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Abstract

Motivation: Random forest (RF) has become a widely popular prediction generating mechanism. Its

strength lies in its flexibility, interpretability and ability to handle large number of features, typically

larger than the sample size. However, this methodology is of limited use if one wishes to identify statis-

tically significant features. Several ranking schemes are available that provide information on the rela-

tive importance of the features, but there is a paucity of general inferential mechanism, particularly in a

multi-variate set up. We use the conditional inference tree framework to generate a RF where features

are deleted sequentially based on explicit hypothesis testing. The resulting sequential algorithm offers

an inferentially justifiable, but model-free, variable selection procedure. Significant features are then

used to generate predictive RF. An added advantage of our methodology is that both variable selection

and prediction are based on conditional inference framework and hence are coherent.

Results: We illustrate the performance of our Sequential Multi-Response Feature Selection approach

through simulation studies and finally apply this methodology on Genomics of Drug Sensitivity for

Cancer dataset to identify genetic characteristics that significantly impact drug sensitivities. Significant

set of predictors obtained from our method are further validated from biological perspective.

Availability and implementation: https://github.com/jomayer/SMuRF

Contact: souparno.ghosh@ttu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The general goal in systems medicine is to develop predictive models

that can accurately predict sensitivity of an individual tumor to a drug

or drug combination. Several predictive models have been developed

for drug sensitivity prediction based on genetic characterizations

(Haider et al., 2015; Mitsos et al., 2009; Sos et al., 2009; Walther and

Sklar, 2011). In a recent community-based effort organized by

Dialogue on Reverse Engineering Assessment and Methods (DREAM)

project (Costello et al., 2014) and National Cancer Institute that

explored multiple different drug sensitivity prediction algorithms

applied to a common dataset, a Random Forest (RF)-based predictive

methodology turned out to be a top performer (Wan and Pal, 2013).

RF refers to an ensemble of decision trees generated from

bootstrap samples of the training data (Breiman, 2001). It relies on

recursive partitioning of the feature space, where a randomly

selected subset of features is considered at each node of each tree

and an optimal node-splitting feature (belonging to this subset) and

an optimum splitting rule is obtained via optimization of a specified

cost function. Although several methods are available to draw the

foregoing subset of features (Amit and Geman, 1997; Geurts et al.,

2006; Ye et al., 2013), simple random sampling remains the most

popular sampling method. Random sampling strategy decreases the

correlation among trees and thus, the average response of multiple

decision trees is expected to have lower variance than individual

trees. Experimental results from several disciplines demonstrate the

ability of RFs in generating accurate predictions (Banfield et al.,

2007; Dietterich, 2000; Rahman and Pal, 2016; Rodriguez-Galiano

et al., 2012; Schwarz et al., 2010). Furthermore, random sampling
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of features to generate trees can structurally handle large number of

predictors, typically larger than the sample size. Consequently, RF

has become a widely popular predictive mechanism, particularly

suitable for handling high dimensional feature space. Given its pop-

ularity and superior performance in the foregoing DREAM project,

we focus exclusively on RF methodology as the predictive tool and

develop a strategy that can use RF framework for performing varia-

ble selection too.

Note that, in targeted drug therapy, besides prediction, it is also

important to identify the genetic features that explain the drug

action. In this situation, the most relevant features are the drug tar-

gets along with proteins that are closely connected to the drug tar-

gets. Information available on the features that are not biologically

related to the drug action mechanism is essentially redundant.

Typically, the size of this redundant set of features is overwhelm-

ingly large as compared to the size of the relevant features (Hopkins

and Groom, 2002; Imming et al., 2006). In such a situation, a ran-

dom sampling mechanism will produce considerable number of trees

that do not contain any relevant features. For instance, consider a

complete set of M features out of which m �Mð Þ are relevant to the

response and the rest M–m are not informative. Then the probability

that a randomly chosen set of q (1<q�M) features at a particular

node of a tree will contain at least one relevant feature is

1� M�m
q

� �
= M

q

� �
. For instance, if M¼5000, m¼10 and q¼5,

1� M�m
q

� �
= M

q

� �
¼ 0:01. Then for a tree with d splitting nodes,

with independent randomized draws of size qj at each node, the

probability that at least one random subset will contain at least one

informative features is given by 1�
Qd

j¼1
M�m

qj

� �
= M

qj

� �
. Clearly,

one need to grow trees of sufficient depth in order to pick relevant

features otherwise the prediction generated from the particular tree

would not be useful.

