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Abstract

Motivation: Comprehensive catalogue of genes that drive tumor initiation and progression in can-

cer is key to advancing diagnostics, therapeutics and treatment. Given the complexity of cancer,

the catalogue is far from complete yet. Increasing evidence shows that driver genes exhibit consist-

ent aberration patterns across multiple-omics in tumors. In this study, we aim to leverage comple-

mentary information encoded in each of the omics data to identify novel driver genes through an

integrative framework. Specifically, we integrated mutations, gene expression, DNA copy num-

bers, DNA methylation and protein abundance, all available in The Cancer Genome Atlas (TCGA)

and developed iDriver, a non-parametric Bayesian framework based on multivariate statistical

modeling to identify driver genes in an unsupervised fashion. iDriver captures the inherent clusters

of gene aberrations and constructs the background distribution that is used to assess and calibrate

the confidence of driver genes identified through multi-dimensional genomic data.

Results: We applied the method to 4 cancer types in TCGA and identified candidate driver genes

that are highly enriched with known drivers. (e.g.: P <3.40� 10�36 for breast cancer). We are par-

ticularly interested in novel genes and observed multiple lines of supporting evidence. Using sys-

tematic evaluation from multiple independent aspects, we identified 45 candidate driver genes that

were not previously known across these 4 cancer types. The finding has important implications

that integrating additional genomic data with multivariate statistics can help identify cancer drivers

and guide the next stage of cancer genomics research.

Availability and Implementation: The Cþþ source code is freely available at https://medschool.van

derbilt.edu/cgg/.

Contacts: hai.yang@vanderbilt.edu or bingshan.li@Vanderbilt.Edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a disease of the genome and responsible for one in eight

deaths worldwide (Stratton et al., 2009). With the development of

next-generation sequencing technologies, recent cancer genomic

profiling projects such as The Cancer Genome Atlas (TCGA) and

the International Cancer Genome Consortium (ICGC), present new

challenges but also unprecedented opportunities for unraveling the

complexity of cancer genome landscapes. The mutations found in a
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cancer cell genome have accumulated over the lifetime of the cancer

patient and may cause a series of DNA sequence variations, includ-

ing point mutations, somatic copy-number alterations (SCNAs) and

genomic rearrangements (Macconaill and Garraway, 2010; Stratton

et al., 2009). However, most of the aberrations are passengers and

one of the fundamental challenges in cancer genomics is to distin-

guish drivers from passengers (Garraway and Lander, 2013).

Tremendous work has been done to identify driver genes based

on point mutations (Davies et al., 2005; Kandoth et al., 2013;

Larson et al., 2012; Lawrence et al., 2014); however, most muta-

tions are at intermediate (2–20%) or even lower frequencies

(Lawrence et al., 2014), leaving infrequently mutated driver genes

difficult to find. Other forms of genomic aberrations, such as

SCNAs and epigenetic changes, can also drive tumor initiation and

progression in different mechanisms. SCNAs, which affect a larger

fraction of the genome, play an important role in activating onco-

genes and inactivating tumor suppressors (Akavia et al., 2010;

Beroukhim et al., 2007, 2010), and studies of SCNAs dramatically

expand the set of cancer therapeutic targets (Mo et al., 2013). Given

that SCNAs often affect a large chunk of the genome, it is more chal-

lenging to pinpoint the specific genes or DNA elements driving can-

cer progression from the passengers (Beroukhim et al., 2007;

Krasnitz et al., 2013). It is estimated that over 70% of 140 recur-

rently altered regions did not contain any known oncogenes or

tumor suppressors (Zack et al., 2013). Epigenetic changes of the

genome can also drive tumor development by altering chromatin

structure and gene expression (Stratton et al., 2009). More recently,

DNA methylation abnormalities, gene expression and other add-

itional genomic data like protein expression, have been utilized for

the discovery of ‘Epi-driver genes’ (Vogelstein et al., 2013). Epi-

drivers are usually not frequently mutated and play their roles

through altering gene regulation, providing a more complete charac-

terization of the molecular architecture of cancers coupled with

DNA mutations and structural aberrations (Cancer Genome Atlas,

2012; Wang et al., 2014).

Tumor development is a far more complex process than appreci-

ated, revealed recently by extensive intratumor heterogeneity (ITH)

in multiple cancers (Michor and Polyak, 2010). Besides a few well-

known mutated genes, most mutations are subclonal, occupying

only a small fraction of cancer cells (Michor and Polyak, 2010).

