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Abstract
Plasma fetuin-A is associated with type 2 diabetes, and AHSG, the gene encoding fetuin-A, has been identified as a suscepti-
bility locus for diabetes and metabolic syndrome. Thus far, unbiased investigations of the genetic determinants of plasma
fetuin-A concentrations have not been conducted. We searched for single nucleotide polymorphisms (SNPs) related to fetuin-
A concentrations by a genome-wide association study in six population-based studies.

We examined the association of fetuin-A levels with � 2.5 million genotyped and imputed SNPs in 9,055 participants of
European descent and 2,119 African Americans. In both ethnicities, the strongest associations were centered in a region with
a high degree of LD near the AHSG locus. Among 136 genome-wide significant (P<0.05�10�8) SNPs near the AHSG locus, the
top SNP was rs4917 (P¼1.27�10�303), a known coding SNP in exon 6 that is associated with a 0.06 g/l (�13%) lower fetuin-A
level. This variant alone explained 14% of the variation in fetuin-A levels. Analyses conditioned on rs4917 indicated that the
strong association with the AHSG locus stems from additional independent associations of multiple variants among
European Americans. In conclusion, levels of fetuin-A in plasma are strongly associated with SNPs in its encoding gene,
AHSG, but not elsewhere in the genome. Given the strength of the associations observed for multiple independent SNPs, the
AHSG gene is an example of a candidate locus suitable for additional investigations including fine mapping to elucidate the
biological basis of the findings and further functional experiments to clarify AHSG as a potential therapeutic target.

Introduction
Fetuin-A is a liver-derived protein that is involved in the metab-
olism of calcified minerals and the regulation of the insulin sig-
naling (1). Fetuin-A forms complexes with circulating calcium
and phosphorus and increases the solubility of these minerals
(2), thereby inhibiting arterial calcium deposition. Fetuin-A also
directly binds and inhibits the insulin receptor, resulting in in-
sulin resistance (3–5). The fetuin-A knock-out mouse has im-
proved insulin sensitivity by euglycemic clamp experiments,
lower triglyceride and free fatty acid levels, resistance to weight
gain, and less adiposity (6,7). High fetuin-A levels are associated
with insulin resistance (8–10), interacts with circulating free
fatty acids in determining insulin sensitivity and predicts inci-
dent diabetes (11–16). Thus, fetuin-A represents an emerging
biomarker for improved diabetes risk assessment in clinical
practice and a potential therapeutic target for primary or sec-
ondary prevention of type 2 diabetes.

The alpha-2-HS-glycoprotein (AHSG) locus on chromosome 3
(3q27) encodes the fetuin-A gene. Linkage studies have identified
this region as a susceptibility locus for the metabolic syndrome
and T2DM (17,18), and small case-control studies have reported
strong relations between several single nucleotide polymorph-
isms (SNPs) identified from direct exon sequencing studies and
plasma concentrations of fetuin-A (19–22). However, a compre-
hensive investigation of genetic determinants of fetuin-A levels
has not been conducted, and it remains unknown if genetic loci
distinct from the AHSG locus can be identified that regulate
fetuin-A concentrations. Hence, to better understand the genetic

control of fetuin-A levels we conducted a genome-wide associ-
ation (GWA) analysis in six population-based studies, as part of
the Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) Consortium.

Results
Our analyses included data from six studies of European
Americans totaling 9,055 individuals and four studies compris-
ing a total of 2,119 African Americans. The majority of the par-
ticipants were female and the average age ranged from 52 years
in ARIC to 75 years in CHS. Mean fetuin-A levels ranged from
0.43 6 0.09 g/l in African Americans from CHS to 1.00 6 0.41 g/l in
European Americans in HABC. However, most studies had
smaller standard deviations than HABC and mean fetuin-A lev-
els averaged around 0.50 g/l (Table 1).