Problem arises because the set m is typically not known, or only

partially known, a-priori. Instead, it is customary to use some

dimension reduction techniques, as a pre-processing step, to reduce

the candidate feature set to a reasonable size and then proceed to

use more sophisticated mechanism to generate predictions or obtain

the best feature set (Dudoit and Fridlyand, 2003; Hua et al., 2009;

Svetnik et al., 2004).

RELIEFF is a widely popular filter feature selection method and

its relevance evaluation criterion was shown to provide superior per-

formance in many situations (Robnik-�Sikonja and Kononenko,

2003). However, it operates on univariate input and univariate out-

put and produces a ranking of features. It does not explicitly per-

form variable selection. LASSO (Tibshirani, 1996), on the other

hand, is arguably the most popular model based variable selection

algorithm. It systematically forces the coefficients associated with

the features to be small or to be exact zero while minimizing the fit-

ting errors. Features with coefficients that are close to zero are then

eliminated. To handle multi-variate responses, (Obozinski et al.,

2010) devised multi-task LASSO (MLASSO) that utilized an ‘1/‘2
norm to find the common subspace of features among responses.

However, both basic and MLASSO eliminate correlated features

(Zou and Hastie, 2005), which may not be a desired property in bio-

logical studies (Toloşi and Lengauer, 2011). To alleviate this prob-

lem, the multi-task elastic net (MEnet) (Chen et al., 2012) was

proposed, which employs an additional ‘2 penalty to the coefficients

in the MLASSO.

Regardless of the pre-screening methodology, we need to ascer-

tain that the filter step has the ability to accurately select the candi-

date set of features which will contain the best feature set. What

should be the size of candidate set? If it is too small, the follow-up

computation would be fast, but we may leave out some important

feature (elements of m) and hence the variable importance score that

are generated subsequently are not reliable. If it is too large, we can

expect to have included the important features but then it will also

include large number of spurious features, particularly, if m=(M–m)

is small, and the subsequent prediction from RF will suffer from the

aforementioned problem of having too many weak learners–which

in turn will affect the prediction performance. What we are alluding

to is the fact that a methodology to obtain an objective guideline on

how many features need to be selected from the pre-processing stage

has not been investigated extensively. For most of the filter-based

approaches, the choice of the initial set of candidate features is

mostly subjective and fairly arbitrary (Costello et al., 2014).

Furthermore, we shall demonstrate via simulation studies (Section

3.1) that the standard RELIEFF approach to obtain the candidate

set of features perform poorly, even under simple data generation

model, when m/(M–m) is small. For more advanced regularization-

based approaches, one cannot easily attach a statement about statis-

tical significance with the selected features.

Besides these standard filter-based approached and regulariza-

tions, Dudoit and Fridlyand (2003) and Svetnik et al. (2004) pro-

posed a data-driven methodology to obtain a best model dimension,

say r, first and then select the set of r most important features.

However, this approach may lead to non-interpretable models

where the selected features may not be biologically meaningful

(Diaz-Uriarte and Alvarez de Andres, 2006). Regardless of the meth-

odology, determining a best model dimension completely empiri-

cally may be too restrictive in a biological setup. Often, a strong

penalty on model complexity is imposed purely for estimation pur-

pose. For instance, standard LASSO penalty forces the number of

non-trivial parameters to be less than the sample size. Quite obvi-

ously, such penalty may lead to non-detection of features even

though they may be statistically significant. We shall demonstrate in

Section 3 that a harsh LASSO-type penalty induces unnecessary

sparsity while a relaxed ridge-type penalty leads to overwhelming

false detection.