Moreover, multiple subclones usually exist in a tumor, and sub-

clones may cooperate in a complex manner to promote tumor devel-

opment (Diaz-Cano, 2012). It is reasonable to assume that

individual driver genes in subclones have weaker effects on their

own, making it challenging to identify these driver genes, for both

mutated genes and Epi-drivers. Traditional studies usually focused

on one dimensional data, primarily mutations, to identify driver

genes, and therefore have lower power to detect weaker drivers that

are not frequently observed in cancer patients. It is crucial to expand

the driver catalog by identifying novel driver genes to have a more

complete view of genomic processes governing tumor development.

In this study, we aim to achieve the goal through a novel frame-

work to integrate multiple genomic data using a multivariate ap-

proach. We hypothesize that driver genes often show a constellation

of aberrations in multiple genomic aspects, and jointly modeling

multi-omics data has the advantage of aggregating both genomic

and epigenomics signals to increase power to identify drivers not de-

tectable by individual omics data. The multi-omics data for each

gene are modeled as a multivariate Gaussian distribution, and the

omics data for all genes in the genome are modeled as a mixture of

Gaussians with an unknown number of components that represent

different groups of genes with distinct genomics aberration profiles.

The underlying rationale for this modeling is that the vast majority

of passengers would exhibit random albeit similar aberrations to

form the background, while driver genes often show distinct profiles

with one or more omics data showing deviations from the back-

ground. For each gene, each dimension of the multivariate data is a

statistic representing the strength that this gene is a driver gene

based on the corresponding omics data; such a framework is flexible

in that it can take advantage of improved estimates of the driver sig-

nals by new development of numerous methods based on signal

omics data. One particular example is MutSigCV, which has been

constantly updated to fine tune the driver signals based on muta-

tional data. One key challenge is to specify the number of mixture

components, which may vary across cancer types, and may poten-

tially depend on the scale and dimension of the data as finer mixture

modeling requires larger scale of data. To achieve robust clustering,

we adopted a non-parametric Bayesian approach to automatically

determine the optimal number of components, while at the same

time imposing our prior belief via the Bayesian modeling. The

strength of a gene being a driver is assessed by the magnitude of the

shift of the centers of background clusters with and without the can-

didate gene, based on the rationale that a driver gene with strong

strength in multi-omics data is able to disturb the background model

to a greater extent. Intuitively, the shift reflects the distance from the

center of the adapted model to the center of the background model,

with true driver genes farther away from the background.

We applied our method to the TCGA data and analyzed copy

number, methylation, gene expression, pathway, protein abundance

and somatic point mutations in 2944 patients across 4 cancer types:

breast adenocarcinoma (BRCA), glioblastoma multiforme (GBM),

colon and rectal carcinoma (CRC) and ovarian serous carcinoma

(OV). We obtained robust clustering for all cancer types, and the

identified candidate driver genes are significantly enriched for

known driver genes. In particular, multiple line of evidence inde-

pendently support that novel candidates are likely to be genuine

driver genes. We showed that the more cancer genomic data are

pumped in, the better the accuracy of the predicted driver genes is,

reflecting that simultaneously modeling multi-omics data has the ad-

vantage of incorporating independent and complementary support-

ing evidence.

2 Methods

iDriver is composed of three components: iDriver-Clust, iDriver-

Adapt and iDriver-Score. iDriver-Clust is a non-parametric Bayesian

framework to cluster multi-omics gene profiles through a Dirichlet

Process (DP). We use X to denote the n-dimensional vector for each

gene in which each dimension represents the evidence for a gene

being a driver gene from one of the omics platforms. iDriver-Clust is

to identify clusters of genes with distinct genome profiles encoded

in X. We assume that X follows an infinite mixture of Gaussian dis-

tribution, a priori, and infer the clustering of genes based on the gen-

omic profiles of all genes with DP as the prior. Briefly, somatic

mutations and Epigenetic genome change profiles for each gene

were represented in X via a feature extraction process (see SI

Materials and Methods) to summarize the driver-evidence across all

patients (Fig. 1A). Each dimension of X was normalized to range

from 0 to 1 for all genes (Fig. 1B). Next we apply a DP clustering to

obtain the background distribution of all gene’s feature vectors. We

used a variational Bayesian inference algorithm (Blei and Jordan,

2006) to increase the computational efficiency. The number of

model mixture components is automatically determined based on
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feature vectors during the model inference procedure (Fig. 1C).

Upon building the background model, we applied iDriver-Adapt al-

gorithm to each gene to assess the gene’s impact on the overall back-

ground model. Finally we applied the iDriver-Score algorithm to

calculate the distance between each gene and their background (Fig.

1D). Of particular note is that iDriver models the multivariate

Gaussian distribution with a full covariance matrix to allow for the

inter-dependency among omics features. Given the flexibility of the

framework, it can readily incorporate additional features, regardless

of the dependency with the existing ones, to further boost the

performance.