Separate meta-analyses of 2.5 million SNPs for European
and African American participants who contributed to the
study-specific genome-wide association analyses of fetuin-A
levels, identified a very strong signal on chromosome 3q27
(Fig. 1, Supplementary Material, Fig. S1). In total, 136 SNPs at the
AHSG locus achieved genome-wide significance among European
Americans. The top SNP, rs4917 (P-value¼1.27�10�303), is
located in the AHSG gene which encodes the fetuin-A protein.
The genetic region and the linkage disequilibrium (LD) of SNPs
with rs4917 according to r2 in CEU are displayed in
Supplementary Material, Figure S2A and B. The triangles rep-
resent the top two non-synonymous SNPs (rs4917 in purple
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and rs4918 in red). Detailed results on the 136 SNPs are avail-
able in the online Supplementary Material, Table S3. Though
the list of genes in closest proximity to the SNPs includes
FETUB, CRYGS, DNAJB11, KGN1, and TBCCD1, these genes are
all within close distance to AHSG, as shown in Supplementary
Material, Figure S2A. Each additional copy of the rs4917 minor
allele (T variant allele, minor allele frequency¼0.32) was asso-
ciated with approximately 0.066 60.002 g/l lower fetuin-A level
in each of the cohorts (Table 2). rs4917 alone explained 14% of
the variation in fetuin-A levels among European Americans.

The plots in Supplementary Material, Figure S2 show that
the strongest associations are centered in a region with a high
degree of LD. However, as shown in Supplementary Material,
Figure S2B, five of the SNPs with extremely low P-values

(< 5�10�235) were not in strong LD with rs4917/rs4918 (light blue
shaded dots, Supplementary Material, Fig. S2B). These five SNPs
(rs13098866, rs13080283, rs2077119, rs1029353, and rs2070635)
were instead in tight LD with each other (r2< 0.6). Further, when
we repeated the genome-wide association analyses condition-
ing on rs4917 to uncover any additional, independently associ-
ated SNPs, 34 SNPs at the AHSG locus were associated with
fetuin-A concentrations (P< 5�10�8). The five SNPs from
Supplementary Material, Figure S2B were among the SNPs that
remained strongly statistically significantly associated with
fetuin-A levels in this analysis (all P< 5�10�28 in the conditional
analysis). Among the 34 SNPs, ten SNPs were new hits
(P<5�10�8 in the conditional analysis only). The 10 SNPs were
not in LD with rs4917, indicating that the strong association

Table 1. Descriptive characteristics of the cohorts included in the genome-wide analysis according to ancestry

Cohort N Age, years Women, % Fetuin-A level, g/l Prevalent diabetes, %

CHS/European 2824 74.9 (5.0) 60.6 0.48 (0.10) 15.7
CHS/African 727 73.2 (5.6) 63.4 0.43 (0.09) 20.9
ARIC/European 485 53.4 (5.6) 55.7 0.51 (0.07) 0
ARIC/African 366 51.9 (5.4) 55.7 0.47 (0.09) 0
HABC/European 403 73.9 (2.9) 56.8 1.00 (0.41) 13.9
HABC/African 350 73.5 (3.0) 54.9 0.91 (0.37) 20.6
MESA/European 1093 62.7 (10.1) 52.0 0.49 (0.11) 3.9
MESA/African 678 62.0 (10.1) 52.3 0.45 (0.10) 10.5
NHS/European 1029 59.9 (6.4) 100 0.46 (0.11) 9.3
FHS/European 3592 40.0 (8.7) 53.6 0.45 (0.18) 2.5

Numbers in table are Mean (SD) or percentage. ARIC¼Atherosclerosis Risk in Communities Study; CHS¼Cardiovascular Health Study; FHS¼Framingham Heart Study;

HABC¼Health, Aging, and Body Composition (Health ABC) Study; MESA¼Multi-Ethnic Study of Atherosclerosis, NHS¼Nurses’ Health Study.

Diabetes was defined as fasting blood glucose>125 mg/dL, a random blood glucose of>200 mg/dL, or use of insulin or oral hypoglycemic agents.

