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SUMMARY

Noncompliance or non-adherence to randomized treatment is a common challenge when interpreting data
from randomized clinical trials. The effect of an intervention if all participants were forced to comply
with the assigned treatment (i.e., the causal effect) is often of primary scientific interest. For example,
in trials of very low nicotine content (VLNC) cigarettes, policymakers are interested in their effect on
smoking behavior if their use were to be compelled by regulation. A variety of statistical methods to
estimate the causal effect of an intervention have been proposed, but these methods, including inverse
probability of compliance weighted (IPCW) estimators, assume that participants’ compliance statuses
are reported without error. This is an untenable assumption when compliance is based on self-report.
Biomarkers (e.g., nicotine levels in the urine) may provide more reliable indicators of compliance but can-
not perfectly discriminate between compliers and non-compliers. However, by modeling the distribution
of the biomarker as a mixture distribution and writing the probability of compliance as a function of the
mixture components, we show how the probability of compliance can be directly estimated from the data
even when compliance status is unknown. To estimate the causal effect, we develop a new approach which
re-weights participants by the product of their probability of compliance given the observed data and the
inverse probability of compliance given confounders. We show that our proposed estimator is consistent
and asymptotically normal and show that in some situations the proposed approach is more efficient than
standard IPCW estimators. We demonstrate via simulation that the proposed estimator achieves smaller
bias and greater efficiency than ad hoc approaches to estimating the causal effect when compliance is
measured with error. We apply our method to data from a recently completed randomized trial of VLNC
cigarettes.
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1. INTRODUCTION

Twenty years ago, Benowitz and Henningfield (1994) argued the addictive properties of cigarettes could
be eliminated if the nicotine content were reduced to 0.4–0.5 milligrams (mg) per gram of tobacco. In
the United States, the Family Smoking Prevention and Tobacco Control Act provides the Food and Drug
Administration (FDA) with the regulatory authority to limit the nicotine content of cigarettes to lower
levels (but not zero) if such a regulation is likely to improve public health. As smoking remains the United
States’leading cause of preventable death (U.S. Department of Health and Human Services, 2014), nicotine
reduction could have a substantial public health impact. However, evidence for the effectiveness of such
a policy is limited.

We recently reported the results of The Center for The Evaluation of Nicotine in Cigarettes, project
1 (CENIC-p1), a 6-week randomized trial evaluating the effect of nicotine reduction on tobacco use
and dependence (Donny and others, 2015). Current smokers (n = 839) were randomized equally to one
of seven groups consisting of a usual brand control condition or experimental cigarettes with nicotine
content ranging from 15.8 mg per gram of tobacco (normal nicotine controls) to 0.4 mg per gram of
tobacco. In addition, the investigators included a group that received cigarettes with 0.4 mg of nicotine per
gram of tobacco with high tar to understand the effect of tar yield on cigarette use and dependence when
nicotine content is reduced. Participants were instructed to smoke only those cigarettes provided in the
trial and were considered non-compliant if they smoked cigarettes not provided by the trial (i.e., non-study
commercial cigarettes). Although they were not given incentives to avoid smoking non-study commercial
cigarettes, they were encouraged to honestly report their smoking behavior and were allowed to complete
the trial regardless of compliance. During Week 6 of the study, smokers randomized to the lowest nicotine
condition had significantly reduced tobacco use, dependence, and nicotine exposure compared to the usual
brand and normal nicotine control conditions.

The results of CENIC-p1 provide empirical support for nicotine reduction as a regulatory strategy, but
they must be interpreted cautiously due to substantial noncompliance to randomized treatment assign-
ment. For example, among participants randomized to smoke very low nicotine content (VLNC) cigarettes
(cigarettes with 0.4 mg of nicotine per gram of tobacco), 39% reported smoking at least 1 non-study
cigarette during week 6, and 80% reported smoking at least 1 non-study cigarette at some point during
the trial. A per protocol analysis, that is, analyzing only compliant participants, is problematic because
compliance status is confounded, and compliers may differ systematically from non-compliers. The pri-
mary analysis of CENIC-p1 followed the intention-to-treat (ITT) principle and analyzed the data from
all participants according to their randomized treatment assignment regardless of their compliance. An
ITT analysis provides an unbiased estimator of the effect of a treatment or intervention when it is used
in an environment (e.g., target population, level of non-compliance, etc.) similar to the clinical trial envi-
ronment (Hernán and Hernández-Díaz, 2012). However, if the nicotine content of cigarettes were limited
by regulation, and smokers no longer had legal access to standard commercial cigarettes, the effect of
nicotine reduction on smoking behavior may be different than in the trial.

Our goal is to estimate the effect of smoking VLNC cigarettes on cigarette consumption and other
measures of smoking behavior (dependence, withdrawal, etc.) in the hypothetical world where a regulatory
body has reduced the nicotine content of cigarettes, and normal nicotine content commercial cigarettes
are no longer available. In the language of clinical trials, we wish to estimate the effect of smoking
VLNC cigarettes in the presence of complete compliance, that is, the causal effect (Bellamy and others,
2007). Methods for estimating the causal effect of an intervention in the presence of noncompliance
are well-established and include inverse probability of compliance weighted (IPCW) estimators (Hernán
and Robins, 2006; Cain and Cole, 2009), principal stratification (Frangakis and Rubin, 2002), structural
nested models estimated by G-estimation (Robins, 1994), and instrumental variable approaches (Angrist
and others, 1996).
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Existing methods for estimating causal effects in the presence of noncompliance assume that inves-
tigators know, without error, whether or not a participant was compliant. In the context of randomized
tobacco trials, like CENIC-p1, self-reported compliance is subject to error and recall bias, and analyzing
biomarkers of nicotine exposure has been suggested as an alternate approach to identify non-compliant
participants (Benowitz and others, 2015). One recent study (Denlinger and others, 2016) evaluating
biomarkers of nicotine exposure in participants exclusively smoking cigarettes with 0.4 mg per gram of
tobacco found that the 95th percentile for total nicotine equivalents (TNEs, a biomarker of short-term
nicotine exposure that measures most nicotine metabolites) was 6.41 nmol/mL.Yet among the CENIC-p1
participants randomized to the 0.4 mg per gram of tobacco arm, 63% of participants who self-reported
full compliance during Week 6 had TNE greater than 6.41 nmol/mL (Nardone and others, 2016). This
demonstrates that self-reported compliance can substantially misclassify whether or not participants were
compliant to their randomized treatment assignment. Although certain biomarkers (e.g., TNE) may sug-
gest that a participant’s self-reported compliance status is incorrect, no biomarker of nicotine exposure
perfectly discriminates between compliers and non-compliers.