2.1 iDriver-Clust using Dirichlet Process Mixtures Model
Dirichlet Process Mixtures is a non-parametric Bayesian mixture

model based on Dirichlet process (Antoniak, 1974):

Gjfa;G0g � DPða;G0Þ

H�njG � G

xnjH�n � pðxnjH�nÞ
(1)

where G is a random sample distribution drawn from a Dirichlet

process, G0 is a base distribution and a is a positive scaling param-

eter. Parameters fH�ng
N
n¼1 for different mixture components are gen-

erated by drawing N times from G. fxngN
n¼1 is the observed variable.

The construction of Dirichlet Process is based on the stick-breaking,

provided by the Kolmogorov consistency theorem (Ferguson, 1973).

The representation of G by stick-breaking is as follows:

pkðVÞ ¼ Vk

Yk�1

i¼1

ð1� ViÞ

G ¼
X1
k¼1

pkðVÞdHk

(2)

where pk is the kth mixing weight constructed in the stick-breaking

manner, Vk � Betað1; aÞ is one successive piece of breaking a unit

length ‘stick’ and Hk � G0 represents the mixture components.

With the introduction of latent variable zn as the mixture compo-

nent associated with observable data xn, the data can be described

as arising from the following process:

1. Draw ajx1;x2 � Gammaðx1;x2Þ
2. Draw Vkja � Betað1; aÞ;k ¼ 1; 2 . . .

3. Draw Hk ¼ flk;KkgjG0 � G0;k ¼ 1; 2 . . .

4. For the nth observable data:

a) Draw znjfV1;V2; . . .g �MultðpðVÞÞ
b) Draw xnjfzn ¼ k; lk;Kkg � Nðlk;KkÞ

We place a Gamma prior on the scaling parameter a that can help

unbiased detection of the number of mixture components. Most typ-

ically, we drew the data point from a set of Gaussian distributions.

Even then, there is no direct method to compute the posterior distri-

bution of variables in DPM. Two main kinds of approximate infer-

ence methods can be used: Markov chain Monte Carlo (MCMC)

sampling (Liu, 2008) and Variational Bayesian (VB) inference

(Attias, 2000). In this paper, we use VB inference for DPM due to its

capability to handle large scale applications without incurring high

computational cost and to provide a deterministic methodology for

approximating likelihoods and posteriors. The idea for VB approxi-

mation was developed from theoretical physics where it is called

mean field theory (He et al., 1998). We denoted the observed vari-

ables as X ¼ fxngN
n¼1 and the set of all latent variables and param-

eters as Z ¼ fzngN
n¼1 [ fHkgK

k¼1, and the log marginal probability

p(X) can be decomposed as:

ln p Xð Þ ¼ L qð Þ þ KL qjjpð Þ

L qð Þ ¼
Ð

q Zð Þln p X;Zð Þ
q Zð Þ

� �
dZ

KL qjjpð Þ ¼ �
Ð

q Zð Þln p ZjXð Þ
q Zð Þ

� �
dZ

(3)

where q(Z) is the lower bound of the log-likelihood that needs to be

maximized and KLðqjjpÞ � 0 is the Kullback-Leibler distance.

According to this mean field theory of VB inference, q(Z) is parti-

tioned into M partitions and the q distribution factorizes with re-

spect to these partitions, so that:

qðZÞ ¼
YM
m¼1

qðzmÞ (4)

Finally, we need to get the optimal solution of each q�mðzmÞ:

lnq�mðzmÞ ¼ hlnpðX;ZÞii 6¼m þ const: (5)

where < :>i 6¼m denotes the expectation of q distributions over all

variables Z ¼ fzigM
i¼1 except zm. The approximate posterior distribu-

tion q(Z) is then iteratively updated until convergence, since they de-

pend on the statistics of each other (see Supplementary Materials for

details).

Fig. 1. Overview of the iDriver method. (A) Features extracted from different

patients to compute the vector represent of each gene. (B) Combine each

gene’s all kinds of features from different data sources. (C) iDriver-Clust iden-

tifying the background distribution of point mutations, copy-number alter-

ation, differential gene expression in RNA-seq data, DNA methylation

abnormalities, reverse-phase protein array (RPPA) alteration, gene perturb-

ations in pathway. (D) iDriver-Adapt algorithm and DPM-Dscore algorithm is

used to identify driver genes from passengers

Cancer driver gene discovery 485

Deleted Text: C
Deleted Text: D
Deleted Text: P
Deleted Text: M
Deleted Text: M
Deleted Text: &hx0022;
Deleted Text: &hx0022; 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw662/-/DC1