Table 2. Association of the top SNPs (rs4917 in European Americans; rs1900618 in African Americans) on chromosome 3 with fetuin-A levels in
European and African Americans

rs4917

European Americans (MAF: 0.32) African Americans (MAF: 0.26)

Cohort N b SE p N b SE P

CHS 2742 �0.0632 0.0023 2.47E-163 725 �0.0447 0.0046 3.58E-22
ARIC 485 �0.0546 0.0046 1.03E-32 366 �0.0302 0.0082 2.48E-04
HABC 403 �0.11 0.031 4.44E-04 350 0.001 0.029 0.98
MESA NA NA NA NA 678 �0.0433 0.0061 1.13E-12
NHS 741 �0.069 0.053 6.71E-50 NA NA NA NA
FHS 3592 �0.080 0.0032 3.40E-80 NA NA NA NA
Combined 7963 �0.0657 0.0018 1.27E-303 2119 �0.0413 0.0034 1.20E-34

rs1900618

European Americans (MAF: 0.33) African Americans (MAF: 0.33)

Cohort N b SE p N b SE p

CHS 2742 �0.0635 0.0023 2.27E-162 725 �0.0505 0.0040 2.58E-36
ARIC 485 �0.0542 0.0046 2.10E-32 366 �0.0345 0.0074 3.02E-06
HABC 403 0.11 0.031 4.44E-04 350 �0.015 0.027 0.59
MESA NA NA NA NA 678 �0.0514 0.0057 3.35E-19
NHS 741 �0.0691 0.0053 6.57E-50 NA NA NA NA
FHS 3592 �0.0805 0.0042 1.03E-80 NA NA NA NA
Combined 7963 �0.0659 0.0018 6.44E-303 2119 �0.0477 0.003 1.58E-56

The rs4917 and rs1900618 were identified as the top SNPs among European Americans and African Americans, respectively. The SNPs are in almost perfect LD in

HapMap CEU population (Caucasians): Dj ¼1 and r2¼0.96. In HapMap YRI population¼Dj ¼1 and r2¼0.57.

NA¼SNP not available.
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with fetuin-A levels observed for the AHSG locus stems from
more than a single hit (Data for the 10 SNPs shown in Table 3).
The Manhattan plot for European Americans also shows that
other associations on chromosome 3 were elevated, though still
not statistically significant upon adjustment for rs4917
(Supplementary Material, Fig. S5).

The AHSG locus also had the strongest association in the meta-
analysis of four genome-wide studies that contributed data from
2,119 African American participants (Fig. 2, Supplementary
Material, Fig. S3). In total, 42 SNPs at the AHSG locus were associ-
ated with fetuin-A levels with p values< 5�10�8 among the
African Americans (Supplementary Material, Fig. S4 and Table S4).
Each copy of the rs4917 minor allele was associated with
0.04160.003 g/l lower fetuin-A concentration (P-value¼ 1.20�10�34)
and this variant alone explained 13% of the variation in fetuin-A
levels, but another AHSG variant (rs1900618) was the top SNP in the
genome-wide analysis of the African American samples. rs4917
and rs1900618 are in complete LD according to D’ from HapMap
YRI population, but the two SNPs were only moderately correlated
(r2¼0.57) and had slightly different MAFs in African American par-
ticipants only (0.26 versus 0.33). In contrast, both Dj and r2 were
nearly 1 in HapMap CEU. Overall, Supplementary Material, Figure
S4 shows the extent of LD was less pronounced among African

American participants. Of note the five variants that were in tight
LD with each other but not with rs4917/rs4918 were also among
the genome-wide significant SNPs in African Americans
(Supplementary Material, Table S4). Because of the modest correl-
ation of rs4917 with just a handful of the 42 fetuin-A associated
SNPs, the SNPs that were significant in the conditional analyses
(conditioning on rs4917) mostly overlapped with the significant
SNPs in the unconditional analyses (Supplementary Material, Fig.
S6). Two exceptions were rs1486336 and rs958629 that reached sig-
nificance only in the conditional analysis (and had borderline p val-
ues in the unconditional analysis (P�1�10�7).

Discussion
Very little is known about the genetic determination of circulat-
ing fetuin-A levels, a marker of diabetes and the metabolic syn-
drome. To our knowledge, the present study represents the first
unbiased genome-wide search for genetic variants associated
with fetuin-A concentrations. In the present paper, all of the
major genetic determinants of fetuin-A levels were located in
the fetuin-A encoding gene; AHSG. We further provide evi-
dence that the genetic variation of importance to fetuin-A

Table 3. Additional SNPs that were statistically significantly associated with fetuin-A levels in European Americans only in the genome-wide
analysis conditioned on rs4917

Association results from meta-analyses conditioned on rs4917 Prior association results (unconditional analysis)