Our emphasis on interpretability of the model is due to an

important aspect in targeted drug therapy where selection of specific

features is as important as the identity of those features to find addi-

tional targets for increasing the precision of drugs or designing effec-

tive drug combinations. Thus, the selected feature set should not

only produce accurate prediction but should also be biologically

meaningful to be of any practical use. In other words, besides pre-

diction accuracy, we need to identify all the genomic characteristics

that significantly impact drug sensitivities. Ideally, we would like to

have an inferential mechanism available to us akin to standard linear

regression models, where the P–value of each regression coefficient

indicates the relative importance of the predictors, the value of the

coefficients can be used for prediction and goodness-of-fit measures

(AIC or BIC) can be used to objectively identify model complexity.

In our case, we have multi-variate responses with number of features

overwhelmingly large as compared to sample size and the model

complexity is determined both biologically and empirically. So, we

would like to perform the following tasks:

a. Variable selection from a very high dimensional feature space

explicitly taking into account multi-variate nature of the

responses,

b. guarantee that the selected set of features will be both statisti-

cally significant and biologically relevant,
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c. generate predictions from the features selected in (a) using RF

mechanism with the added advantage of eliminating weak

learners.

Although several methods are available that can handle individual

aspects of the above lists of tasks, for instance, several forms of

multi-task feature selection methodologies (Chen et al., 2012; Liu

et al., 2009; Nie et al., 2010; Obozinski et al., 2010) can be used to

handle the multi-variate nature of responses while performing varia-

ble selection, but the significance of the features cannot be tested

owing to the bias incurred due to regularization. None of the

foregoing methodologies, in their original form, can incorporate

biological information associated with the features. Multi-variate

group-LASSO (Li et al., 2015) is an attractive alternative that can

induce sparsity and include biological information during the varia-

ble selection, but this methodology is model dependent and requires

precise knowledge of group-structure a-priori. Despite their state-of-

art nature, these methodologies would not be able to fulfill task (b).

Instead of selecting variables via regularization, one can use sev-

eral permutation based importance measures which explicitly per-

form tests to provide information about statistical significance of the

features (Strobl et al., 2007). In particular, the conditional inference

framework (Hothorn et al., 2006) provides an algorithm for recur-

sive binary partitioning that actually separates variable selection and

splitting procedure at each node of the decision tree. In the variable

selection phase, a global null hypothesis of independence between a

set of features and the response is tested and the one that shows

strongest association with the response is selected as the splitting

feature. Unbiasedness in selection procedure is achieved via compu-

tation of P–values associated with the conditional distribution of the

test statistic. Thus, the feature that has minimum (multiple testing)

adjusted P–value which is also below a nominal threshold of a is

selected for splitting. Once the splitting variable is selected, any

desirable node cost function can be used to determine the actual

split. Tree building stops when the global null hypothesis of inde-

pendence cannot be rejected at level a. Note that, in this approach

unbiased variable selection is performed simultaneously with tree

generation and the P–values associated with each feature could be

used as a variable importance measure in each node.

We can use the conditional inference framework, suitably

adapted for multi-variate responses, to generate conditional random

forest (CRF). We can then take the union of the set of statistically

significant features produced by each tree to create the global pool

of statistically significant features. In this article, we exploit this

attractive statistical property of CRF and develop an iterative selec-

tion mechanism that can handle high dimensional feature space.

Such iterative selection mechanism was used by Diaz-Uriarte and

Alvarez de Andres (2006) for classification problem and by

Hapfelmeier and Ulm (2013) for regression problem. However,

none of the above studies have been extended to multi-variate

responses. In fact, the permutation based importance measures, rec-

ommended by Hapfelmeier and Ulm (2013), cannot be used for

multi-variate responses. In this article, we develop a multi-variate

extension of the foregoing studies. We describe an easily interpret-

able variable importance measure to identify strongly informative

features from relatively weak ones. We demonstrate the empirical

convergence of our selection algorithm with synthetic data. We

apply our methodology on drug sensitivity data, obtained on drug

pairs that have common targets and hence expected to generate cor-

related sensitivities. We also describe an intuitive approach that

allows our methodology to incorporate biological information in

the variable selection stage. We reiterate that the prediction

mechanism throughout this article is multi-variate random forest

(MRF), we only compare the accuracy of our proposed variable

selection methodology with several extant methodologies.

