workers, stratified by training and validation 
sets, are presented in Table 1. Unexposed workers were 
slightly older than the exposed workers. The majority of 
exposed and unexposed workers self-identified as White, 
though there were more Hispanic workers in the Mn 
exposed group than the unexposed group. The unex-
posed workers were nearly equally divided between first 
and second shift, whereas the exposed workers were pre-
dominantly first shift workers. No Mn unexposed work-
ers wore a respirator, but 12 (60%) of the Mn exposed 
workers self-reported to have worn an N95 dust mask 
for part or all of the workday. However, the foundry 
does not have a formal respiratory protection program, 
and overall respiratory hygiene at the site was observed 
to be poor. Thus, their use is unlikely to have a substan-
tial effect on their received Mn dose.

Results from personal inhalable dust monitoring are 
presented as box plots in Figure 1, with the training and 
validation sets combined, stratified into the three catego-
ries of exposure. The mean Mn exposure in the Lower 
Exposure group (n = 10) was 192.0 µg/m3 (standard 
deviation [SD]: 98.3, range: 98.5 to 374.3) and the mean 
Mn exposure in the Higher Exposure group (n = 10) was 
520.7 µg/m3 (SD: 339.0, range: 180.4 to 1243.3). One 
worker in the No Exposure group had an inhalable dust 
measurement (150.8 µg/m3) that was substantially higher 
than the other workers in the No Exposure group. It is 
believed this is due to operating a vehicle with windows 
down near an area where welding was occurring, per 
worker report. However, this substantially higher expo-
sure could have been due to another exposure source at 
the scrap yard that was not accounted for. Eighteen of the 
34 inhalable Mn samples (53%) exceeded the ACGIH 
recommended TWA TLV of 100 µg/m3; all of which were 
collected at the foundry.

Following metabolomics analysis of the urine sam-
ples, a total of 1736 ions were found in the primary data 
set (ions found in at least 50% of the samples). Nineteen 
ions were found to be significantly different between the 
Mn exposed and unexposed groups. However, in three 
instances, it was believed multiple isotopologues or 
fragments of another significant ion were classified as 
being significantly different between Mn exposed and  
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Table 1.  Subject demographics by Mn exposure status.

Mn exposed workers Mn unexposed workers

All (n = 20) Training 
(n=12)

Validation 
(n=8)

All (n=17) Training 
(n=10)

Validation 
(n=7)

mean ± SD 
(range)

mean ± SD 
(range)

mean ± SD 
(range)

mean ± SD 
(range)

mean ± SD 
(range)

mean ± SD 
(range)

Age 41.9 ± 12.8 

(21, 66)

41.8 ± 12.6 

(21, 62)

42.1 ± 12.6 

(29, 66)

48.1 ± 11.3 

(27, 60)

48.3 ± 10.8 

(31, 60)

47.7 ± 10.8 

(27, 60)

Ethnicity n (%) n (%) n (%) n (%) n (%) n (%)

  Hispanic 12 (60.0) 7 (58.3) 5 (62.5) 4 (23.5) 3 (30.0) 1 (14.3)

  Not Hispanic 8 (40.0) 5 (41.7) 3 (37.5) 13 (76.5) 7 (70.0) 6 (85.7)

Race n (%) n (%) n (%) n (%) n (%) n (%)

  White 15 (75.0) 9 (75.0) 6 (75.0) 15 (88.2) 9 (90.0) 6 (85.7)

  Other 5 (25.0) 3 (25.0) 2 (25.0) 2 (11.8)  1 (10.0) 1 (14.3)

Respirator n (%) n (%) n (%) n (%) n (%) n (%)

  Yes 12 (60) 7 (58.3) 5 (62.5) 0 (0) 0 (0) 0 (0)

  No 8 (40) 5 (41.7) 3 (37.5) 17 (100) 10 (100) 7 (100)

Shift n (%) n (%) n (%) n (%) n (%) n (%)

  First 17 (85.0) 10 (83.3) 7 (87.5) 9 (52.9) 5 (50.0) 4 (57.1)

  Second 3 (15.0) 2 (16.7) 1 (12.5) 8 (47.1) 5 (50.0) 3 (42.7)

For each exposure group, the middle line that divides the box into two 
parts represents the median value while the top and bottom line of 
the box represent the 75th and 25th percentiles, respectively. The box 
represents the interquartile range (IQR) of scores for the group. The 
whiskers are extended to all values that are no >1.5 × IQR from the 
edge of the box. 