SNP/coded allele Position (chr 3) MAF b SE P Closest Gene* Distance! b SE P

rs6787344/c 187822535 0.15 �0.0277 0.0023 3.82E-32 AHSG 733 0.000 0.003 0.89
rs4831/c 187813663 0.84 0.0259 0.0024 2.92E-28 AHSG 120 �0.003 0.003 0.23
rs4686432/t 187800551 0.15 �0.0246 0.0023 3.70E-27 AHSG 12992 0.002 0.003 0.48
rs9842063/a 187804207 0.89 0.0287 0.0028 4.13E-25 AHSG 9336 0.001 0.003 0.71
rs9873987/t 187802726 0.09 �0.0323 0.0032 2.00E-23 AHSG 10817 �0.002 0.004 0.58
rs9872086/t 187828594 0.79 0.0175 0.0026 1.13E-11 AHSG 6792 �0.002 0.003 0.46
rs6444146/t 187794361 0.91 0.0177 0.0028 1.79E-10 DNAJB11 8079 �0.003 0.003 0.30
rs9841006/t 187775829 0.09 �0.0172 0.0028 5.42E-10 DNAJB11 4669 0.003 0.003 0.31
rs13317898/t 187740514 0.93 0.0216 0.0035 9.94E-10 CRYGS 1588 �0.002 0.004 0.62
rs12330837/a 187768400 0.08 �0.0191 0.0033 6.98E-09 TBCCD1 594 0.009 0.004 0.03

*Closest gene: shows the gene-encoding region most closely situated to the given SNP.
!Distance: is the distance in base pairs from the closest known gene.

Figure 1. Meta-analysis of six genome-wide association analyses of fetuin-A levels in a total of 9,055 European Americans. Figure displays p-value for association for

each SNP on a log10 scale
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levels co-localize to the AHSG locus in both European and
African Americans.

In both ethnicities, variants in and near the AHSG locus
showed the strongest associations with fetuin-A levels. The
most highly associated SNPs in the two ethnicities were not
identical (rs4917 in European and rs1900618 in African-
Americans), but showed remarkably similar associations that
were in close proximity (within 1 kb distance) and were in very
high linkage disequilibrium, suggesting that they may mark the
same causal variant. Though the top association was different
(rs1900618) among African American participants, the high de-
gree of LD in this region does not allow for conclusions on the
potential causal variant marked by these SNPs. Interestingly,
genetic variation in AHSG has not been examined in African
American samples before.

We found that rs4917 alone explained 14% of the variation in
fetuin-A in European and 13% in African Americans individuals.
In comparison, genome-wide association studies have identi-
fied several genetic loci that contribute to the levels of other bio-
markers such as fibrinogen, CRP or adiponectin. Multigenetic
risk scores that include all the independent genome-wide sig-
nificant loci for each of these traits (e.g. up to 23 independent
loci for fibrinogen) have been found to explain< 4% of the
variation in fibrinogen and up to 5% for CRP and adiponectin
(23–25).

When placed in the context of previous studies, several of
the over 100 variants with genome-wide significant associations
in our analysis have been identified previously. In particular,
rs4917 and rs4918 are both missense variants located in the
last two exons of the AHSG gene (exons 6 and 7, respectively)
(26–28). Both SNPs have been associated with a similar magni-
tude of difference in plasma fetuin-A as observed in our study
(0.06 6 0.002 g/l lower levels in variant carriers) (22). While
rs4917 and rs4918 do not appear to be related to metabolic
markers including insulin levels, lipids, BMI, and fasting glucose
in other studies (20,28–30) associations with risk of cardiovascu-
lar disease have been reported for both general (22,31) and renal
patient populations (32).

AHSG expression is controlled by a number of transcriptional
factors (TFs) such as C/EBP-[beta], NF-1, HNF-3[beta], AP-1 and
ER[alpha] (33–36). The promoter SNP rs2248690, which has also
been strongly associated with fetuin-A levels (26,29), modifies
AHSG transcription by altering the affinity of AP-1 (26). Though
this variant is located in the opposite region of AHSG, it is in LD
with the exonic rs4917 and rs4918 SNPs (r2>0.80 CEU), that poten-
tially alter the DNA binding of several TFs including AP-1 and
ER[alpha] (37). A transcriptional complex comprising ERa and AP-
1 may contribute to estrogen-induced transcription of AHSG (36).
A potential regulatory function stemming from the coding re-
gions harboring rs4917 and rs4918 thus warrants further study.

