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Abstract.—Detecting variation in the evolutionary process along chromosomes is increasingly important as whole-genome
data become more widely available. For example, factors such as incomplete lineage sorting, horizontal gene transfer, and
chromosomal inversion are expected to result in changes in the underlying gene trees along a chromosome, while changes
in selective pressure and mutational rates for different genomic regions may lead to shifts in the underlying mutational
process. We propose the split score as a general method for quantifying support for a particular phylogenetic relationship
within a genomic data set. Because the split score is based on algebraic properties of a matrix of site pattern frequencies,
it can be rapidly computed, even for data sets that are large in the number of taxa and/or in the length of the alignment,
providing an advantage over other methods (e.g., maximum likelihood) that are often used to assess such support. Using
simulation, we explore the properties of the split score, including its dependence on sequence length, branch length, size of
a split and its ability to detect true splits in the underlying tree. Using a sliding window analysis, we show that split scores
can be used to detect changes in the underlying evolutionary process for genome-scale data from primates, mosquitoes,
and viruses in a computationally efficient manner. Computation of the split score has been implemented in the software
package SplitSup. [General Markov model, genome-scale data analysis, matrix flattenings, phylogenetic trees, singular value
decomposition, split scores.]

Building on recent mathematical progress in
understanding phylogenetic models from an algebraic
perspective, we develop here a new tool for empirical
analysis, the split score. This score allows one to compare
support in a sequence alignment for different possible
splits (i.e., bipartitions of taxa, corresponding to
putative edges in trees). Through a “sliding window”
analysis, we demonstrate how this can be used to
investigate a variety of biologically interesting changes
in evolutionary processes along the genome, such as
differing evolutionary trees, inversions, and changes in
selective constraints.

Although similar analyses have been performed using
full maximum likelihood inference of trees (Hobolth
et al. 2007; Boussau et al. 2009), the split score offers
several advantages over previous methods: (i) it focuses
directly and solely on a split, and not on the split as
inferred with a full tree and model parameters, (ii) it is
theoretically justified for models of sequence evolution
beyond those routinely assumed, in particular requiring
neither a stationary distribution, nor homogeneity of
the substitution process over the tree, and (iii) its
computation is extremely fast, even for a large number
of taxa, making it a viable tool for exploratory analyses.
While some caution is necessary in interpreting and
comparing split scores, our empirical examples show
they can provide biological insight.

The thread of ideas we build on to develop the
split score is perhaps not widely known to empiricists,
though the field of phylogenetics has benefitted in
numerous ways from the application of ideas from
algebra and geometry. One of the earliest algebraically
based methods for inferring an evolutionary tree was
“evolutionary parsimony,” put forth by Lake (1987),

in which simple weighted sums of estimated site
pattern probabilities were used to infer phylogenetic
relationships. Viewing these sums as linear (i.e., first-
degree) polynomials, they are an instance of phylogenetic
invariants—polynomials whose values should be zero
when evaluated at the site pattern probabilities for a
particular tree and substitution model. Independently,
Cavender and Felsenstein (1987) proposed higher degree
polynomial invariants as a tool for inference, but their
detailed work was with a two-state model, and not
developed for practical application.

Following these initial works, the ideas were extended
in various ways (Cavender 1989; Fu and Li 1992; Evans
and Speed 1993; Steel et al. 1993; Fu 1995; Hendy
and Penny 1996; Allman and Rhodes 2003). However,
the use of invariants in empirical phylogenetic studies
was rare. Simulations showed Lake’s linear invariants
needed significantly longer data sequences to produce
accurate estimates than traditional methods such as
maximum likelihood (Hillis et al. 1994; Huelsenbeck
1995), while understanding of higher degree invariants
was still insufficient for their practical use. Despite this
unpromising start, it is interesting to note that similar
invariant methods are currently the basis of widely
used analysis tools, though this connection is rarely
mentioned in the current literature. For example, the
ABBA–BABA test (Durand et al. 2011), used to detect
introgression and hybrid speciation in empirical data,
is based on the difference in the empirical frequencies of
two types of site patterns among four taxa (ABBA-like
patterns and BABA-like patterns).

Indeed, the use of an algebraic framework for
phylogenetic inference and theory advancement gained
traction only after mathematical understanding of
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higher degree polynomial relationships in site pattern
probabilities was further developed. Using ideas
primarily from algebraic geometry, large classes of
informative phylogenetic invariants for a variety of
models were identified and characterized. Often these
nonlinear invariants can be linked to local features in a
tree, such as a vertex or edge (Sturmfels and Sullivant
2005; Allman and Rhodes 2008; Rhodes and Sullivant
2012).

Such advances led to the development of
arrangements of the probability distribution of
site patterns on large trees into arrays of reduced
dimensions, by “flattening” the distribution according
to edges or nodes within a phylogenetic tree. For
example, an edge flattening is a matrix whose rows
correspond to possible site patterns for the taxa on one
side of the edge, and columns to possible site patterns
on the other. An entry of the matrix is the probability
of observing the amalgamated site pattern for its row
and column. Flattenings were first presented broadly
to the research community in the 2004 arXiv preprint
of Allman and Rhodes (2008), to understand the ideal
of all invariants for the general Markov (GM) model on
trees.

Importantly, the study of algebraic characteristics of
such flattenings led to the development both of methods
for establishing identifiability of gene tree topologies
and associated parameters, and to the development of
algorithms for inferring the tree. For example, rank
conditions on matrix flattenings were used by Allman
and Rhodes (2006) to identify tree topologies for k-class
mixtures (k =1,2,3) of GM models and independently
by Eriksson (2005) for the nonmixture GM model. The
latter work also made the first use of the singular value
decomposition (SVD) of matrix edge flattenings, as a
tool for measuring approximate matrix rank, to develop
an invariant-based algorithm for tree construction.
Although performance of that early algorithm was
disappointing, several recent works have explored the
use of the SVD of flattenings for tree inference in
ways that appear much more promising (Casanellas and
Fernandez-Sanchez 2007; 2015).

These algebraically-motivated ideas have also been
applied to the multi-locus setting, in which estimation
of a species trees under the coalescent model is
the goal. Again using the ideas of flattenings and
rank approximations, Chifman and Kubatko (2015)
derived invariants for the 4-taxon species trees under
the coalescent model based on the site pattern
probability distribution, leading to both establishment
of identifiability of the species tree, and an inference
method called SVDQuartets (Chifman and Kubatko
2014) that is implemented in PAUP* (Swofford 2016).
Other work in this area includes invariant-based
methods of establishing identifiability of the species tree
from collections of gene tree topologies (Allman et al.
2011a) or from clade probabilities (Allman et al. 2011b).