2.2 iDriver-Adapt algorithm
We developed iDrive-Adapt based on the following three important

model assumptions. (i) Driver genes tend to be far away from the

mean of the background distribution; (ii) Passenger genes are likely

to be close to the center of background distribution; (iii) the more a

gene’s data vector is far away from the mean of null distribution the

more likely it is a driver. Accordingly, iDriver-Adapt algorithm is

proposed to project the feature vector of each gene to an individual

distribution based on background distribution. Unlike the standard

approach of VB inference of a model for each gene independently,

the idea in the adapt approach is to derive the model by only updat-

ing the mean parameter of well-trained background model based on

the mean field theory. Note that not all parameters in the back-

ground need to be updated because the training set for the back-

ground model contains almost 20 000 gene vectors and represents a

distribution over a large space while the projection algorithm has

only a single gene vector whose influence on the overall weights and

variances is negligible. In the implementation of iDriver-Adapt the

weights and variances of individual distribution are shared and only

mean parameters are updated with new estimates. In detail, first, the

posterior rk of the kth mixture component can be calculated:

ln qk ¼ hln pki þ
1

2
hlnjKkji �

D

2
lnð2pÞ � 1

2
hðx� lkÞ

TKkðx� lkÞi

rk ¼
qkXK

k¼1

qk

(6)

where x is each gene’s feature, < : > denotes the expectation of the

distributions. Then, based on mean field theory, we update the kth

mixture’s mean parameter mk:

mk ¼
b0mk0

þ rkx

b0 þ rk
(7)

where mk0 is the background model’s mean parameter. Finally, the

individual distribution of each gene is generated with new estimates

of means and the original weights and variances.

2.3 iDriver-Score algorithm
iDriver-Adapt not only allows for an effective estimation of each

gene’s individual distribution but also helps producing a fast-scoring

algorithm for driver gene discovery. Since only the mean parameter

among each gene and background is different, based on model as-

sumption 3), iDriver-Score algorithm is designed to rank genes of all

20 000 protein-coding genes based on the Euclidean distance. The

distance score for a test gene is computed as the sum of all the mix-

ture’s Euclidean distance between the mean parameters of individual

gene model and background model:

Dscore ¼
XK

k¼1

kmk �mk0
k2 (8)

The higher the score of a gene, the more likely it is a cancer

driver.

3 Results

3.1 Analysis of the clustering of the genes
We applied iDriver to 4 cancer types in TCGA data, including 1098

breast cancer tumors, 631 CRC tumors, 613 GBM tumors and 602

OV tumors, all with multiple types of omics data. Clusters are assigned

by selecting the component that maximizes the posterior probability.

We found that genes were automatically grouped into 2 categories

across all 4 cancer types, with a major cluster containing �94% genes

and a minor cluster with �6% of genes. To examine the distribution

of known driver genes in these two clusters, we collected a total of 86

curated driver genes from Cancer Gene Census (CGC) (Futreal et al.,

2004) and found that known driver genes were significantly en-

riched in the minor cluster for all 4 cancer types (pbrca <3.00�10� 16,

pcrc <1.72�10� 14, pgbm <2.14�10� 5, pov <1.49�10� 3,

Supplemental Table 1). For example, in breast cancer the ‘driver’ clus-

ter containing 7% of the genes harbors 81% of known driver genes,

demonstrating the effectiveness of iDriver to capture omics profiles

characteristic of driver genes. We accordingly termed the two clusters

as the ‘passenger’ and ‘driver’ clusters, respectively.

To have a global view of the genomics aberrations on the genome-

level, we used Principal Component Analysis (PCA) to reduce the

original omics features into three dimensions and carried out the clus-

tering based on the reduced data. The transformed data along their

cluster memberships were visualized in a 3-D plot for different tumor

types (Fig. 2). Most genes do not have genomic alterations in the pas-

senger group and a small set of genes has one or more types of gen-

omic alterations in the driver group. The clustering results are similar

to the original results (Supplementary Tables 1 and 2).

In addition to the advantage of DP for the automatic determin-

ation of the number of clusters, we further explored whether the

prior distribution imposed in the non-parametric Bayesian frame-

work is advantageous in clustering. As a comparison, we carried out

traditional clustering using the k-means algorithm, with pre-

specified cluster number as 2 for all tumor types. Although the

minor clusters identified by k-means are also enriched for known

driver genes, (pbrca <1.84�10� 13, pcrc <2.52�10� 9, pgbm

<6.65�10� 3, pov <1.49�10� 3), as a comparison, iDriver

achieved superior performance over the k-means, indicating that the

prior distribution embedded in the DP fits the genomic data well

and is critical for effective grouping of omics profiles.