Figure 1.  Manganese exposure assessment by Mn exposure group (in µg/m3). 
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unexposed groups. For these instances, only the ion with 
the largest relative abundance was retained and reported 
herein. Thus, a total of 15 unique ions were found to be 
significantly different between the Mn exposed and unex-
posed groups (Table 2). Nine of the 15 ions were repli-
cated in the validation set.

The exposure was stratified into three exposure cat-
egories (No Exposure, Lower Exposure, and Higher 
Exposure) to visualize possible exposure-response rela-
tionships. The box plots in Figure 2 illustrate the dis-
tribution of the abundance of these nine ions in the 
three exposure groups. Online Supplement 1 details the 
relative abundance of each of the ions stratified by the 
three exposure groups. Of the nine ions that replicated 
in the validation set, the abundance of all but one were 
increased in the exposed group, and were generally com-
parable in the training and validation sets. The ion with 
m/z 415.22 and retention time 8.95 minutes was the 
only ion of the nine to exhibit a lower abundance in the 
exposed group than in the unexposed group. Many of 
the ions exhibited an apparent exposure–response rela-
tionship across the three categorical exposure groups.

To determine whether the filtering criteria affected 
the number of ions found to be different between Mn 
exposed and Mn unexposed subjects, we compared our 

original results from the primary data (filtering criteria 
of ions found in at least 50% of the samples) to the ions 
identified in the sensitivity data (filtering criteria of ions 
found in at least 25% of the samples). Table 3 shows the 
results of the sensitivity analyses when less stringent fil-
tering criteria were used (50% vs. 25% for the primary 
and sensitivity data sets, respectively) and when con-
sidering an FDR threshold of 0.01 and 0.05 as well as 
0.1. As 0.1 was chosen a priori for the primary analysis, 
we wished to explore if more stringent FDR would also 
produce ions of interest. Using the sensitivity data set, 
the relative abundances of 22 unique ions were found to 
differ significantly between Mn exposed and unexposed 
workers in the training set when using a FDR <0.1, and 
11 of these ions remained significantly different between 
the exposed and unexposed workers in the validation 
set. When considering an FDR threshold of 0.05, 12 
ions were found to be different between the exposed and 
unexposed in the 25% data set and eight were found to 
be different in the 50% data set. In the 25% data set 
eight ions remained significant at the 0.05 level in the 
validation set, while seven remained significant in the 
50% data set. Considering an even more stringent FDR 
of 0.01, eight ions were found to be different between 
the exposed and unexposed in the 25% data set and four 

Table 2.  Relative abundance of ions found to be significantly different (FDR < 0.1) between Mn exposed and unexposed 
subjects in the training group.

m/z Retention 
time  

(mins)