We propose a novel estimator of the causal effect from a randomized clinical trial when compliance
status is measured with error. In contrast to existing methods, our estimator explicitly accounts for the
potential for misclassification of compliers and non-compliers. Although we treat compliance status as an
unobserved variable, we show how to weight participants by the product of their probability of compliance
given the observed data and the inverse probability of compliance given confounders, resulting in a
consistent and asymptotically normal estimator of the causal effect. Our simulation results illustrate that
in finite samples our estimator outperforms ad hoc causal methods which ignore the error in compliance
status by using either self-reported data or by using an estimated indicator of compliance. When there
is a perfect discriminator of compliers and non-compliers, our estimator reduces to the standard IPCW
estimator.

2. CAUSAL EFFECT ESTIMATORS

2.1. Potential outcomes and target of inference

We consider a hypothetical randomized clinical trial, where A = 1, 2, . . . , r denotes the treatment group,
which we assume is randomized. Let Z be a measure (without error) of noncompliance with Z = 0
indicating full compliance and increasing Z indicating greater noncompliance. For example, Z may be
the number of non-study commercial cigarettes smoked in week 6 of CENIC-p1 or the number of pills
not taken in a therapeutic clinical trial. Define the compliance indicator C = I (Z = 0), and note that
Z and C are not directly observed if noncompliance is measured with error. Define Y ∗(a, z) to be the
outcome of a randomly-selected participant if, possibly contrary to fact, we set A = a and Z = z.
Because for each participant we do not observe Y ∗(a, z) for all a and z, Y ∗(a, z) is a potential outcome.
For CENIC-p1, Y ∗(a, z) is the number of study cigarettes with nicotine content a smoked per day in week
6 of the study if the participant were to smoke z non-study cigarettes per day. The target of inference is
μ(a, 0)−μ(a′, 0) = E {Y ∗(a, 0)− Y ∗(a′, 0)}, the expected difference of the outcome among randomized
treatment groups a and a′ if all participants were to be compliant. In the context of mediation literature,
μ(a, 0)−μ(a′, 0) is known as the controlled direct effect (Pearl, 2001), that is, the treatment effect when
the mediator, number of non-study cigarettes, is set at the fixed value of 0.

2.2. Observed data

Let Y be the observed outcome for a randomly-selected participant. Define the self-reported compliance
indicator variable D, with D = 1 indicating the participant reports full compliance and D = 0 indicating
that the participant reports any noncompliance. Let X be a vector of patient variables, and let B be a
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biomarker indicating exposure to the treatment A. In the context of CENIC-p1, Y is the number of study
cigarettes smoked per day during week 6 of the trial, B is a biomarker of nicotine exposure (e.g., TNE or
cotinine) measured during week 6, D = 1 if the participant reports smoking 0 non-study cigarettes during
week 6, and D = 0 if the participant reports smoking any non-study cigarettes during week 6. Note that
participants self-report D, and this may be subject to error and recall biases.

2.3. Identifying assumptions

To relate the distribution of the observed data to the distribution of the potential outcome Y ∗(a, 0) in the case
where C is observed, we make the following identifying assumptions (Robins and Hernán, 2008). First, we
assume that we have measured enough covariates such that the compliance status is conditionally ignorable.
That is, we assume the probability that a participant is compliant depends only on the observed covariates X
and A and not additionally on any potential outcomes; this implies that E {C|A, X , Y ∗(a, 0)} = E(C|A, X )
(no unmeasured confounders assumption). Although there may be additional variables associated with C,
for example, the biomarker B, we assume that there are no additional confounders aside from X . Second,
we assume that E(C|A, X ) > 0 for all X and A, that is, there is positive probability of complying with
the randomized treatment assignment within all levels of the confounders (positivity assumption). Finally,
we assume that if Z = 0 and A = a, then Y = Y ∗(a, 0), that is, if a participant is compliant with the
trial protocol, then her observed outcome is the same as it would be if the participant were forced to be
compliant with the trial protocol (consistency assumption). When C is unobserved, additional assumptions
will be necessary and will be stated where required.

2.4. Proposed estimators

We have stressed that C may not be directly observed due to measurement error or misclassification, but
assume for now that E(C|A, B, X , Y , D) and E(C|A, X ) are known. We discuss in Section 3 how these
expectations can be estimated even though C is unobserved. We can estimate μ(a, 0) by solving the
following estimating equation:

n∑
i=1

E (Ci|Ai, Bi, Xi, Yi, Di)

E (Ci|Ai, Xi)
{Yi − μ(a, 0)} I (Ai = a) = 0. (2.1)

A similar estimator could be constructed for μ(a′, 0), and the difference in those estimators could be used
to estimate the treatment effect.