Rather than consider inference of an entire phylogeny,
here we turn our attention to the use of tools arising
from an algebraic phylogenetic framework to learn

about various features of large-scale genomic data. In
particular, we consider the case of data arising from
a single gene phylogeny and show how a statistic
based on the SVD can be used to measure support for
particular phylogenetic relationships in that data. We
study the behavior of this statistic using simulated data
to demonstrate the impact of factors such as the length
of the gene, the branch lengths in the true underlying
gene tree, and the substitution model.

We then demonstrate how our statistic can be
applied to whole-genome data to extract features of
the underlying evolutionary model, both with regard to
the tree structure and with regard to the substitution
process, by applying our method to three empirical
data sets. The first is the data of Patterson et al.
(2006), which consists of whole-genome data for five
primate species. These data demonstrate the ability of
our method to detect the gene-level variability predicted
by the coalescent process. The second example uses
whole-genome data for a species complex of Anopheles
gambiae mosquitoes from Fontaine et al. (2015), for which
our method is able to detect the region of a known
chromosomal inversion. Finally, we apply our method
to genome-scale data from 29 whole-genomes of Cassava
Brown Streak Virus and Ugandan Cassava Brown Streak
Virus, demonstrating that the method captures variation
in the substitution process from gene to gene across the
viral genome. These examples highlight that a major
advantage of our method is the rapid computation time,
with an entire chromosome being analyzed in a matter
of minutes.

We begin by providing the mathematical theory
underlying our proposed method. Readers interested
primarily in the application of the methodology can skip
to the “Methods” section of the article, where we present
our statistic and describe how it can be used to analyze
large-scale empirical data.

THEORETICAL BACKGROUND

Basic Theory
The GM model of evolution of DNA sequences on trees

underlies the theoretical development of our statistic, the
split score. This model assumes an arbitrary probability
distribution, π= (�A,�G,�C,�T), describing bases at the
root of the tree. In addition, to each edge, e, of the tree
(directed away from the root) is associated with a 4×4
matrix, Me, of conditional probabilities of the various
base substitutions. No special relationships between
the matrices associated to different edges is assumed;
in particular, the GM model does not assume time-
reversibility of the substitution process, a stationary base
distribution, homogeneity of the substitution processes
across the edges of the tree, or even the existence of
an underlying homogeneous continuous-time process
on any edge. This model thus encompasses, but is
more general than, the general time-reversible (GTR)
model and its submodels which are commonly used
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in current data analysis. However, it lacks the across-
site rate variation features that are also often combined
with the GTR model in the form of invariant sites and
�-distributed scaling factors (e.g., GTR+I+�).

The GM model implies that certain conditional
independence statements hold for the joint distribution of
bases at the leaves of the tree. These express the fact
that the base substitutions that occur in a clade on a
rooted tree are not affected by those occurring outside
the clade, except through the sequences at the clade’s
most recent common ancestor. To be more precise, pick
any edge e of the unrooted tree and let v be one of its
end nodes. Deleting e from the tree breaks it into two
parts, and induces a partition of the taxa X into disjoint
sets X1 and X2, the split X1|X2 associated to e. Then
the joint distribution of bases at the leaves of the tree
can be organized as a 4|X1|×4|X2| matrix Fe, with rows
indexed by patterns of bases for X1, and columns by
patterns of bases for X2. This is the edge flattening of the
joint distribution along e. The conditional independence
statement above is then formulated mathematically as
the fact that Fe has a factorization

Fe =MT
1 DM2

where D is a 4×4 diagonal matrix with entries giving the
base distribution at v, and the Mi are 4×4|Xi| stochastic
matrices giving probabilities of the bases at the taxa in
Xi conditioned on the bases at v. As a consequence of the
matrix factorization, the rank of the matrix Fe will be at
most 4.

One can as well consider any split X1|X2 of the taxa,
whether associated to an edge or not, and then construct
a split flattening F of the joint distribution according to
it. If the split does not arise from an edge of the tree,
then F does not have the simple structure above. Under
very mild and plausible assumptions on the nature of the
model parameters, this implies the rank of the matrix F is
larger than 4 (Eriksson 2005; Allman and Rhodes 2006).

The central idea of our method is to view an
empirical distribution of bases in data sequences as an
approximation of the true distribution, and then use a
measure of how close a split flattening of this empirical
distribution is to a matrix of rank 4 as an indication of
whether the split is supported or not. If we have exact
distributions arising from the GM model, our measure
will be zero for splits displayed on the tree, and positive
for splits not displayed.

Rank 4 Matrix Approximations, the SVD, and Split Scores
One way of measuring the size of a matrix uses the

Frobenius norm; if M= (mij), then

‖M‖=‖M‖F=
⎛
⎝∑

i,j

m2
ij

⎞
⎠

1/2

.

The associated distance between two matrices F and G
is then ‖F−G‖. Adopting these measures means there

is a good tool to determine the closest rank-4 matrix to
a given matrix, using the SVD and software developed
for computing it.

The SVD of an m×n real matrix F is a factorization

F=U�VT,

where U and V are m×m and n×n orthogonal matrices,
and � is a m×n diagonal matrix with entries

�1 ≥�2 ≥···≥�min(m,n) ≥0,

the singular values of F. By the Eckart–Young Theorem
(Eckart and Young 1936), under the Frobenius norm the
closest rank-4 approximation to a matrix F is F̃=U�̃VT ,
where �̃ is obtained from � by zeroing out all but the
four largest singular values. Moreover, the Frobenius
distance between F and F̃ is

‖F−F̃‖=
⎛
⎝

min(m,n)∑
i=5

�2
i

⎞
⎠

1/2

.

As a measure of split support, then, we define the split
score

S(X1|X2)=S(F)=

⎛
⎜⎜⎜⎜⎜⎜⎝

min(m,n)∑

i=5

�2
i

min(m,n)∑

i=1

�2
i

⎞
⎟⎟⎟⎟⎟⎟⎠

1/2

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1−

4∑

i=1

�2
i

min(m,n)∑

i=1

�2
i

⎞
⎟⎟⎟⎟⎟⎟⎠

1/2

,

where F is the (X1|X2)-flattening of the empirical
distribution. The denominator is introduced so that
the result is independent of the scaling of F. Thus
the formula may be applied either to F, or to the
unnormalized matrix of counts leading to it. The split
score takes values in the interval from 0 to 1. A score
of 0 indicates F is a rank 4 matrix, and a positive score
indicates that it is not. Implicit in this theory is that split
scores are defined for “gapless” alignments. We exclude
any site at which one or more of the taxa has a gap, or
missing data of any kind.