Mn unexposed (n = 10) Mn exposed (n = 12) FDR 
traininga

P value 
validationb

Mode Mean ± SD CV (%) %  
Detected

Mean ± SD CV (%) %  
Detected

201.02c 3.56 ESI− 2.05 ± 0.51 24.9 70 3.56 ± 0.40 12.4 100 <0.01 <0.01

297.10c 3.98 ESI− 1.78 ± 0.29 16.3 10 3.23 ± 0.42 13.0 92 <0.01 <0.01

553.24 4.03 ESI− 0.76 ± 0.27 35.5 0 1.94 ± 0.58 29.9 75 <0.01 <0.01

160.08 4.21 ESI− 1.49 ± 0.36 24.2 40 2.14 ± 0.34 15.9 92 0.04 0.14

205.07 4.21 ESI− 1.78 ± 0.42 23.6 80 2.46 ± 0.35 14.2 92 0.08 0.13

246.01 4.68 ESI− 0.41 ± 0.76 185.4 0 1.99 ± 0.31 15.6 83 0.01 0.03

311.12 5.18 ESI− 1.45 ± 0.30 20.7 10 2.34 ± 0.34 14.5 92 <0.01 <0.01

415.22 8.95 ESI− 1.58 ± 0.16 10.1 20 2.04 ± 0.30 14.7 75 0.03 0.08

321.10 4.01 ESI+ 1.72 ± 0.26 15.1 0 2.47 ± 0.36 14.6 83 0.03 <0.01

229.07 4.20 ESI+ 1.59 ± 0.27 17.0 10 2.07 ± 0.26 12.6 67 0.08 0.40

177.11c 4.71 ESI+ 1.84 ± 0.37 20.1 30 2.46 ± 0.25 10.2 92 0.08 <0.01

354.23 4.95 ESI+ 2.17 ± 0.27 12.4 50 2.62 ± 0.21 8.0 83 0.08 0.20

311.15 6.83 ESI+ 2.42 ± 0.22 9.1 80 1.97 ± 0.30 15.2 17 0.10 0.16

403.23 7.72 ESI+ 2.04 ± 0.18 8.8 60 1.69 ± 0.19 11.2 17 0.08 0.65

459.22 7.78 ESI+ 2.84 ± 0.21 7.4 100 2.41 ± 0.24 10.0 58 0.08 0.08

CV: coefficient of variation; m/z: mass to charge ratio.
aBenjamini–Hochberg corrected P value between Mn unexposed (n = 10) and Mn exposed (n = 12 f) subjects in training group.
bTwo-sided t-test between exposed (n = 8) and unexposed (n = 7) in validation groups.
cHad known isotopologues or fragments that were also found in the training group with FDR < 0.1.
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were found to be different in the 50% data set. In the 
25% data set six ions remained significant at the 0.01 
level in the validation set while four remained significant 
in the 50% data set. One additional ion had a P value of 
<0.01 in the validation set, but had an FDR >0.01 (but 
<0.05) in the training set. All ions found to be significant 
in the primary data set were also found to be significant 
in the sensitivity data set.

Discussion

We found nine ions to be significantly different in the train-
ing and validation sets between groups defined by Mn 
exposure status (Table 3). An apparent exposure–response 
relationship emerged for most of the ions when looking 
at the relative abundances of these nine ions across three 
exposure groups, though no formal test of trend was done 

Figure 2.  Box plots of exposure–response relationships for ions identified as different between no Mn exposure, lower Mn expo-
sure, and higher Mn exposure, in both training and validation sets. 
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for the three groups. Despite the relatively modest number 
of workers participating in this study, these ions may in fact 
distinguish between groups defined by Mn exposure status 
in this occupational cohort and also provides evidence that 
metabolomics can be used as a method of exposure assess-
ment (or in tandem with traditional exposure assessment 
techniques) in occupational settings. Exposure assessment 
using metabolomics methods is a novel and burgeon-
ing field, with many as-yet unexplored applications for 
highly original and multidisciplinary environmental and 
occupational health research. The findings presented here 
represent an essential first step in the development and vali-
dation of a biomarker of Mn exposure using global metab-
olomics techniques.

Notably, work presented here does not include identi-
fication (by name or empirical formula) of any of the ions 
which we found to be significantly different between the 
Mn exposed and unexposed workers. Analytical work 
to determine the identities of these seven ions through 
fragmentation, isolation, and additional mass spectrom-
etry and nuclear magnetic resonance methods is ongoing. 
However, as detailed by others, identification of unknown 
ions is a major bottleneck in metabolomics research. 
Knowing the chemical structure or formula of these prom-
ising ions would help to inform the biochemical pathways 
influenced by Mn exposure and allow us to better eluci-
date the relationship between exposure and health effect.