The estimating function with weights E(C|A,B,X ,Y ,D)
E(C|A,X ) is similar to a standard IPCW estimator with weights

C
E(C|A,X ) , but we have replaced the numerator with the conditional expected value of compliance instead of
an indicator variable for compliance status. Note that if all participants self-reported compliance without
error, or if there exists a biomarker that can perfectly discriminate compliers from non-compliers, then
E (C|A, B, X , Y , D) equals 0 or 1, and the estimating function in Equation (2.1) simplifies to the standard
IPCW estimating function. Although it is not obvious that we can obtain valid inference without observing
C, we show in Section 4 that, under suitable regularity conditions, μ̂(a, 0), the solution to the estimating
equation, is a consistent and asymptotically normal estimator of μ(a, 0). Because our estimator has an
expectation, rather than an indicator variable, in the numerator to account for potential misclassification,
we refer to the estimator as the Compliance Unsure RE-weighted estimator, or CURE estimator.
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3. ESTIMATING THE WEIGHTS

In practice, E(C|A, B, X , Y , D) and E(C|A, X ) are usually unknown and must be estimated. To estimate
these, we begin by re-writing E(C|A, B, X , Y , D) as a function of components that can be estimated
directly from the observed data. We then show how auxiliary data, if available, can be used to obtain a
more precise estimate of E(C|A, B, X , Y , D). Finally, we discuss how Ê(C|A, B, X , Y , D), the estimate of
E(C|A, B, X , Y , D), can be used to estimate E(C|A, X ).

3.1. Estimating the numerator of the weights

First, using Bayes’ Theorem, we can write E(C|A = a, B = b, X = x, Y = y, D = d) as:

f (b|a, x, y, d, c = 1; ξ) · ρ(a, x, y, d;α)

f (b|a, x, y, d, c = 1; ξ) · ρ(a, x, y, d;α)+ f (b|a, x, y, d, c = 0; ξ) · {1 − ρ(a, x, y, d;α)}, (3.1)

where f is the conditional density of B given A, X , Y , D, and C indexed by parameter vector ξ ,
and ρ(a, x, y, d;α)= Pr(C = 1|A = a, X = x, Y = y, D = d;α) indexed by parameter vector α. Rewrit-
ing the expectation shifts the goal from estimating the conditional expectation of C to estimating the
conditional distribution of B|A, X , Y , D, C. Note that B, A, X , Y , and D are all observed random variables,
which allows us to directly estimate the density of B|A, X , Y , D as the mixture density

g(b|a, x, y, d; ξ ,α) = ρ(a, x, y, d;α) · f (b|a, x, y, d, c = 1; ξ)+ {1 − ρ(a, x, y, d;α)}
· f (b|a, x, y, d, c = 0; ξ). (3.2)

Thus, although we do not observe C, we can estimate E(C|A, B, X , Y , D) by estimating the conditional
density of B|A, X , Y , D. The maximum likelihood estimators of ξ and α solve the score equations

n∑
i=1

∂

∂(ξ T ,αT )T
log g(Bi|Ai, Xi, Yi, Di; ξ ,α) = 0. (3.3)

As is frequently the case with mixture distributions, Equation (3.3) may be difficult to solve directly. In that
case, we can find the maximum likelihood estimates using the expectation-maximization (EM) algorithm
(Dempster and others, 1977). In Section A of the supplementary material available at Biostatistics online,
we give details of the EM algorithm updates for ξ and α.

Equations (3.1)–(3.3) can sometimes be simplified based on the scientific problem. For example, in
some applications it may be reasonable to simplify the modeling assumptions of the conditional density of
B. In particular, according the directed acyclic graph (DAG) in Section B of the supplementary materials
available at Biostatistics online, which is one plausible DAG for the CENIC-p1 data, B may be conditionally
independent of X given A, Y , and C. We note that this assumption is testable using observed data so the data
analyst does not need to a priori assume the correct causal structure. Additionally, it may be reasonable to
assume that if D = 0, that is, the participant reports noncompliance with the study protocol, then C = 0
without error. That is, participants may not erroneously report noncompliance because in most trials there
is usually no incentive to be non-compliant. This would imply that E(C|A, B, X , Y , D = 0) = 0.

3.2. Incorporating compliance information from an auxiliary study

Estimating mixture distributions is challenging in practice due to difficulties in identifying the underlying
component densities. An advantage to estimating the mixture distribution of B|A, X , Y , D for CENIC-p1
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is the presence of an auxiliary study to evaluate biomarkers of nicotine exposure in fully compliant partic-
ipants. Denlinger and others (2016) present data on biomarkers of nicotine exposure for 23 smokers who
volunteered to be sequestered in a hotel for four nights with access to only cigarettes with 0.4 mg nicotine
per gram of tobacco. These participants are known to be compliant, and their data can be used in conjunc-
tion with the data from CENIC-p1 to estimate the density of the biomarker in compliers. This will enhance
our ability to identify the underlying components of the mixture distribution for B|A, X , Y , D. While these
auxiliary data may seem unique to CENIC-p1, similar data arise in other settings. For example, pharma-
cokinetic/pharmacodynamic data from early-phase clinical trials could be used to help identify compliers
in a phase III therapeutic clinical trial. In our application, we do not want to include these individuals’
outcomes, Y , in estimation of the causal effect due to differences in smoking behavior between partici-
pants in the auxiliary and primary studies, but we do expect the distribution of B|A, X , Y , D = 1, C = 1 to
be consistent across studies. This is known as the transportability assumption in the measurement error
literature (Carroll and others, 2006).

Let nk denote the number of participants in the auxiliary study, let m = n + nk , and define the indicator
variable K that equals 1 if the participant is included in the auxiliary data or 0 if the participant is included
in the main trial. We can incorporate the auxiliary data when estimating ξ and α by solving the score
equations

m∑
i=1

∂

∂(ξ T ,αT )T
{(1 − Ki) · log g(Bi|Ai, Xi, Yi, Di; ξ ,α)+ Ki · log f (Bi|Ai, Xi, Yi, d = 1, c = 1; ξ)} = 0.