3.2 Scoring and identifying driver genes
Note that not all genes in the driver cluster are driver genes, and

conversely that the passenger cluster also contains driver genes.

Fig. 2. Cluster visualization with iDriver-Clust on different tumor types. In

order to do the visualization, firstly, linear dimensionality reduction use

Principal component analysis keeping only the most significant vectors to

project the data to a 3-dimensional space. Then, get clusters of all genes by

choosing the component that has max posterior probability on TCGA data-

sets of four tumor types: (A) BRCA, (B) CRC, (C) GBM and (D) OV
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We applied iDriver-Adapt and iDriver-Score to obtain an integrated

driver-score for each gene (Methods), representing the calibrated

strength for a specific gene being a driver. The performance of our

approach was compared against two other state-of-the-art model-

based algorithms, MutSig2CV (Lawrence et al., 2013) and GISTIC2

(Mermel et al., 2011), which are based on point mutations and

SCNAs respectively. For all 4 tumor types, the top-scoring genes are

significantly enriched for known drivers, with the enrichment far

greater than the two algorithms that are based on single genomics

data types (Table 1). In BRCA, the 22 top genes are significantly en-

riched for known drivers (15/22, p<3.40�10� 36), a large im-

provement over the genes reported by MutSig2CV and GISTIC2

(14/89, p<1.39�10� 24 and 7/264, p<5.25�10� 7). In particu-

lar, all of the five top-scoring genes are well-known breast cancer

genes (TP53, PIK3CA, CDH1, GATA3, MAP3K1). In CRC, the top

49 genes are also significantly enriched for known CRC drivers (12/

49, p<2.85�10� 22), outperforming both MutSig2CV (20/1450,

p<1.30�10� 10) and GISTIC2 (2/75, p<7.99�10� 3). Among

the top 10 scoring genes, 8 are known CRC genes (KRAS, TP53,

APC, SMAD4, FBXW7, PIK3CA, BRAF, TCF7L2). In GBM, 5 of

the top 10 genes (PIK3R1, IDH1, PIK3CA, STAG2, PDGFRA),

and in OV 3 of the top 18 genes (BRCA1, BRCA2, CDK12) are

known driver genes, respectively, both achieving greater enrichment

of driver genes than Mutsig2CV and GISTIC2. We also compared

the performance using the same number of candidate genes and

observed the same pattern (Supplementary Table 6). All of these sug-

gest the effectiveness of our integrative approach over the state-of-

the-art methods that are based on single genomic data types for

identifying driver genes.

3.3 Evaluation of novel candidate driver genes
After the enrichment analysis of known cancer drivers, we were pri-

marily interested in assessing whether the novel candidate cancer

genes are truly drivers. Specifically, we selected the top 20 candi-

dates for each cancer type, and excluded known driver genes from

the list, and focused only on novel genes for the evaluation. We car-

ried out a systematic evaluation from multiple aspects to assess the

enrichment of genuine novel driver genes in our top-scoring candi-

date genes. To achieve unbiased evaluation, all lines of the evidence

are not used in the scoring of candidate genes.

First, for the novel candidates in individual tumor types, with the

‘guilt-by-association’ principle (Altshuler et al., 2000; Oliver, 2000)

that genes physically or functionally close to each other tend to be

involved in the same biological pathways and have similar effects on

phenotypes, we evaluated whether the novel gene set is significantly

closer to the known driver genes than a randomly selected set in

gene networks. For this evaluation we used the HumanNet (Lee

et al., 2011) protein-protein interaction network. We used the

Dijkstra’s algorithm (Misa and Frana, 2010) to calculate the short-

est path between each gene in the candidate and each gene in the

known gene set. We defined the distance between the novel gene set

and known gene set in the PPI network as the median of the shortest

paths among all pairs of genes. Shown in Table 2 are the distances

between novel and known driver genes. It is evident that for all the

4 tumor types novel genes are significantly closer to the known

drivers, indicating that our top novel candidates harbor genuine

driver genes. Note that, specifically for this analysis, we obtained

the top candidates by removing the pathway-derived feature in

the input vector so that the evidence revealed in the PPI network

is unbiased.

Second, for each of the novel gene sets, we tested the hypothesis

whether the connectivity of novel genes in the HumanNet network

is larger than random-select gene sets. Cancer genes have been

shown to have greater interaction partners compared with non-

cancer genes (Jonsson and Bates, 2006). We defined the connectivity

of a gene set as the median of the degrees of all the genes in the

HumanNet network, and compared the gene set connectivity with

randomly selected gene sets to obtain empirical P values. The results

in Table 2 show that the connectivity of novel genes is significantly

larger than random for all four cancer types (P¼0.004, 0.003,

0.003 and 0.023), further supporting the enrichment of genuine

driver genes in our top lists.