To compute split scores, one must compute singular
values of potentially large matrices. Since the Frobenius
norm is related to the singular values by

‖F‖=
⎛
⎝

min(m,n)∑
i=1

�2
i

⎞
⎠

1/2

,

the formula above can also be written as

S(X1|X2)=S(F)=

⎛
⎜⎜⎜⎜⎜⎝

1−

4∑
i=1

�2
i

‖F‖2

⎞
⎟⎟⎟⎟⎟⎠

1/2

.

Using this formula, only the four largest singular
values are needed. This observation provides significant
computational advantage, as there are good algorithms
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for computing a specified number of the largest singular
values with significantly faster runtimes than if all are
needed.

If the number of taxa is large, and sequence lengths
are as typical in alignable sequences, any split flattening
F will be a large and sparse matrix, that is most
entries will be zero. Computation of singular values of
such matrices requires a sparse encoding of them in
software, and special packages for the SVD computation.
Fortunately, these are highly developed as the SVD has
many applications in scientific computing.

Although one might suppose that computations
would be slowed considerably by increasing the number
of taxa, thus exponentially increasing the size of the
flattening matrix, this is not the case. Since site patterns
appearing in finite-length sequence data tend to be those
more strongly reflecting the underlying tree, the sparsity
of the matrix tends to be patterned, with many zero
rows or columns which can be ignored. Even though
increasing sequence length does lead to more nonzero
entries in the matrix, this happens slowly due to the
very low probability of many site patterns. Finally,
the iterative routines used for computing singular
values converge most quickly to determine the few
largest values, which are precisely the ones we need.
Any detailed analysis of theoretical running time is
complicated by how the matrix sparsity and the size of
the singular values depend upon the phylogenetic model
parameters, number of taxa, and sequence length; still,
one should expect fast performance.

In practice, we have found that assembling the sparse
flattening matrix dominated the computation time, since
each sparse encoding requires a scan of all unique site
patterns in the alignment. Nonetheless, all the necessary
computations to produce split scores for reasonable size
data sets can be performed quickly enough that runtime
is of little concern. For instance, for simulated data on
a 100-taxon tree (not shown) with sequence length 1000
bp (respectively, 10,000 bp) computing all 97 scores for
splits displayed on the tree took 0.186 s (respectively,
8.68 s) on a MacBook Pro 3.1 GHz with 16 GB of memory.
Computation time was similar for scores of 97 random
splits of the same sizes. See also the “applications”
section, for an example of timing on empirical data.

Interpretation of Split Scores
When applied to an empirical joint distribution, a

low split score (close to 0) indicates support for that
split, and a higher score (close to 1) indicates lack of
support. However, a variety of factors, such as split size,
edge lengths, sequence length, and model fit affect the
interpretation of S(X1|X2). Some of these effects will
be illustrated through the simulations described below.
Here we focus attention on one theoretical principle
concerning the size of the split and its influence on the
score.

Some of the effects of the size of a split (the number of
taxa included in each of the two groups) on the split score

has a clear mathematical explanation. The space of m×n
matrices has dimension mn, while the subset of those
that have rank 4 or less forms an object of dimension
4(m+n)−16. (The simplest way to see this is to count
free parameters in the LU matrix factorization of an m×n
matrix of rank 4.)

Applied to F, for |X|=N, |Xi|=Ni, we have m=4N1 ,
n=4N2 , so

mn=4N, 4(m+n)−16=4(4N1 +4N−N1 )−16.

This last expression is easily seen to decrease as N1
goes from 1 to �N

2 �, where it has a minimum. That is,
the dimension of the set of matrices of rank at most 4
drops with the size of N1 until N1 =N2 if N is even,
or N1 =N2 −1 if N is odd. The smaller the dimension
of the set of rank 4 matrices is, the greater the distance
should be between this set and a random perturbation
of one of its elements. (To see this, imagine moving a
point in 3-space that lies on a line � contained in a plane
P a fixed distance in a random direction. The movement
typically leaves the point further from the line � than
from P , since more of the motion will be in a direction
within the plane than in the direction of the line.) Thus,
even for splits arising from the tree on which data
was simulated, we should expect larger split scores for
splits that are closer to balanced. Indeed, this geometric
understanding explains why the tree reconstruction
algorithm of Eriksson (2005) performs poorly in practice,
tending to create trees with a preponderance of cherries
and small clades. By comparing splits of different sizes,
splits with size N1 =2 or more generally N1 =k, where k
is small, are preferred and bias the reconstruction.

We note that this dimensional understanding can
be developed into a theoretical correction to the split
score which, at least asymptotically, can overcome
the dependence on split size. However, we found
this correction inadequate to substantially improve
comparability of the scores, so we do not present it here.

METHODS

As described above, our method involves computation
of a split score associated with a putative edge e of a
phylogenetic tree. If X denotes the set of taxon names,
then a split X1 |X2 of the taxa is a bipartition of X into
two disjoint sets X1, X2. When k =|X1|≤|X2| we call such
a split a k-split.

For a N-taxon unrooted binary tree T, there are 2N−3
true splits on T, corresponding to edges of T. Of these,
N are trivial splits (the 1-splits which appear on all
T), which we no longer consider. If T is the true tree
describing the evolutionary history of the taxa under
study, then all other splits are false splits, since they do
not correspond to edges in T.

Suppose now that e is a putative edge in the true
tree relating data sequences and that e corresponds to
the split X1 |X2. We can arrange the observed counts of
site patterns from the alignment of a single gene into a
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4|X1|×4|X2| matrix, called a flattening and denoted by Fe
as above, where the rows of Fe are indexed by possible
nucleotides for each of the taxa in X1 and the columns are
indexed by possible nucleotides for each of the taxa in X2.
We assess support for the specified edge as a true edge
in the underlying phylogenetic tree by measuring how
close the matrix Fe is to the nearest rank 4 matrix, based
on the theory described above. We measure closeness
using the split score

S(X1|X2)=

⎛
⎜⎜⎜⎜⎜⎝

1−

4∑
i=1

�̂2
i

‖F‖2

⎞
⎟⎟⎟⎟⎟⎠

1/2

(1)

where �̂i refers to the ith singular value obtained from Fe
and ‖F‖ is as defined above.

We have implemented the computation of split
scores in the program SplitSup written jointly by
the authors in the C programming language using the
publicly available SVDLIBC library. This code, available
at https://github.com/eallman/SplitSup/, reads an
alignment in PHYLIP format and returns either (i) a set of
scores corresponding to a list of user-provided splits; or
(ii) the values of a split score in a sliding-window across
the length of the alignment. For option (ii), the user
specifies the window size, the number of nucleotides
to move the window for the next computation, and
the minimum number of sites without gaps required to
compute scores in each window. The SVD computations
have been sped up significantly by using a binary
encoding of site patterns, and a sparse encoding of the
flattening matrices.