(3.4)

3.3. Estimating the denominator of the weights

In most applications, the denominator of the weights will be unknown and must be estimated. Because
the denominator must be between 0 and 1, we specify a regression model E(Ci|Ai, Xi) = πi(β) =
g−1

{
β0 + X T

i β1 + I (Ai = 2)β2 + · · · + I (Ai = r)βr

}
, where g is a link function that maps from (0, 1)

to R, such as the logit or probit link, and β = (β0,βT
1 ,β2, . . . ,βr)

T is a vector of unknown regres-
sion coefficients. If E(C|A, B, X , Y , D) were known, we could estimate β by solving the estimating
equation

m∑
i=1

(1 − Ki)
{E(Ci|Ai, Bi, Xi, Yi, Di; ξ ,α)− πi(β)}

πi(β) {1 − πi(β)}
∂πi(β)

∂βT
= 0. (3.5)

That is, E(C|A, B, X , Y , D; ξ ,α) is the “response” of the regression model. Note that β can be estimated
using standard software, for example, using the glm function in R. Because E(C|A, B, X , Y , D; ξ ,α) is
between 0 and 1, this is analogous to modeling proportions in a logistic or probit model. In the case that ξ
andα are unknown, we can stack Equations (3.4) and (3.5) and solve jointly, which is equivalent to replacing
E(C|A, B, X , Y , D; ξ ,α) in Equation (3.5) with the estimated expectation E(C|A, B, X , D, Y , D; ξ̂ , α̂).

4. ASYMPTOTIC PROPERTIES OF THE CURE ESTIMATOR

In discussing the asymptotic properties of the proposed estimator, for simplicity we assume there are no
auxiliary data of the type described in Section 3.2 and consider only a single-arm trial with a = 1 for
all participants, but the results easily generalize to multi-arm trials. Under the assumptions in Section
2.3, the estimating function has expectation equal to 0. The key to demonstrating this is to note that in
expectation, our proposed estimator is equivalent to an IPCW estimator in which the compliance status is
known without error:
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E

[
E (Ci|Bi, Xi, Yi, Di)

E (Ci|Xi)
{Yi − μ(1, 0)}

]
= E

[
Ci

E (Ci|Xi)
{Yi − μ(1, 0)}

]

= E

[
E

{
Ci|Xi, Y ∗

i (1, 0)
}

E (Ci|Xi)

{
Y ∗

i (1, 0)− μ(1, 0)
}]

= E

[
E(Ci|Xi)

E (Ci|Xi)

{
Y ∗

i (1, 0)− μ(1, 0)
}] = 0. (4.1)

The 1st equality follows from iterated expectation. At this step, the argument of the expectation is now
equivalent to the case when C is known without error, and the remaining equalities follow from assumptions
stated in Section 2.3: the 2nd follows from the consistency assumption and iterated expectation, and the
3rd follows from the no unmeasured confounders assumption. Note that the result in Equation (4.1)
hold even if B is null. That is, we do not need to measure a biomarker of exposure and could replace
E(Ci|Bi, Xi, Yi, Di) with E(Ci|Xi, Yi, Di) and the estimating function would still have expectation equal to
zero. Nevertheless, conditioning on B allows us to incorporate auxiliary compliance data as described
in Section 3.2. Furthermore, including a biomarker of compliance improves the discrimination between
the compliers and non-compliers which will improve the computational stability of the estimates in the
mixture distribution in Equation (3.2).

We can simultaneously estimate μ(1, 0), ξ ,α, and β by stacking the estimating equations given in
Equations (2.1), (3.4), and (3.5). Let Zi = (Ai, Bi, Xi, Yi, Di) be the observed data on participant i and∑n

i=1 ψi {Zi;μ(1, 0), ξ ,α,β} denote the stacked estimating function. We showed above that the first com-
ponent of ψi {Zi;μ(1, 0), ξ ,α,β} has expectation 0; the components corresponding to (ξ T ,αT )T and β
have expectation 0 due to being score functions of a log likelihood and of a generalized linear model,
respectively. The fact that the stacked estimating function has expectation 0 implies that, under suitable
regularity conditions,

√
n

[{
μ̂(1, 0), ξ̂ T , α̂T , β̂T

}T − {
μ(1, 0), ξ T ,αT ,βT

}T
]

D−→ N
(
0, U −1V (U −1)T

)
,

where V = E([ψi {Zi;μ(1, 0), ξ ,α,β}] [ψi {Zi;μ(1, 0), ξ ,α,β}]T ) and U = −E

[
∂ψi{Zi ;μ(1,0),ξ ,α,β}
∂{μ(1,0),ξT ,αT ,βT }T

]
. The

sandwich covariance matrix U −1V (U −1)T can be estimated using the empirical averages for U and V
(see, e.g., Stefanski and Boos (2002)) or with the bootstrap (Efron, 1979).

Note that unlike IPCW estimators when C is known where only the model for E(Ci|Xi) must be
correctly specified, the CURE estimator also relies on correctly specifying the distribution of the mixture
components in Equation (3.2) to obtain consistent and asymptotically normal estimators.

We compare the relative efficiency of the CURE estimator to the standard IPCW estimator when
compliance is observed in order to understand the consequences of measuring compliance with error.
If E(C|X ) and E(C|B, X , Y , D) are known and do not need to be estimated, then the CURE estima-
tor is more efficient than the standard IPCW estimator with weights C

E(C|X ) . To see this, first note that

E
(

∂

∂{μ(1,0)}
[

Ci
E(Ci |Xi)

{Yi − μ(1, 0)}
])

= E
(

∂

∂{μ(1,0)}
[

E(Ci |Bi ,Xi ,Yi ,Di)
E(Ci |Xi)

{Yi − μ(1, 0)}
])

, so the difference in the

limiting variance of the estimators is due to differences in the variances of the estimating function. Next,
we can write

var
[

Ci

E(Ci|Xi)
{Yi − μ(1, 0)}

]
= var

[
Ci − E(Ci|Bi, Xi, Yi, Di)+ E(Ci|Bi, Xi, Yi, Di)

E(Ci|Xi)
{Yi − μ(1, 0)}

]
.
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Then, because

cov
[

Ci − E(Ci|Bi, Xi, Yi, Di)

E(Ci|Xi)
{Yi − μ(1, 0)}, E(Ci|Bi, Xi, Yi, Di)

E(Ci|Xi)
{Yi − μ(1, 0)}

]