In genome-wide analysis conditioning on rs4917, we identi-
fied 34 SNPs that were genome-wide significant in European
Americans. Five SNPs were also significant in the main analysis
(rs13098866, rs13080283, rs2077119, rs1029353, and rs2070635)
because they were not in LD with rs4917, but in high LD with
each other. Among these, rs2077119 in the 50 untranslated re-
gion has previously been found to be associated with markers
of insulin resistance in adipocytes (28), and with the risk of dia-
betes (20). A borderline association with risk of CHD has been re-
ported for the intron variant rs2070635 (22). Another ten SNPs
were only significantly associated with plasma fetuin-A levels
in the analysis conditioned on rs4917. These 10 SNPs were in LD
with rs2077119 (D0 > 0.7 in HapMap CEU).

In conclusion, genetic variation in AHSG is strongly associ-
ated with fetuin-A levels. While we cannot exclude the possibil-
ity that other genetic loci play a role in fetuin-A concentrations,
our sample size of over 9,000 European and 2,000 African
Americans identified SNPs in the AHSG with P-values for their
association lower than 1�10�300 indicating a very low chance
that this is a false positive finding and highlighting the power
inherent in analyses of this trait. Further work is needed to
identify the functional variants and to understand the underly-
ing biology of these associations. Our finding of a strong link be-
tween AHSG SNPs and fetuin-A levels provide a useful
framework for the continued investigation of the causal vari-
ants in the AHSG gene.

Figure 2. Meta-analysis of six genome-wide association analyses of fetuin-A levels in a total of 2,119 African Americans. Figure displays p-value for association for

each SNP on a log10 scale
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Materials and Methods
We used data on genetic variation and fetuin-A levels from six
population-based studies from the U.S. The following studies
from the CHARGE (Cohorts for Heart and Aging Research in
Genome Epidemiology) Consortium were included:
Atherosclerosis Risk in Communities Study (ARIC), the
Cardiovascular Health Study (CHS), the Multi-Ethnic Study of
Atherosclerosis (MESA), and the Framingham Heart Study. In
addition, investigators from the Health, Aging, and Body
Composition (Health ABC) and Nurses’ Health Study contributed
data. Local ethical committees at each institution approved the
individual study protocols. Detailed methods of each study
population are included in the online supplement. Various gen-
otyping platforms were used by the different studies, however,
all studies imputed their genotyped data to HapMap release 22
CEU and YRI reference panels. Details on genotyping platform,
quality control and imputation specifics are available in online
in Supplementary Materials, Tables S1 and S2.

Fetuin-A measures

Fetuin-A was measured in plasma using enzyme linked im-
munosorbent assays (ELISA) from Epitope Diagnostics, San
Diego, CA (CHS, MESA, HABC, and ARIC), Biovendor, Candler, NC
(FHS), or from R&D Systems, Minneapolis, MN (NHS). Each study
reported CV’s< 14%.

Statistical analysis

The associations between genotypes and fetuin-A level were ana-
lyzed within each cohort using linear regression in an additive
model. All analyses were adjusted for age, sex, eigenvectors for
population stratification, and if applicable, field center. Analyses
were conducted separately for European and African Americans.
See details for study-specific methods in Supplementary
Material, Tables S1 and S2.

To combine results across cohorts, we performed an inverse
variance–weighted meta-analysis using the software package
METAL (38). Cohort-specific standard errors were adjusted using
genomic control. In GWAS, we chose P¼ 5� 10�8 as the thresh-
old for significance (39). To investigate whether the multiple
SNPs associated in the respective region were due to linkage
disequilibrium (LD) with the top SNP or if multiple independent
signals existed, we performed a meta-analysis based on models
conditioned on the SNP with the smallest P-value.

To assess the variation in fetuin-A levels explained by our
top SNPs, we compared the r2 values from a model with just
basic covariates versus a model that also included rs4917.

Supplementary Material
Supplementary Material is available at HMG online.
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