We next describe our methods for assessing the utility
of the split score using both simulated and empirical
data. Although all simulations described below were
carried out using the Jukes–Cantor model, we note
that similar results can be obtained under any of the
commonly used substitution models that are submodels
of the GTR model, or more generally any submodel of
the GM model. Indeed, this generality is one of the key
features of the split score.

Simulation Study 1
Our first simulations were designed to test that our

split score can detect true splits in the underlying tree,
under ideal circumstances. We also investigated how
the magnitude and spread of splits scores varies, and if
there are qualitative differences between true and false
splits. To accomplish this, we used SeqGen (Rambaut
and Grassly 1997) to generate a single data set under
the Jukes–Cantor model for the tree in Figure 1 with all
branch lengths set to 0.05. For each value k =2,3,...,10,
we computed the split score for each of the

(20
k
)

possible
splits and then generated histograms for the scores for
k-splits. The N−3 nontrivial true k-splits were marked
on the appropriate histograms.

t15
t7 t10

t20

t1 t14
t11
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t13
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t19
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t12

t4t4
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t8 t6
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t3
t13

t16
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t1 t14
t11

t15
t7 t10

e

FIGURE 1. 20-taxon tree used for simulations.

This enabled us to compare the score values for true
and false splits, understand the distribution of split
scores, and gain insight into the effect of split size on the
score; that is, how does proximity of an edge to the tips of
the tree or nearer the middle of the tree affect the score’s
value? To refine our understanding further, we classified
false splits by how “far” they were from a true split. For
example, if the true split of size 9 in a tree consisted of
X1 = {taxa 1–9} and X2 = {taxa 10–20}, then we say that
a split with X1 = {taxa 1–8, taxon 10} and X2 = {taxon 9,
taxa 11–20} is one swap away from a true split.

Simulation Study 2
Our next simulations were performed to explore the

effects of sequence length and branch length on the
distribution of scores. For the 20-taxon tree shown
in Figure 1, we used SeqGen to simulate 100 data
sets of varying sequence lengths (500 bp; 5,000 bp;
and 50,000 bp) with all branch lengths set to 0.05
under the Jukes–Cantor model. To test the effect of
tree diameter, we simulated 100 replicate data sets
of 500 bp under the Jukes–Cantor model with all
branch lengths set to 0.0125, 0.025 and 0.05. We then
compared empirical distributions of split scores for all
true splits.

To improve our understanding of the effect of metric
depth on the distribution of a particular split score, 100
replicate data sets of length 500 bp were next simulated
under the Jukes–Cantor model with various scalings.
Attention was focused on the 9-split induced by edge
e pictured in Figure 1. Scores for this true split were
computed on data simulated when all the branch lengths
were scaled by a fixed factor, every branch was scaled
except e, only edge e was scaled, and when all edges to
one side of the split were scaled by the factor. In short,
with either a subset or all of the branches rescaled, split
scores were compared.

http://github.com/eallman/SplitSup/
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A last simulation was a hybrid of the previous two.
Here we focused attention on a true 9-split and a true 2-
split in the tree, and carefully selected other bipartitions
of the 20 taxa that we considered “close” (one-swap or
two-swap) or “distant” (random). This made for a total
of seven splits (four 9-splits, three 2 splits), {t9, s9-1, s9-2,
s9-R, t2, s2-1, s2-R}, which we now describe.

The true 9-split, t9, is the one pictured in Figure 1.
By interchanging taxa 3 and 20 we obtain split s9-1 (for
nine split, one swap away from t9). By interchanging taxa
{1, 3} and taxa {10, 20}, we obtain split s9-2 (for nine
split, a two swap away from t9). Because the swaps here
interchange only a few “topologically close” taxa, these
false splits are expected to be difficult to distinguish
from true splits. The split s9-R (for Random nine split)
has taxa {2, 3, 6, 7, 14, 15, 16, 18, 19} on one side of the
bipartition, and should be easier to distinguish from a
true one.

The split t2 is the true 2-split grouping together taxa {1,
14}. The split s2-1 groups together taxa {1,11}, resulting
from a one-swap of “topologically close” taxa, and is
expected to be hard to distinguish as false. The split s2-R
groups taxa {1,8} together, and since these are far from
one another in the tree, it should be easier to distinguish
as false.

For the simulations, 100 replicate data sets were made
under the Jukes-Cantor model on the tree (Fig. 1) with
branch lengths set to 0.05, and sequence lengths of
500 bp, 5000 bp, and 50,000 bp. Additionally, fixing
the sequence length at 500 bp, 100 replicate data sets

were simulated when the branch lengths were set to
0.0125, 0.025, and 0.05. For each parameter setting and
each replicate, splits scores were computed for the seven
splits.

To test that the true split scores were the lowest,
or closest to the lowest, we computed the difference
between the scores of the false splits and the true
split (e.g., compute score(s9-1) – score(t9)). A positive
difference indicates that the true score is the smallest
and the magnitude of the difference reveals how close in
value are the scores of nearby and distant splits under a
variety of model settings.

Simulation Study 3
We evaluated our method on genome-scale data

using a sliding-window computation of split scores
for contiguous sections along the alignment. To test
this approach, we used Seq-gen and the Jukes–Cantor
model to simulate data for an alignment of total length
20,000 bp, by concatenating four chunks of 5000 bp
simulated on the 10-taxon model trees shown in Figure 2.
The first two trees are topologically identical, but the
branch lengths of 0.05 in tree 1 are doubled to a
value of 0.1 in tree 2. The second two trees are also
topologically identical with all branch lengths 0.05 and
0.1, respectively; however, these trees are topologically
distinct from trees 1 and 2 in that taxa 7 and 10 in tree 1
have been interchanged to obtain the topology of trees 3
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and 4. In particular, taxa {7, 8, 9} form a true 3-split in
trees 1 and 2, and taxa {8, 9, 10} form a true 3-split in
trees 3 and 4. The sliding window analysis computed
and compared scores for the 3-splits {7, 8, 9} and
{8, 9, 10} using a window of size 500 bp at at intervals
of 100 bp (slide offset size). This means the start sites for
each 500 bp window were 1, 101, 201, etc.

Application to Empirical Data
Our simulations demonstrate that the split score

can be used to detect both changes in topological
relationships and changes in the underlying evolu-
tionary process. We now demonstrate the utility of the
split score in practice by application to three empirical
data sets. Note first that alignments of empirical data
often have sites in which some sequences have gaps,
which are excluded for the computation of the split
score. If gapped sites are too numerous this can result
in little data being left to analyze, and split scores
can be misleading. It is therefore wise to require a
minimum number of nongapped sites to eliminate
spurious signals. We specify the minimum number of
sites required in each of analyses below.