= E

([
E(Ci|Bi, Xi, Yi, Di)− E(Ci|Bi, Xi, Yi, Di)

E(Ci|Xi)
{Yi − μ(1, 0)}

]
E(Ci|Bi, Xi, Yi, Di)

E(Ci|Xi)
{Yi − μ(1, 0)}

)

= 0

by iterated expectation, the variance of the estimating function with weights C
E(C|X ) is

var
[

Ci

E(Ci|Xi)
{Yi − μ(1, 0)}

]

= var
[

E(Ci|Bi, Xi, Yi, Di)

E(Ci|Xi)
{Yi − μ(1, 0)}

]
+ var

[
Ci − E(Ci|Bi, Xi, Yi, Di)

E(Ci|Xi)
{Yi − μ(1, 0)}

]

≥ var
[

E(Ci|Bi, Xi, Yi, Di)

E(Ci|Xi)
{Yi − μ(1, 0)}

]
.

Thus, if all expectations are known and do not need to be estimated, the CURE estimator is more efficient
asymptotically than the standard IPCW estimator. To gain some intuition for why this occurs, consider the
case where compliance has no effect on the outcome: the CURE estimator gains efficiency by simply taking
a sample average of the outcome among participants randomized to group a to estimate μ(a, 0), whereas
the IPCW estimator excludes participants who are non-compliant even though compliance has no effect
on the outcome. As the effect of compliance on the outcome strengthens, E(C|B, X , Y , D) approaches
an indicator function and the CURE estimator approaches the standard IPCW estimator. In general, the
CURE estimator borrows more data from the non-compliers as the effect of compliance decreases, which
increases efficiency over the IPCW estimator.

A natural question is how estimating the weights impacts the variances of the estimators. Here, we use
notation consistent with the generalized linear model notation introduced previously, and we remind the
reader that E(C|X ) can be written as π(β). When the weights are C

π(β)
, and β must be estimated jointly

with μ(1, 0), the asymptotic variance of μ̂(1, 0) is

E

[{
Y ∗

i (1, 0)− μ(1, 0)
}2

πi(β)

]
− H1H −1

2 H T
1 ,

where H1 = E
[

Y ∗
i (1,0)−μ(1,0)

πi(β)
∂πi(β)
∂β

]
and H2 = E

[
1

πi(β){1−πi(β)}
∂πi(β)

∂βT
∂πi(β)
∂β

]
. This interesting result shows

that the variance of μ̂(1, 0) with weights C
π(β)

is reduced when β is estimated compared to when β is

known (Lunceford and Davidian, 2004). When the weights are E(C|B,X ,Y ,D;ξ ,α)
π(β)

, when ξ ,α, and β must be
estimated jointly with μ(1, 0), and when there are no auxiliary data to use in estimating the parameters of
the mixture density (3.2), then the large sample variance of μ̂(1, 0) is

E

[
E(Ci|Bi, Xi, Yi, Di)

2

πi(β)2
{Yi − μ(1, 0)}2

]
+ 2

[(−H3H −1
4 + H1H −1

2 H5H −1
4

) (−H1H −1
2

)] [
H T

6

H T
7

]

+ [(−H3H −1
4 + H1H −1

2 H5H −1
4

) (−H1H −1
2

)] [
H4 H8

H T
8 H9

] [(−H3H −1
4 + H1H −1

2 H5H −1
4

)T(−H1H −1
2

)T

]
, (4.2)
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where

H3 = −E

[
Yi − μ(1, 0)

πi(β)

∂E(Ci|Bi, Xi, Yi, Di)

∂(ξ T ,αT )

]

H4 = E

[
∂ log g(Bi|Xi, Yi, Di; ξ ,α)

∂(ξ T ,αT )T

∂ log g(Bi|Xi, Yi, Di; ξ ,α)

∂(ξ T ,αT )

]

H5 = −E

[
πi(β) {1 − πi(β)} ∂πi(β)

∂βT

∂E(Ci|Bi, Xi, Yi, Di)

∂(ξ T ,αT )

]

H6 = E

[
Ci

{
Y ∗

i (1, 0)− μ(1, 0)
}

πi(β)

∂ log g(Bi|Xi, Yi, Di; ξ ,α)

∂(ξ T ,αT )

]

H7 = E

[
E(Ci|Bi, Xi, Yi, Di) {Yi − μ(1, 0)} {E(Ci|Bi, Xi, Yi, Di)− πi(β)}

πi(β)2 {1 − πi(β)}
∂πi(β)

∂β

]

H8 = E

[
E(Ci|Bi, Xi, Yi, Di)− πi(β)

πi(β) {1 − πi(β)}
∂ log g(Bi|Xi, Yi, Di; ξ ,α)

∂(ξ T ,αT )T

∂πi(β)

β

]

H9 = E

[ {E(Ci|Bi, Xi, Di, Yi)− πi(β)}2

[πi(β) {1 − πi(β)}]2

∂πi(β)

∂βT

∂πi(β)

∂β

]

and H1 and H2 were defined previously. The last term in (4.2) is positive because it is a quadratic form
of a positive semi-definite matrix, but the middle term does not have this property and is neither clearly
positive nor clearly negative under all conditions. Thus, although estimating the weights for the IPCW
estimator is guaranteed to increase the asymptotic efficiency of μ̂(1, 0), there is no such guarantee for the
CURE estimator. If C were observed and E(C|B, X , Y , D) were estimated using a regression model in the
CURE estimator, then we could make a definitive statement about the impact of estimating (ξ T ,αT )T on
the limiting variance of μ(1, 0), but this is not possible when C is not observed and we used the approach
described in Section 3. Also note that the information matrix H4 will contain more information when
auxiliary data are incorporated as described in Section 3.2, but this may be beneficial only for estimation
of the mixture density (3.2) in small samples, not for asymptotic efficiency of μ̂(1, 0).