Third, we also evaluated whether the novel genes are under

strong purifying selection, as known driver genes are often evolu-

tionarily conserved (Cheng et al., 2014; Gonzalez-Angulo et al.,

2010; Samocha et al., 2014; Sweet-Cordero et al., 2005). We col-

lected a set of genes that are under strong evolution constraints

(Samocha et al., 2014) and observed strong enrichment of our novel

candidate genes with the constraint genes for all four cancer type,

with corresponding P values of 0.00032, 0.015, 0.015 and 0.015

(Table 2).

Fourth, we also evaluated whether the novel genes are highly ex-

pressed genes, as known cancer-associated genes tend towards

higher expression (Lawrence et al., 2013). We used t-test to compare

the expression of novel candidate genes with the rest of the coding

genes. In this evaluation, we dropped the expression level feature in

iDriver to obtain candidate driver genes. As a result (Table 2), each

cancer type’s 20 novel genes are significantly highly-expressed than

the others (P¼1.1�10�5, 0.020, 0.046 and 7.3�10�5 for the four

cancer types, respectively).

Fifth, also by the ‘guilt-by-association’ assumption, we tried to

evaluate whether the novel genes are enriched in cancer pathways.

We used WebGestalt (Wang et al., 2013; Zhang et al., 2005) for the

enrichment analysis and corrected for the multiple testing using false

discovery rate (Benjamini and Hochberg, 1995). We observed that

novel candidates are highly enriched in cancer-related pathways in

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and

Goto, 2000) such as the MAPK signaling pathway, cell cycle and

p53 signaling pathway (Table 2 and Supplementary Table 8). To

deeply construct an integrated view of genomic alterations in the

cancer pathways, we selected 11 known driver genes and 6 candi-

date driver genes of BRCA, CRC, GBM, OV and mapped them onto

2 major pathways in human cancer: PI3K/RAS pathway and TGF-b/

SMAD4 pathway (Fig. 3). Some of the genes in these two pathways

encode receptors for the growth factors themselves. We observed

Table 1. A comparison of enrichment for CGC genes sets of cancer

drivers between iDriver and two state of the art background model-

ing methods on TCGA datasets of 4 tumor types: BRCA, CRC,

GBM, OV

Cancer Method Genes In CGC Coverage Enrichment

BRCA iDriver 22 15 48% 3.40� 10�36

MutSig2CV 89 14 45% 1.39� 10�24

Gistic2 264 7 22% 5.25� 10�7

CRC iDriver 49 12 35.29% 2.85� 10�22

Mutsig2CV 1450 20 58.8% 1.30� 10�10

Gistic2 75 2 5.88% 7.99� 10�3

GBM iDriver 10 5 48% 4.11� 10�14

Mutsig2CV 20 5 41.6% 3.55� 10�12

Gistic2 111 1 8.00% 6.94� 10�2

OV iDriver 18 3 15.7% 8.03� 10�7

Mutsig2CV 10 2 10.5% 4.69� 10�5

Gistic2 107 1 5.20% 1.01� 10�1
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that some novel drivers are in the upstream of known drivers in the

two pathways, and their inactivation or activation may result in the

activation of growth-promoting signal downstream of the pathway

and enhance cancer cell’s growth and survival. For examples: inacti-

vation of PTEN results in activation of the AKT kinase; inactivation

of NF1 results in constitutive activity of oncogenes such as KRAS

(Brems et al., 2009).

Finally, we are interested in investigating whether the novel can-

didate can significantly affect cancer cell survival/proliferation in

cancer cell line experiments. Large-scale short hairpin RNA

(shRNA) knock-out screening is able to identify those genes that af-

fect cell survival and facilitate driver gene discovery (Cheung et al.,

2011; Luo et al., 2008). We used the Achilles v2.4.3 dataset of 216

cell lines using 54k shRNA library (Cowley et al., 2014) to deter-

mine whether the novel driver candidates significantly affect cancer

cell survival. We generated a gene list including 793 genes with the

median ATARiS gene level q-values<0.05, representing the genes

implicated in cancer cell survival assessed via shRNA. We compared

our candidates with this gene list and observed significant enrich-

ment for all four tumor types (Table 2).

In total, we reported 45 high confidence driver candidate genes,

and the full list of these genes for all cancer types are in

Supplemental Tables 3 4. Some of the genes in the full list, (e.g.

CASZ1 and TPX2) already have supportive evidence in literature

(Liu et al., 2011; Wei et al., 2013).

3.4 Analysis of feature combination
iDriver integrates somatic mutations and epigenetic changes of gen-

ome data in an aim to achieve improved sensitivity and specificity.