Primate data.—We applied the sliding window method
to the data set of Patterson et al. (2006), which consists
of whole-genome data for human, chimp, gorilla,
orangutan, and macaque. (Data at http://genetics.med.
harvard.edu/reich/Reich_Lab/Datasets_-_Patterson_
2006.html) We considered the data for chromosome
7 (∼1.9 million bp), and applied our method with a
window size of 10,000 bp, a slide size of 1000 bp, and
required that at least 500 (=5%) nongap sites were
present in a window for a score to be computed. We
computed scores for the three possible splits of the taxa
human, chimp, gorilla, and orangutan. For each window
examined, we determined which of the three splits gave
the lowest split score, and we plotted the results using
different colors/shading to indicate which split each
region of the genome supported most strongly. The
primary process leading to variation in the genealogy
across a chromosome for these taxa is expected to be
the process of incomplete lineage sorting. Thus, we
expect that the majority of the data will support the
human–chimp/gorilla–orangutan split most strongly,
with approximately equal support for the other two
splits.

Mosquito data.—Fontaine et al. (2015) carried out a
phylogenomic analysis of whole genomes from the
An. gambiae species complex. (Data at http://dx.doi.
org/10.5061/dryad.tn47c.) We considered the analysis
of chromosome 2L, and utilized ∼37.5 million bp
alignment of a subset of this chromosome for four
species: An. gambiae, An. coluzzii, An. arabiensis, and
An. christyi (the out-group). As with the primate data,
we considered all three possible splits, and carried
out the sliding window analysis with a window size

of 10,000 bp, a slide size of 1,000 bp, and required
that at least 500 (=5%) nongap sites were present in
a window for a score to be computed. Fontaine et al.
(2015) found that gene flow between the ancestor of
the An. gambiae–An. coluzzii clade occurred with An.
arabiensis, revealing an interesting pattern in the region
of a known chromosomal inversion on chromosome 2L.
In particular, because both An. coluzzii and An. arabiensis
experienced the inversion, whereas An. gambiae did not,
the tree supporting a sister relationship between An.
coluzzii and An. arabiensis is expected to dominate in this
region, whereas An. gambiae and An. coluzzii are expected
to be sister taxa elsewhere along the chromosome. We
thus assess whether our analysis can detect the region of
this chromosomal inversion.

CBSV data.—Alicai et al. (2016) recently collected
complete viral genomes for 14 samples of Cassava
brown streak virus (CBSV) and 15 samples of Ugandan
cassava brown streak virus (UCBSV). The viral genomes
consist of 10 distinct genes, and we considered sequence
data for the entire genome (i.e., all 10 genes) for
all 29 individual samples (See Fig. 3 of Alicai et al.
(2016) for Genbank accession numbers.). The published
phylogenetic analysis based on these data indicate that
CBSV has an accelerated rate of evolution compared
to UCBSV, which matches field observations indicating
increased virulence for these strains. We applied our
method with a window size of 500 bp, a slide size of
100 bp, and required that at least 100 nongap sites were
present in a window for a score to be computed. We
considered the single split that partitioned the sequences
into CBSV versus UCBSV, and evaluated changes in the
score across the genome as an indicator of which genes
may be involved in the shift in evolutionary rate of CBSV.
This example highlights application of our method to a
data set of more than four taxa when gene boundaries
are known.

RESULTS

Simulation 1 Results
Identifying true splits.—Displayed in Figure 3 are split
scores distributions of all k-splits for k =2, 4, 6, 9.
(Histograms for other values of k are not shown but
fit the pattern seen here). The values of our scores for
true splits in the tree are shown with red dots. For all
k =2, 3,...,10, scores for true splits from the generating
tree are the smallest in the distributions. This shows that
even for simulated data of modest size (500 bp) the split
score picks out true splits in the tree.

Split scores distributions.—The histograms (Fig. 3) also
shed light on the distribution of split scores. Notably, as k
increases, the mean, which is shown in blue in Figure 3, of
the scores increases and the spread of the scores narrows.

As observed above, there are solid theoretical reasons
why the size k of a k-split should affect the range of score

http://genetics.med.harvard.edu/reich/Reich_Lab/Datasets_-_Patterson_2006.html
http://genetics.med.harvard.edu/reich/Reich_Lab/Datasets_-_Patterson_2006.html
http://genetics.med.harvard.edu/reich/Reich_Lab/Datasets_-_Patterson_2006.html
http://dx.doi.org/10.5061/dryad.tn47c
http://dx.doi.org/10.5061/dryad.tn47c
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FIGURE 3. The distributions of k-split scores for k =2,4,6,9 are shown. Scores were computed for all
(20

k

)
possible splits for a data set of 500

bp generated under the Jukes–Cantor model on the tree in Figure 1 with all branch lengths set to 0.05. These distributions are left-tailed, and the
mean increases and the standard deviation (SD) decreases as k increases. Behavior for other values of k is similar. The red dots show the scores
for the true k-splits in the tree, which are the smallest in the data. (There are no 6-splits in the tree.) The blue line segment marks the mean. The
x-axis is the same on all subplots, but the y-axis scales differ vastly because

(20
k

)
increases as k varies from 2 to 10. (See online for color.)

values for both true and false splits, with smaller k giving
rise to smaller scores. This phenomenon can be explained
in part by our algebraic–geometric understanding of the
dimension of the space of m×n matrices of rank 4 or
less that fundamentally underlies the development of
our methods.

Effect of split size.—In Table 1, the mean and standard
deviations (SDs) are displayed for all

(20
k
)

k-splits for a
single data set, emphasizing in numerical terms the effect
of k on the distributions. While one might naively expect
scores for all size splits to be comparable, there is a clear
pattern of larger scores when the split is closer to being
“balanced” with equal numbers of taxa on each side of
the edge. This prompts a caution to any practitioner:
scores for different split sizes should not be compared.

Effect of “closeness” to a true split.—The histogram in
Figure 4 displays scores for all possible 10-splits for
data simulated from the tree in Figure 1. The coloring
illuminates how scores are distributed for false splits

TABLE 1. Mean and SD of k-split scores

Split size mean SD

2 0.2487 0.0398
3 0.2997 0.0261
4 0.3276 0.0202
5 0.3459 0.0167
6 0.3585 0.0146
7 0.3672 0.0131
8 0.3730 0.0122
9 0.3762 0.0117

10 0.3773 0.0115

that differ from the true 10-split X1|X2 on the tree in
Figure 1 by swapping � taxa between the sets, for various
�. Observations are colored according to how many taxa
need to be swapped from a false split to produce the
single true 10-split. Note that splits that require only one
or two swaps tend to have lower scores, whereas those
requiring three or four swaps tend to have higher scores.
Splits requiring more than four swaps to obtain the true
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FIGURE 5. (a) Split scores associated to two edges on tree T (Fig. 1) from sequences of length 500, 5000, 50,000 bp simulated on T according to
the Jukes–Cantor model, with all edge lengths 0.05. Each boxplot represents scores for 100 data sets. This illustrates that split scores for true splits
decrease with sequence length. (b) The distribution of split scores for two true splits in three trees are shown. The three trees are topologically
identical (Fig. 1) with all branch lengths set to 0.0125, 0.025, 0.05, respectively. As tree diameter increases, so do the score values. This should be
expected since the amount of mutation present in data scales with tree diameter, and mutation obscures the rank 4 signal. (See online for color.)

split generally have higher scores. Thus, the magnitude
of a score gives an indication of how near that split is to
being a true split in the underlying tree.