5. SIMULATION STUDY

We designed a simulation study to test the finite-sample properties of the proposed estimator. For simplicity,
we consider a scenario in which all participants are assigned a single treatment, A = 1, and only estimate
μ(1, 0), rather than a difference in means between two treatment groups. To facilitate data generation,
define C ′ as a latent continuous measure of compliance.We generated (C ′, X , Y ) from a multivariate normal

distribution with mean vector (0, 10, 16)T and covariance matrix 	 =
⎛
⎝ 1.000 −0.573 −0.139

−0.573 2.000 1.715
−0.139 1.715 3.000

⎞
⎠ .

We define the compliance indicator C = I
{
C ′ > 
−1(0.80)

}
, where
 is the standard normal cumulative

distribution function. This gives Pr(C = 1) = 0.20, consistent with the preliminary estimates of the
compliance rate from CENIC-p1 (Nardone and others, 2016). We simulated B ∼ N (−9.3−0.8 ·C +0.7 ·
Y , σ 2) with two values of σ 2, 0.818 and 0.663, to give an area under the receiver operating characteristic
(ROC) curve of 0.8 or 0.9, respectively, for discriminating between compliers and non-compliers. We let
D = H 1−C , where H is a Bernoulli random variable with success probability 0.3 independent of other data,
so that those truly compliant (C = 1) always self-report compliance and for non-compliant participants
(C = 0) H is an indicator of whether or not non-compliance was reported with error. The data generated
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are consistent with the DAG shown in the supplementary material Section B available at Biostatistics
online, which is one possible DAG for the CENIC-p1 data. Note that the DAG implies that B and X are
conditionally independent given C and Y (and A, which here has only one level).

We considered sample sizes of 225 (roughly the number of participants randomized to the VLNC
cigarettes in CENIC-p1), 500, and 1,000 and also included data from an auxiliary study in which partici-
pants are known to be compliant as described in Section 3.2 equal to 10% of the size of the main clinical
trial.

We compared five estimators ofμ(1, 0): (i) a per protocol estimator based on self-reported compliance;
(ii) an inverse probability weighted (IPW) estimator based on self-reported compliance with weights equal
to D

Ê(D|X ) ; (iii) an IPW estimator with weights equal to C
Ê(C|X ) ; (iv) a cutoff IPW estimator that first estimates

E(C|B, X , Y , D) using the methods described in Section 3.1, defines Ĉ = Ê(C|B, X , Y , D) > 0.5, and then
uses the weights Ĉ

Ê(Ĉ|X ) ; and (v) the CURE estimator with weights Ê(C|B,X ,Y ,D)
Ê(C|X ) . Although we have argued the

IPW estimator cannot be used in CENIC-p1, we include it for comparison to illustrate the cost of relying
on imperfect measures of compliance. We assumed that E(C|X , Y , D = 0) = 0, and observations with
D = 0 did not contribute to estimation of the mixture distribution. To estimate E(C|B, X , Y , D = 1) in
the cutoff IPW and CURE estimators, we assumed simple linear regression models with normal residuals
for B|Y , D = 1, C = 1 and B|Y , D = 1, C = 0; to estimate E(C|X , Y , D = 1) we assumed a generalized
linear model with probit link. To improve computation time, we used a single set of starting values for
the EM algorithm which were estimated parameters from models fit using the actual compliance C. In
applications, when C is unknown to the analyst and cannot be used to generate starting values, the EM
algorithm may require multiple iterations with different starting values to find the global maximum of the
likelihood, but the simulation nevertheless gave good results using only this one set of starting values for
each iteration. For the self-reported IPW, cutoff IPW, and CURE estimators, the denominator of the weights
was estimated using a generalized linear model with probit link where the outcome is the numerator of the
weights. We used the bootstrap percentile method with 1,000 bootstrap re-sampled data sets to compute
95% confidence intervals (CI).

Table 1 shows the simulation results. Overall, the CURE estimator has very small bias for both area
under the curve (AUC) of 0.8 and 0.9. With AUC of 0.8, the CURE estimator has higher mean squared
error than per protocol or IPW based on self-report, but with sample size 1,000 the mean squared error
is smaller; with AUC of 0.9, the CURE estimator has lower mean squared error for sample sizes 500 and
1,000. The per protocol and self-report IPW estimators show bias that is not attenuated with increasing
sample size and coverage probabilities which are not close to the nominal level. The cutoff IPW estimator
has low bias, but, surprisingly, for each sample size and AUC level, the CURE estimator has much smaller
mean squared error and coverage probability closer to the nominal 0.95 level. Unsurprisingly, the CURE
estimator has higher mean squared error than the IPW estimator, but the mean squared error of the CURE
estimator approaches that of the IPW estimator as the AUC increases. The simulation results demonstrate
that the CURE estimator has better small sample performance than per protocol and self-report IPW when
there is potential for misclassification. Furthermore, the CURE estimator performs better than an ad hoc
estimator that uses IPW with an estimated indicator variable of compliance.

6. APPLICATION TO THE CENIC-P1 DATA

We applied the CURE estimator to estimate the causal effect ofVLNC cigarettes on the number of cigarettes
smoked per day using data from CENIC-p1. Although CENIC-p1 was a 6-week trial, for simplicity we are
only concerned with compliance and outcomes collected in the last week. In this analysis, we let A = 1
if the participant was randomized to smoke VLNC cigarettes (0.4 mg nicotine per gram of tobacco, high
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Table 1. Simulation results

n Estimator Bias MC SD Mean SE CP MSE

225 Per Protocol −0.629 0.173 0.174 0.045 0.426
Self-Report IPW −0.403 0.155 0.154 0.257 0.187
IPW −0.035 0.330 0.278 0.905 0.110
Cutoff IPWAUC=0.8 −0.140 0.860 0.740 0.978 0.758
CUREAUC=0.8 −0.119 0.768 0.689 0.976 0.603
Cutoff IPWAUC=0.9 −0.037 0.605 0.574 0.972 0.367
CUREAUC=0.9 −0.033 0.523 0.518 0.970 0.274