Here we gave some examples of genes that showed aberrations in

multi-omics platforms to illustrate the complementary roles of vari-

ous genomics features. We also visualized the top 10 genes’ features

of each tumor type with PCA in 3D to show how these genes stand

out from the mean of the features (Supplementary Fig. S2). In

BRCA, all top10 candidate drivers have 4 or more feature aberrations

(total feature dimension is 7), demonstrating the importance of inte-

grating multi-omics data. The top candidate gene list includes BRCA2,

a well-known tumor suppressor gene that was difficult to identify by

other computational approaches (Beroukhim et al., 2010). Although

BRCA2 was mutated at a low frequency (6%) and was not in the

deleted regions, it underwent significant differential expression and per-

turbations in pathways. It is a combination of 4 feature-aberrations in

our framework that was able to identify BRCA2 as a driver gene. In

CRC, 8 of the top10 candidate genes have 4 or more feature-

aberrations. The top candidate gene list includes some known drivers

with low mutation frequencies, like PIK3R1, MSH6 and CTNNB1.

PIK3R1 has five feature aberrations, especially the extreme DNA

methylation abnormality and over expression of the protein. MSH6

and CTNNB1 also have large RPPA abnormalities that suggested them

to be cancer drivers. Constitutive activity of CTNNB1 in CRC is

mainly due to the suppressor gene APC’s inactivation, resulting in the

activation of some growth-promoting signals downstream of the Wnt/

b-catenin signaling pathway (He et al., 1998; Morin et al., 1997). In

GBM, all of the genes in the list of top 10 genes have 4 or more

feature-aberrations, and in particular, PIK3R1, a known GBM driver,

reached the first place of the gene list with 5 feature-aberrations. In

OV, 90% of top10 genes have 4 or more feature-aberrations.

Although the list of known driver genes included 19 genes, they are

very difficult to pinpoint because almost all of them have low fre-

quency mutations. iDriver pinpointed 3 known genes with top 18 can-

didate genes reported in OV: BRCA1, BRCA2 and CDK12. CDK12, a

cancer genes involved in RNA splicing regulation in OV (Chen et al.,

2006), is challenging to find due to its low mutation frequency and

showed up in our top list since it has 4 feature aberrations including

slight SCNA amplification and gene underexpression.

To further investigate the relative contribution of various omics

types, we organized all of the seven features into three groups:

Feature I includes a two-dimensional feature of sequence mutations;

Feature II includes the features of SCNAs; Feature III includes a com-

bination of the other 4 features. We carried out the same integrative

analyses using different combinations of the three groups of features,

and generated the precision-recall curves (PRC) across the focused

Table 2. iDriver novel driver genes validation results

Analysis BRCA CRC GBM OV

Gene sets distances Distance 5 4 5 5

p value 0.002 0.001 0.001 0.009

Connectivity analysis Degree 5.5 5.5 5 3

p value 0.004 0.003 0.003 0.023

Purifying selection analysis Count 6 4 4 4

p value 0.003 0.015 0.015 0.015

Pathway analysis Cancer pathwaysa 1 2 5 3

Expression analysis p value 1.1� 10�5 0.020 0.046 7.3� 10�5

ShRNA screen analysis Count 6 3 3 3

p value 9.0� 10�5 0.042 0.042 0.042

aNumber of enriched KEGG cancer related pathways. Detail is in Supplementary Table 8.

Fig. 3. Two signal transduction pathways affected by mutations and epigen-

etic alterations in human cancer. (A) PI3K/RAS pathways illustrated by cura-

ted analysis, (B) TGF-b pathways illustrated by curated analysis. Known

driver genes are red coded, novel driver genes are purple coded, protein

components encoded by other genes are write coded
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four types of tumor datasets as shown in Fig. 4. The area under the

precision-recall curve (AUC) is used to measure the performance. In

all cases, Feature I achieved much better performance than other fea-

tures (Feature II and Feature III) (Fig. 4), consistent with the notion

that mutations that directly disrupt the gene structure are more im-

portant than epigenoimcs features that impact the expression of the

target genes and often varied with types of cell, developmental stage

and patient age (Pelizzola and Ecker, 2011). Also, SCNAs’ amplifica-

tion and deletion regions typically cover a large number of genes,

making it hard to tease the cancer drivers apart from the passengers.

However, integration of other features with mutation data is useful

and usually can significantly improve the performance of iDriver

(Supplemental Table 7). As a result, the integrative model with all fea-

tures achieved improvements in four tumor types, compared with

only using the mutation data, e.g. the percentage of improvement is

16.2% in BRCA, 18.3% in CRC, 45.7% in GBM and 1.57% in OV.