A challenge to using metabolomics methods for 
exposure assessment in occupational cohorts is that any 
metabolites believed to distinguish between Mn exposure 
status could be non-specific to Mn exposure. Instead, these 
metabolites could represent unmeasured confounders that 
differentiate the two groups, including other workplace 

exposures. In human cohorts, it is extremely challeng-
ing to comprehensively assess all confounding exposures 
that would be present in an occupational setting. While 
many of these workplace exposures (e.g. iron, chromium, 
nickel) would likely be correlated with Mn exposure, oth-
ers may be related to specific industrial processes or base 
metals and not correlated with Mn exposure. It is always 
a limitation with metabolomics studies that ions found 
to differentiate between groups could actually relate to 
unmeasured confounders as opposed to the exposure in 
question. However, including separate training and valida-
tion groups minimizes the identification of false positive 
signals. We found nine ions to be different between groups 
defined by exposure in the training data set that were rep-
licated in the validation data set. Additional studies in Mn 
exposed individuals and appropriate controls should be 
conducted to verify these results.

Additionally, the workplace is only one of many 
micro-environments in which these workers spend an 
appreciable amount of time, and while all such micro-
environments have historically been thought of separately 
(including in this manuscript), it is the interaction of work 
and non-work factors that together contribute to over-
all human health (Schulte and Vainio 2010; Schulte et al. 
2012). Despite classifying persons into groups defined by 
exposure or disease for metabolomics studies, at its very 
nature metabolomics is a reflection of exposures sustained 
in all micro-environments, and through multiple routes 
of exposure. While this can make it more challenging to 
investigate a single exposure, it does make metabolomics a 
powerful tool for exploring the human exposome, assum-
ing that a life history of exposures can be assessed in a rig-
orous way.

Table 3.  Sensitivity analysis.

Primary data set  
(50% filtering)

Sensitivity data set  
(25% filtering)

Overlapping  
ions

Total ions 1736 3380 —

FDR < 0.1

  n ions found in training set 15 22 15

  n ions found in validation set 9 11 9

FDR < 0.05

  n ions found in training set 8 12 8

  n ions found in validation set 7a 8 7a

FDR < 0.01

  n ions found in training set 4 8 4

  n ions found in validation set 6b 6 6b

aIon m/z 177.11 RT 4.71 had an FDR <0.05 in the validation set, but had an FDR of 0.08 in the training set.
bIons m/z 177.11 RT 4.71 and m/z 321.10 RT 4.01 had FDR<0.01 in the validation set, but had FDRs of 0.08 and 0.03, respectively, in the training set.
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Despite these inherent limitations and considerations, 
the novelty of the work presented here should not be mini-
mized. As limits on occupational exposures are becoming 
increasingly stringent and chronic diseases are being linked 
to low-level exposures, a new set of exposure assess-
ment tools is necessary to assess how subtle biochemical 
changes in workers influence their health. Indeed, for an 
exposure such as Mn, it is likely that the majority of expo-
sure would be sustained in a work environment relative 
to exposures through dietary or ambient sources, making 
the workplace a logical setting for investigation of Mn. 
Research presented here shows that metabolomics is one 
tool that can be used to find subtle biochemical differences 
between groups classified by exposure, and would have 
increased utility in well-characterized prospective longi-
tudinal cohort studies with repeat measures as suggested 
by Wild, where both work and non-work exposures can 
be simultaneously assessed, and the contribution of each 
micro-environment characterized (Wild 2005).

In conclusion, this research presents the first time, to 
our knowledge, that metabolomics methods have been 
used in an occupational setting to investigate biochemi-
cal differences between Mn exposed and unexposed 
workers. We hope that, with identification of all or some 
of these seven promising ions and subsequent interpreta-
tion of their biological relevance, a greater understand-
ing of the mechanisms behind manganese’s neurotoxic 
effects. Additionally, we hope that work presented here 
can be used by others to expand the use of metabolo-
mics-based analyses in occupational exposure assess-
ment. Doing so will inform the use of metabolomics in 
exposome studies looking to integrate work and non-
work factors in interpreting human exposure and health.

Supplementary Data

Supplementary data are available at Annals of Work 
Exposures and Health online.
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