500 Per Protocol −0.636 0.114 0.117 0.000 0.417
Self-Report IPW −0.405 0.101 0.103 0.024 0.174
IPW −0.015 0.209 0.196 0.926 0.044
Cutoff IPWAUC=0.8 −0.010 0.665 0.659 0.983 0.442
CUREAUC=0.8 −0.047 0.530 0.571 0.978 0.283
Cutoff IPWAUC=0.9 0.021 0.368 0.419 0.982 0.136
CUREAUC=0.9 −0.021 0.277 0.344 0.965 0.077

1000 Per Protocol −0.633 0.086 0.082 0.000 0.408
Self-Report IPW −0.405 0.071 0.072 0.000 0.169
IPW −0.009 0.154 0.143 0.937 0.024
Cutoff IPWAUC=0.8 0.070 0.480 0.531 0.983 0.235
CUREAUC=0.8 −0.011 0.325 0.418 0.979 0.106
Cutoff IPWAUC=0.9 0.053 0.244 0.279 0.977 0.062
CUREAUC=0.9 −0.007 0.173 0.208 0.963 0.030

Subscripts indicate the area under the ROC curve for discriminating compliers from non-compliers.
MC SD, Monte Carlo standard deviation of the estimator; Mean SE, mean estimated standard error
of the estimator; CP, coverage probability of 95% CI, MSE: mean squared error.

and low tar groups combined) and let A = 2 if randomized to smoke usual brand cigarettes. All other
notation in this application is defined in Section 2.

The goal of this analysis is to estimate the causal contrast μ(2, 0) − μ(1, 0), the expected reduction
in cigarettes smoked per day during week 6 if smoking only VLNC cigarettes versus smoking usual
brand cigarettes. We estimate the causal effect by estimating μ(2, 0) and μ(1, 0) separately and taking
their difference. The usual brand group is meant to represent smoking behavior with commercially avail-
able cigarettes and, in that sense, participants in this group were never treated as non-compliant, and
μ(2, 0) was estimated using the sample average of the total number of cigarettes smoked per day dur-
ing week 6 (i.e., study plus non-study cigarettes). We consider the four estimators for μ(1, 0) discussed
in the simulation study (excluding IPW because C is unobserved) and include the ITT estimator for
comparison.

As in the simulation, we assumed that E(C|A, X , Y , D = 0) = 0, and participants with D = 0 did
not contribute to estimation of the mixture distribution. Using the biomarker log(TNE) measured at week
6 as the (only) biomarker B of exposure, we estimated the probability of compliance for participants
self-reporting compliance (i.e., D = 1) following the approach in Section 3.1. Specifically, in fitting
the mixture distribution in Equation (3.2), we assume a simple linear regression model with normally
distributed errors for B|A = 1, Y , D = 1, C with no shared parameters between the different levels of C.
As in the simulation, we assume that B and X are conditionally independent given A, Y , and C, consistent
with the DAG in Section B of the supplementary material available at Biostatistics online. We assumed a
logistic regression model for Pr(C = 1|A = 1, X , Y , D = 1), where the confounders X included age, level
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Fig. 1. Left: histogram of log(TNE), the biomarker of nicotine exposure, for the self-reported compliers randomized
to smoke cigarettes with 0.4 mg nicotine per gram tobacco in the CENIC-p1 trial. The estimated mixture distribution
(solid line) and the distribution of each of the mixture components (dashed and dotted lines) is overlaid. Right:
probability a participant who self-reported compliance was actually compliant as a function of TNE and number of
self-reported study cigarettes smoked per day.

of addiction (baseline cigarettes per day and log of TNE), measures of withdrawal (Minnesota Nicotine
Withdrawal Scale at week 5 and maximum acute withdrawal), and satisfaction with and craving for
VLNC (Cigarette Evaluation Scale and Questionnaire of Smoking Urges at week 5) and normal nicotine
cigarettes (Questionnaire of Smoking Urges at week 5). We incorporated the data for the 23 participants
from Denlinger and others (2016) who were known to be compliant to aid in estimating the parameters
of the mixture distribution as described in Section 3.2. Multiple sets of starting values were tried for the
EM algorithm, and we used those values which gave the lowest negative log likelihood. We estimated
the denominator Pr(C = 1|A = 1, X ) following the approach of Section 3.3 using a logit link with the
same predictors X described above. All CIs were estimated using the non-parametric bootstrap percentile
method with 1,000 bootstrap resamples.

For the VLNC group, 137 of 222 (61.7%) participants self-reported compliance during week 6. The
left panel of Figure 1 shows a histogram of B = log(TNE) for the self-reported compliers in the treatment
group, the estimated mixture distribution, and the complier and non-complier component distributions,
which supports our parametric assumptions for the components of the mixture distribution. The right
panel shows the probability of compliance as a function of TNE and Y , the self-reported number of
cigarettes per day. We estimated Pr(C = 1|A = 1, D = 1) = 0.376, and Pr(C = 1|A = 1) = 0.224,
indicating a substantial proportion of self-reported compliers were non-compliant. Estimated coefficients
and parameters for the numerator and denominator of the weights and 95% bootstrap CIs can be found in
Section C of the supplementary material available at Biostatistics online. We also include a table giving
some summary statistics of baseline characteristics, confounders, and the biomarker Week 6 log(TNE).