Most top genes have more than half aberrations of all features, indi-

cating that Feature I, Feature II, Feature III groups provide comple-

mentary evidence and supporting our hypothesis that driver genes do

not only harbor driver mutations but at the same time also harbor a

constellation of epigenetic alterations. It is also clear that the more

features were pumped in, the better the accuracy of the predicted

driver genes is (Fig. 4), supporting the importance of integrating com-

plementary omics data for driver gene identification.

4 Discussion

One particular challenge facing the field of cancer genomics is to

identify cancer driver genes that contribute to oncogenesis and can-

cer progression. Although defining drivers as genes conferring a se-

lective growth advantage in physiologic terms is easy, it is more

difficult to identify drivers from a sea of passengers using genomics

data (Vogelstein et al., 2013). In this study, we developed iDriver, a

model-based framework that integrates multi-omics data from

TCGA to prioritize novel cancer driver genes across multiple tumor

types. A key aspect of our approach is the integrative clustering of

genes to discover different patterns of driver and passenger genes

with a comprehensive data view. We reasoned that driver genes and

passenger genes exhibit different patterns; however, the exact pat-

terns are unknown and it is not unreasonable to assume that the

patterns can be complex given the widespread genomic aberrations

across multiple omics data. To cope with the complexity, we took

an unsupervised approach in a Bayesian framework to automatically

determine the number of clusters and to reveal the intrinsic charac-

teristics of genomics aberrations of drivers and passengers.

Intriguingly, our framework revealed two major clusters, named as

‘driver’ and ‘passenger’ clusters, for all cancer types we investigated,

probably reflecting a general pattern of cancer genomics, the investi-

gation of which is beyond the scope of the current study.

We adopted a non-parametric Bayesian framework for its ad-

vantages beyond its ability of automatically determining the optimal

cluster number. Dirichlet Process Mixtures is a highly effective multi-

variate statistical model to describe the background distribution of ab-

errations of all types of useful omic data. Unlike most computational

approaches which assume that the input data are independent,

iDriver models the input vectors as multivariate Gaussian random

variables with a full covariance matrix to take into account the de-

pendence among omics data.

In addition, the prior distribution imposed in the DP reflects our

prior belief that the background cluster is dominantly larger than

others. Such a prior fits the data well as the resulting clustering of

iDriver is superior to the traditional K-means algorithm. Finally,

iDriver-Adapt and iDriver-Score algorithms are developed to score

each gene based on its impact (or ‘perturbation’) to the global distri-

bution of the background model to get reliable assessment. These

advantages of our framework exceled in this particular study and

facilitated the identification and prioritization of candidate driver

genes in the four cancer types we investigated.

One of the major rationales in our modeling strategy is that

driver genes often show constellation of genomics aberrations across

multiple omics data. Our results are consistent with this rationale

and supported our approach to modeling multi-omics data in an ef-

fort to identify driver genes with weak signals in individual omics

data. We identified several known cancer drivers, e.g. BRCA2,

which are difficult to identify by computational approaches based

on single omics data. In addition, we also identified novel candidate

drivers with such patterns, e.g. CASZ1 and TPX2, which also have

supportive evidence in literature. CASZ1 has been reported as a can-

didate tumor-suppressor gene which suppresses neuroblastoma

tumor growth through reprogramming gene expression (Liu et al.,

2011); TPX2 has been detected as a novel prognostic marker for the

growth and metastasis of colon cancer and its expression in colon

metastatic lesions is significantly higher than that in primary cancer-

ous tissue and normal colon mucosa (Wei et al., 2013). iDriver iden-

tified 6 novel driver gene candidates in 4 cancer types in 2 major

cancer pathways and these genes are often in the upstream of known

drivers in the pathways, expanding the candidates for understanding

the tumorigenesis mechanisms as well as therapeutics development.

In summary, we have shown that iDriver can extract useful in-

sights from integrated omic data to fully exploit the different pat-

terns of driver genes. Ever increasing genomics data are being

generated spanning a wide range of cancer types. Given the flexibil-

ity of our framework, other cancer types in TCGA or any other can-

cer genomics projects can be analyzed comprehensively in future

studies to help identify and prioritize candidate driver genes.
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Fig. 4. A comparison of precision-recall curves for almost 20,000 protein-cod-

ing genes in four tumor types to show the contribution of three categories of

feature types across four cancer types: (A) BRCA, (B) CRC, (C) GBM and

(D) OV. We grouped the original features into three categories: I-mutation

(MutSig2CV, mutation frequency), II-SCNA and III-epigenomics feature (ex-

pression, methylation, pathway aberrations, rppa)
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