Simulation 2 Results
Effect of sequence length.—Figure 5a shows split scores for
two edges of the metric tree displayed in Figure 1, where
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FIGURE 6. (a) Differences (false-split-score minus true-split-score) for true 9- and 2-splits associated to two edges of tree T of Figure 1, from
sequences of length 500, 5000, 50,000 bp simulated on T according to the Jukes–Cantor model, with all edge lengths 0.05. Each boxplot represents
differences for 100 replicates. See Simulation Study 2 methods for choices of false and true splits. In these simulations the differences were always
positive, illustrating that split scores for true splits are the smallest over a range of sequence lengths. (b) Boxplots illustrating the distribution
of the score differences as in (a), but with sequence length 500 bp and all branch lengths set to 0.0125, 0.025, 0.05. Across this range of branch
lengths, with a single exception (one simulation for s9-1 and length 0.0125), the true split score was always the smallest. (See online for color.)

each branch has length 0.05. Since the values of scores
depends on the size of a split (cf. theoretical discussion
and Simulation 1 results), boxplots are displayed for
two true splits of T. The first split is a 9-split and
corresponds to edge e in Figure 1. The second true split
is a 2-split. The scores are computed from simulations of
sequences of increasing length, and show that scores of
true splits decrease as the sequence length grows. This
behavior is expected, assuming good model fit, since as
the sequence length grows, the empirical distribution
more closely matches the theoretical one, and the score
for a true split should approach the theoretical value 0.

Shorter sequences produce empirical distributions that
are typically poorer approximations to the asymptotics
of the model.

Figure 6a shows boxplots for the difference of false and
true split scores (i.e., false-split-score minus true-split-
score) for 100 replicate data sets. Across all sequence
lengths (500 bp, 5000 bp, 50,000 bp), we see that the
difference is positive, indicating the true split score is
always the smallest, even when the false split differs
little from the true split. (This held for sequences as
short as 150 bp; results not shown.) Moreover, for all
lengths the magnitude of the score difference increases
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as the false splits deviate more from the true one. These
simulations illustrate the ability of the split score to
detect the deviation of a false split from a true split at
a broad range of sequence lengths.

Effect of tree diameter.—Figure 5b shows the distribution of
split scores for two true splits in three trees with identical
topologies. All the trees have the topology shown in
Figure 1, but branch lengths have been scaled by a
fixed factor, increasing the tree diameter. As might be
anticipated, the scores increase with tree diameter since
longer branch lengths produce more site substitutions,
diluting the signal that a flattening matrix is close to rank
4. (With extremely long branch lengths, as saturation is
reached, all scores will drop as the matrix rank goes to 1.)

Each cluster of boxplots in Figure 6b shows score
differences (false-split-score minus true-split-score) for
five false splits, with branch lengths varied across
simulations (0.0125, 0.025, 0.05). With a single exception
(for the false 9-split closest to true, s9-1, and shortest
branch lengths) the difference was positive, indicating
that the score of the true split was the smallest.
This indicates that the split score can distinguish
true splits from false splits over a range of branch
lengths.

Effect of metric depth in tree.—Figure 7 shows split scores
for a single edge e of three trees, all with the topology
shown in Figure 1, but with different branch lengths. The
metric structure of the trees differs by rescaling either
all or a subset of the edges (Fig. 7a,b,d), or by scaling
only edge e (Fig. 7c). In Figures 7a,b,d as the scaling
factor is increased, the metric depth of the split in the
tree (i.e, the average distance of the split from the leaves)
increases. These simulations show that the split score for
a true split increases with metric depth. This behavior is
not surprising, and is consistent with the tree diameter
scaling results of Figure 5b as the deeper an edge lies in
a tree, the more obscured evidence for it may be by base
substitutions nearer the leaves of the tree. In Figure 7c,
only the edge e is scaled, while the other branches all
have length 0.025. Since the metric depth of e is held
fixed, only small variation in the value of the score for
the split induced by edge e is observed.

Simulation 3 Results
Detecting changes in the evolutionary process.—The plot
displayed in Figure 8 shows that our score detects
multiple changes in the evolutionary process along the
genome. In particular, we see for the first 10,000 bp or
so that the true split {7–9} in the tree used to generate
this portion of the genome has a lower score than the
false split (i.e., the red triangle is lower than the black
dot). After 10,000 bp, the black dot has the smaller
value; here the score captures that the sequence data for
10,000–20,000 bp was generated on trees with the {8–10}
split.

Interestingly, our score detects not only changes in
tree topology but also changes in numerical parameters
of the evolutionary model. The genome sections
corresponding to the first and third quarters of the
sequence data (1–5,000 bp; 10,001–15,000 bp) were
generated with branch lengths set to 0.05, while the
second and fourth quarters of the data (5,001–10,000 bp;
15,001–20,000 bp) were generated on trees with branch
lengths 0.1. The scores for both splits are “small” for the
trees with small tree diameter, and “large” for the trees
with large branch lengths, consistent with the results in
Figure 5b.

Because our simulation and computations of scores
used a sliding window of length 500 bp, but the
sequence data was generated with an abrupt change
in evolutionary model at sites 5001, 10,001, and 15,001,
we see a gentle rise (or fall) in the values of the scores
around these transition points in our plot. This reflects
that a window of size 500 bp will contain a number
(400, 300, 200, 100) of sites generated from one tree,
and a number (100, 200, 300, 400) of sites generated
from a tree that differs in either topology or branch
lengths, when the sliding window overlaps a transition
site. This highlights that the selection of a window size
and slide size are important parameters for analyses of
this sort. Significantly, with properly chosen parameters,
Figure 8 supports the hypothesis that our score can detect
rough boundaries that signify shifts in the underlying
evolutionary process.

Applications to Empirical Data
Primate data.—Figure 9 shows the results of the analysis
of chromosome 7 for the four primate taxa. At each
location along chromosome 7, a red vertical line indicates
that the lowest score for that window corresponds to
the split that contains the human–chimp clade, a green
vertical line indicates that the lowest score corresponds
to the split that contains the chimp–gorilla clade, and
a blue vertical line indicates that the lowest score
corresponds to the split that contains the human–
gorilla clade. In this example, we expect to see variation
along the chromosome as predicted by the coalescent
model. In particular, because the human–chimp clade is
well established as the true phylogenetic relationship,
we expect the majority of the locations along the
chromosome to show this relationship with the two other
relationships arising with the same, lower frequency, as
is easily observed from the figure.