Table 2 shows the estimated causal effect of VLNC cigarettes on number of cigarettes smoked per day.
The cutoff IPW gives the most optimistic estimate of the causal effect of the treatment, while the CURE
estimate is more conservative. In contrast, the per protocol and self-report IPW estimators give similar
and more modest estimates of the treatment effect. Although the CURE and cut-off IPW estimates are
similar, note that the length of the 95% CI is much wider for the cut-off IPW estimator than for the CURE
estimator.
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Table 2. Point estimates, standard error (SE) of the estimators, and 95% CI
of the estimated causal effect for each estimator

Estimator μ̂(2, 0) μ̂(1, 0) μ̂(2, 0)− μ̂(1, 0) SE 95% CI

ITT 22.18 15.37 6.81 1.57 (3.78, 10.07)

Causal estimators
Per protocol 22.18 15.12 7.07 1.80 (3.61, 10.63)
Self-report IPW 22.18 15.19 6.99 1.67 (3.66, 10.38)
Cutoff IPW 22.18 14.83 7.35 3.03 (1.64, 12.99)
CURE 22.18 14.98 7.20 2.79 (2.01, 12.46)

μ(2, 0): mean cigarettes smoked per day for the usual brand group; μ(1, 0): mean cigarettes
smoked per day for the VLNC group if all participants were to be compliant.

We typically expect the ITT estimator to be more conservative than estimators of the causal effect.
Although the ITT estimator was in fact more conservative than the causal estimator, the difference is small
considering the large proportion of noncompliance. While this may seem counterintuitive, the impact of
non-compliance may be different compared to other clinical trials of medication. In the case of medication,
we expect a monotone dose-response relationship, and non-compliance with the medication should dilute
the treatment effect by reducing the dose received. Here, on the one hand, non-compliant use of high
nicotine cigarettes could actually reduce the need for study cigarettes more than the study cigarette itself
(e.g., by more effectively alleviating withdrawal). Consequently, one might expect the number of study
cigarettes smoked per day to be lower in non-compliant participants than it would be if they were forced
to be compliant. On the other hand, non-compliance is also associated with individuals who find VLNC
cigarettes particularly unsatisfying. Such individuals might be less inclined to continue to smoke or would
smoke less if forced to be compliant.

The results presented here require us to assume that we have correctly modeled the numerator and
denominator of the weights and should be interpreted cautiously. Like all models, the assumptions must
be considered when interpreting outcomes, and convergent analyses should be used to clarify the likely
mechanism whenever possible. Finally, it is important to note that in a regulatory environment in which
VLNC cigarettes were the only legally available cigarettes, we would expect that the proportion of smokers
using only VLNC cigarettes would be substantially higher than in CENIC-p1, but there would still likely
be some use of cigarettes with higher nicotine content (e.g., hoarding, black market).

7. DISCUSSION

Methods for estimating causal effects from randomized clinical trials when there is noncompliance fre-
quently rely on imperfect measures of compliance. Estimators that do not acknowledge the error in the
measures of compliance will result in biased estimators of the causal effect. We developed a causal esti-
mator that accounts for uncertainty in compliance status by re-weighting a typical IPCW estimator by
a participant’s probability of compliance given a biomarker of compliance, the outcome of interest, and
confounders. Although we treated the true compliance status as unobserved, we showed the probability
of compliance can be estimated by assuming the distribution of the biomarker follows a mixture distri-
bution with separate components for compliers and non-compliers. The simulation demonstrates that our
proposed estimator has little bias, good coverage probability, and smaller mean squared error than an ad
hoc estimator.
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The methods developed here have particular relevance to and were motivated by regulatory tobacco
research. There is usually substantial noncompliance in regulatory tobacco trials due to the availability of
commercial tobacco products. The causal analysis using the methods we have developed, as compared to
an ITT analysis, is likely to better estimate the effect we would observe if regulations changing the nicotine
composition in cigarettes were enacted. However, our proposed method also has broad applicability for
clinical trials conducted in other therapeutic areas. The method is particularly attractive in cases where
investigators rely on imperfect measures of compliance, such as participants’ self-report (e.g., pill counts,
timeline follow back, etc.) because the method explicitly accounts for the uncertainty of compliance status.

The preceding has assumed that either the outcome Y is not subject to measurement/self-report error
or that one is interested in the average causal effect on self-reported outcomes. We show in Section D
of the supplementary material available at Biostatistics online that if the observed outcome is subject to
measurement error, the proposed approach will estimate the causal effect if there were no measurement
error under mild assumptions.

Others have investigated the effect of and possible solutions to mediation estimators when the medi-
ator (e.g., compliance to randomized treatment group) is measured with error (Valeri and others, 2014;
Ogburn and VanderWeele, 2012). Most prior work has examined the effect on regression-based estimators
as opposed to our IPW framework. Additionally, our approach makes minimal assumptions about mea-
surement error. In particular, we do not need to assume that self-reported compliance (i.e., the covariate
measured with error) is a surrogate for true compliance for valid inference. That is, the method does not
require that D is conditionally independent of Y given C or that D is conditionally independent of Y given
C and X .

There are several limitations to our approach. First, estimating the parameters of the mixture distribu-
tions may be computationally challenging, resulting in unstable parameter estimates. In our simulation,
we relied on an auxiliary data set that included data from participants whose compliance was known.
However, such data sources are frequently available in other settings as well, such as in pharmacoki-
netic/pharmacodynamic studies. Second, we only considered compliance and outcomes during week 6 of
the CENIC-p1 trial. This was done mainly for simplicity, however, and we could develop a longitudinal
extension of the estimator, which is a likely subject of future work. Finally, inverse probably weighted
estimators are known to be inefficient. The efficiency of the CURE estimator could likely be improved
through an augmented weighted estimator (Tsiatis, 2006).

Causal inference methods frequently rely on poor measures of compliance. Our causal estimator weights
participants by the product of their probability of compliance given the biomarker of treatment exposure
and the inverse probability of compliance given confounders. Our approach suggests that, rather than
improving methods of eliciting compliance status from participants, perhaps a more fruitful of area of
research is in developing biomarkers of exposure. We restricted our attention to IPCW-like weights and
developed the method for a point exposure study, but future work may develop causal estimators in other
settings. Our hope is that the proposed methods becomes a standard analysis by investigators estimating
causal effects from clinical trials.

8. SOFTWARE

The R code for the simulation and an example data set with analysis is available for download at
https://github.com/jeffrey-boatman/cure-estimator.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

https://github.com/jeffrey-boatman/cure-estimator
http://biostatistics.oxfordjournals.org
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