Mosquito data.—Figure 10 shows the results of analyzing
chromosome 2L for the four mosquito species. The plot
is organized as described for the primate data, with
the red vertical lines corresponding to the split that
contains the An. gambiae–An. coluzzii clade, the blue
vertical lines corresponding to the split that contains
the An. gambiae–An. arabiensis clade, and the green
vertical lines corresponding to the split that contains
the An. coluzzii–An. arabiensis clade. The most striking
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FIGURE 7. Split scores associated to a single edge e in the tree from Figure 1 computed from 500 bp sequences simulated according to the
Jukes–Cantor model. The base tree in Figure 1 has all branch lengths equal to 0.025. The single edge e is the one that induces the split that
bipartitions the taxa into groups of size 9 and 11, {t1,t14,t11,t17,t3,t13,t16,t19,t18} | {t2,t20,t6,t8,t9,t5,t12,t4,t15,t7,t10}. In each panel, scores for edge
e in the three trees are shown; these trees are topologically identical but certain branch lengths have been modified in each tree: (a) All branch
lengths in the trees are equal, though of differing magnitude, changing the tree diameter; (b) all branch lengths EXCEPT that corresponding to
edge e are scaled; (c) ONLY the branch length that corresponds to edge e is scaled; and d) all branch lengths in the clade corresponding to taxa
{t1,t14,t11,t17,t3,t13,t16,t19,t18} are scaled. In each subfigure, boxplots show distributions of scores for 100 simulated data sets.

feature of the graph is the center region, in which the
dominant phylogeny is that containing the An. coluzzii–
An. arabiensis clade. This finding agrees with the results
of Fontaine et al. (2015) (see their Figs. 2 and 5), for which
the majority of chromosome 2L shows An. gambiae and
An. coluzzii to be sister taxa (indicated by the red vertical
lines in Fig. 10), but a chromosomal inversion in a portion
of chromosome 2L in An. arabiensis leads to a closer

relationship with the sample from An. coluzzii (indicated
by the green vertical lines in Fig. 10), which shares this
inversion, over that portion of the chromosome.

This sliding window analysis was performed on a
data set of size over 37.5 million bp, and sparse matrix
flattenings were constructed for 37,556 windows, each
of length 10,000 bp and of which 37,547 had more
than 500 gapless sites so that scores were computed.
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FIGURE 9. Application of our sliding window method to the primate data set. At each location along the chromosome, a red vertical line
is drawn if the tree with the lowest score has the human–chimp clade, a green vertical line is drawn if the tree with the lowest score has the
chimp–gorilla clade, and a blue vertical line is drawn if the tree with the lowest score has the human–gorilla clade. White indicates locations
with excessive gaps. This data set exemplifies the expectation under the coalescent model, in that the gene tree that agrees with the species tree
is expected to be more frequently observed in a set of three taxa, with the two alternative topologies occurring with equal frequency. (See online
for color.)

The computation time for a single pairing, say the An.
gambiae–An. coluzzii clade, was 7.28 min on a MacBook
Pro 3.1 GHz processor with 16 GB of memory.

CBSV data.—Figure 11 shows the results of analyzing the
29 viral genomes, with black vertical lines delimiting
boundaries between genes. Points on the plot are
the score for the split that partitions the CBSV
sequences from the UCBSV sequences. It is easy to
see that shifts in the scores correspond largely to
boundaries between genes, indicating potential shifts
in the corresponding evolutionary processes governing
mutation rates in CBSV versus UCBSV, in agreement
with the results of Alicai et al. (2016). This supports
the results of the simulations shown in Figure 8, in
which the score was shown to vary based on shifts
in either the topology or the evolutionary model
parameters.

Also shown on the plot in Figure 11, are the likelihood
ratio statistics for each gene for the test of differing
synonymous/nonsynonymous substitution rates for the
CBSV versus UCBSV clades (Yang 1997). Statistics that
are significant at 5% level are indicated with a ‘*’.
The split score is correlated with significance of the
likelihood ratio test, in the sense that lower scores
are associated with significant results for many genes.
This result thus indicates variation in the evolutionary
process along the genome, and hints that changes in
mutation rates may be driving this variation.

DISCUSSION

We have presented the split score as a means of
quantifying the strength of the biological signal for
specific splits on a phylogenetic tree. We demonstrate
that while the score is affected by the amount of data (i.e.,
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FIGURE 10. Application of our sliding window method to the mosquito data set. At each location along the chromosome, a red vertical line
is drawn if the tree with the lowest score has the An. gambiae–An. coluzzii clade, a blue vertical line is drawn if the tree with the lowest score has
the An. gambiae–An. arabiensis clade, and a green vertical line is drawn if the tree with the lowest score has the An. coluzzii–An. arabiensis clade.
Some species are known to have experienced a chromosomal inversion in a portion of this region of chromosome 2L, and the method easily
picks out the location of the inversion as a shift in the phylogeny. (See online for color.)
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number of sites), the lengths of the branches in the tree,
and the size of the split under consideration, the score
can accurately indicate which splits are most strongly
supported by a given data set. Importantly, the split score
can be computed extremely rapidly, because it requires
only counting of site patterns in order to construct the
flattening matrix and computation of singular values
from the flattening matrix. Thus, the split score is well
equipped to handle the genome-scale data sets that are
being generated today. We view the split score as a
valuable tool for exploratory analysis of genome-scale
data sets of arbitrary size.

We have presented three empirical examples that
demonstrate a practical application of our method. These
involve evaluating the split score at various locations
along a contiguous alignment in a “sliding window”
analysis. The three examples demonstrate the varying
types of biological phenomena that can be detected by
an analysis such as this. The primate data show the
pattern expected in a typical species tree analysis, where
only incomplete lineage sorting causes variation across
a chromosome. The mosquito data show that variation

in the underlying evolutionary process (in this case,
a chromosomal inversion) can also be detected by the
method, though it is clear that the method indicates only
variation in the process and does not indicate the cause of
such variation. Finally, the CBSV data set demonstrates
application of the method to more than four taxa (in this
case, 29 taxa) and shows that the method can detect shifts
in the underlying evolutionary process even when the
topology remains fixed.

An important characteristic of all three empirical data
sets is that they represent genome-scale data: the primate
data set consists of an alignment of ∼1.9 million bp for
4 taxa, the mosquito data set consists of ∼37.5 million
bp for four taxa, and the CBSV data set consists of
approximately 9000 bp for 29 taxa. In all cases, the
entire sliding window analysis can be carried out within
minutes on a standard desktop machine, providing a
huge computational advantage over other phylogenetic
tools that seek to extract similar information. We provide
freely available software that requires only a PHYLIP-
formatted input file and a list of splits to be evaluated to
allow others to use this exploratory tool.
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Detecting True Splits in a Tree
While it would be highly desirable to understand the

dependency of the distribution of true split scores from
data under a fixed model of base substitution, even
with an assumption of a specific tree topology and edge
lengths, this question is a complex one that is probably
not addressable theoretically. (One could, of course,
perform a parametric bootstrap for an approximation.)
When the tree is unknown, theoretical analysis seems
even more difficult. While work has been done on
the distributions of singular values for certain types
of random matrices, the true split flattening matrices
arising from distributions along a tree, with their
multinomial entries, are not covered by these results.

One approach for interpreting a split score S(X1|X2)
for a split that is not known to be true or false is to
compare it to the distribution of scores S(X′

1|X′
2), |X′

i|=|Xi| for all splits of the same size computed from the
same data. The false splits among these should produce
larger scores than the true ones (of which there may
be several.) This is borne out by Figure 3 which shows
several distributions of split scores from a simulated
data set on the tree in Figure 1. When true splits of
a given size exist, they are markedly below the rest of
the distribution. When no true splits exist, there are no
such outliers. In preliminary trials, we found after some
naive normalizations, such as computing z-scores, that
true split scores are markedly smaller than the closest
false split scores. Though we were not able to provide
any probabilistic bounds on the difference between
normalized true and false split scores, such ideas hold
promise and need further statistical development. One
step in this direction is provided by Gaither and Kubatko
(2016), who develop formal statistical hypothesis tests for
splits of four taxa under the coalescent model.

One should be careful in interpreting plots like that of
Figure 3. They allow only to compare whether a given
split is more supported than alternative splits of the same
size. A tree may have no splits of a given size (e.g., there
are no 6-splits in the model tree), and so the lowest score
should not be interpreted as indicating a split that should
be on the tree, but only that it is supported more than
other splits.

When the number of taxa is not too large (e.g., <26)
one can quickly compute full distributions of all split
scores for a fixed split size. For a large number of
taxa, however, obtaining the exact distribution may be
computationally prohibitive. In such a case, a method of
approximating the distribution is suggested by Figure 4.
Suppose we wish to assess whether a particular k-split is
supported or not, we compute the split score distribution
for all splits differing from it by swapping 1≤�≤L taxa,
for some chosen L. We then compute split scores for a
large number of random splits of the same size as the one
to be assessed (possibly discarding those that arise from
swaps already considered when k is small i.e., sample
without replacement for small splits). We then use an
appropriate weighted combination of the random and
small-swap distribution as an approximation to the full

one. If the given split is a low outlier in comparison
to this approximation, we view it as supported. The
full small-swap distribution helps us obtain an accurate
approximation at the lower end of the distribution, since
if the given split is true, these tend to give lower scores,
but would not be well represented among random
splits.

Extensions
As discussed in the “Results” section, the split score

has the potential for use in phylogenetic inference,
although we have not pursued that possibility here.
Eriksson (2005) presented an algorithm based on a
nonnormalized variant of the split score for inferring a
gene tree from the alignment for a single gene, but that
method has significant weaknesses. Since the method
fails to take into consideration the differing dimensions
of the varieties of all possible k-splits and compares splits
of differing size, it is strongly biased toward returning
more balanced trees, replete with cherries and small
clades, since scores for 2-splits and 3-splits are generally
the smallest. In part, because of that bias, more recent
uses of the SVD of flattenings for tree inference have so
far focused on quartet-based inference (Casanellas and
Fernandez-Sanchez 2007; 2015; Chifman and Kubatko
2015), so that split size issues do not arise.

This said, the split score holds promise for use beyond
the specific goals of the three empirical studies presented
here. New ideas and development of alternative ways to
use its fast computation and ability to detect splits or
near-splits in data sets are still needed. As one example,
the score of potential splits to be evaluated in a heuristic
procedure that searches over tree space could be rapidly
computed, and the most promising “direction” for the
search as indicated by the split score could then be
rigorously evaluated using a more standard model-
based criterion, such as Maximum Likelihood. Indeed,
this was the idea that first motivated this work. Overall,
it is clear that the split score contains information that
can be used to differentiate true from false splits, and
its rapid computation time makes it a promising tool for
phylogenetic inference.

A natural extension of the results presented here
applies to certain models even more general than the GM
model. For instance, under a 2- or 3-class mixture of GM
models on the same tree, the rank of matrix flattenings
corresponding to edges in the true tree T are of 8 and
12, respectively (Allman and Rhodes 2006). While the
GM model is already parameter-rich—and consequently
unfamiliar to many—particular submodels of these GM-
mixure models, such as GTR+I, are in wide use. The
covarion model (Tuffley and Steel 1998) also has well-
understood flattening ranks (Allman and Rhodes 2006),
so a similar split score can be used for it. To facilitate
use with these models, the software SplitSup was
designed with an optional parameter to set the rank
used for an analysis to values other than its default
of 4.
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The findings presented here are likely to apply to
related work, as well. For example, Chifman and Kubatko
(2015) used a similar split score to indicate support for
splits of 4 taxa under the coalescent model. The primary
difference between their version of the split score and
that presented here is that the rank of the flattening
matrix corresponding to a true split is 10, rather than
4, in order to accommodate gene tree variability due to
the coalescent process. Their score would then indicate
support for splits in the species tree, rather than the
gene tree as considered here. The score computed under
the coalescent model is likely to behave in similar ways
with regard to properties such as effect of sequence
length, effect of changes in the substitution model,
etc., to the score shown here. As this model underlies
the SVDQuartets method for coalescent-based species
tree inference that is implemented in PAUP* (Swofford
2016) and being increasingly used for species-level
phylogenetic inference, it is important to understand
behavior of the split score in detail.

In conclusion, phylogenetic invariants and, more
generally, methods based on relationships in observed
site pattern frequencies, are increasingly relevant to
genome-scale phylogenetic inference. These offer two
advantages for data collected at the genome scale. First,
these methods perform better as more data become
available, because each site pattern probability is better
approximated by its observed frequency as the sample
size increases. Second, computations underlying tools
such as the split score can scale extremely well as the
number of nucleotides and/or taxa increases, as all
that is required is counting of observed site patterns
and application of well-developed efficient methods
for matrix calculations. We thus recommend continued
study of methods based on phylogenetic invariants and
the algebraic properties of site pattern probabilities
arising from phylogenetic models, as these show
promise for new computationally efficient approaches
to genome-scale phylogenetic inference.
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