We discuss the details of our methodology in Section 2, provide

simulation examples and follow it up with analyses of GDSC data in

Section 3. We discuss the implications of our methodology and fur-

ther research directions in the final section.

2 Materials and methods: sequential multi-
response feature selection

The key to the proposed methodology is an iterative selection mech-

anism that first identifies a sparse set of significant features, Fw and

then proceeds to identify a sparser set of strongly informative fea-

tures, F s, with F s � Fw. Fw provides information about adequate

model dimension, while F s is the (empirically justifiable) sparsest

feature set that has sufficient explanatory power. We can then use

these features in either Fw or F s to develop a full blown MRF

(De’ath, 2002; Rahman et al., 2017) to generate predictions. Below

we describe the screening and prediction methodologies.

The basic theoretical idea of screening is repeated use of condi-

tional inference framework of (Hothorn et al., 2006). We offer a

brief description of the algorithm used to identify significant features

below (A more detailed discussion on conditional inference in deci-

sion trees and RFs along with practical guidelines to choose a can be

found in Hothorn et al., 2006):

Let the conditional distribution of the multi-variate response var-

iable Y given M features X ¼ x1;x2; . . . ;xMð Þ be denoted by

D Y jXð Þ. Then at each node of a conditional inference tree, involving

q features, we need to assess whether these features have sufficient

explanatory power. Hothorn et al. (2006) suggested to test the par-

tial null hypothesis Hj
0 : D Y jxj

� �
¼ D Yð Þ individually to assess the

global null H0 : \q
j¼1Hj

0. If H0 cannot be rejected, at a pre-specified

level of significance (a), all q features are declared insignificant. If

the H0 is rejected, then the level of association between Y and xj is

measured by the P–value associated with Hj
0; j ¼ 1; 2; . . . ; q. Under

the assumption of independent samples, they derived a linear statis-

tic of the form

Tj ¼ vec
Xn

i¼1

wigj xji

� �
h Y i; Y1; . . . ;Ynð Þð ÞT

 !
(1)

where wi is the case weight associated with the ith sample with

wi¼1 indicating that the ith sample is observed at the correspond-

ing node of a particular tree and wi¼0 indicate the absence of the

said sample, gj :ð Þ is a non-random transformation of xj and h :ð Þ is

the influence function that depends on Y1; . . . ;Ynð Þ in permutation

symmetric way. The null distribution of Tj in (1) can be obtained by

fixing xj and permuting the responses. Strasser and Weber (1999)

obtained the closed form expression of the conditional mean (lj)

and covariance matrix (Rj) of T j under H0 given all permutations.

Using this conditional mean, and the Moore-Penrose inverse Rþj of

Rj, Hothorn et al. (2006) obtained a simplified univariate test statis-

tic of the form ðT j � ljÞRþj ðT j � ljÞ
T which has an asymptotic v2

distribution with degrees of freedom given by the rank of Rj. Given

this asymptotic null distribution of the univariate test statistic we

can compute the P–value associated with Hj
0. To test the global H0,

we use Bonferonni-adjusted P–values obtained from each partial

nulls and reject H0 when the minimum of these individual P–values

is less than the nominal threshold of a.

When H0 is rejected, the feature that produces the minimum

adjusted P–value is chosen as the splitting feature and the standard
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node cost function of multi-variate regression trees (De’ath, 2002) is

used to determine the splits. Note that, several features can be

declared significant at each node but the splitting feature is con-

ceived as the one that has the strongest association with the response

variable.

Based on this conditional inference framework to identify signifi-

cant features, we propose our Sequential Multi-Response Feature

Selection (SMuRFS) algorithm

1. Partition the training data into secondary training and secondary

test sets. Specify the nominal level of significance a, number of

features q�M to be used in each conditional inference tree,

and size of a post-hoc dataset, ntest.

2. For a particular tree, draw a random sample of q features from

M features. Fit a conditional inference tree on bootstrapped sam-

ples. Let Q1 be the set of features declared to be significant in

that tree. Let Q2 ¼ q�Q1 be the set of insignificant features.

3. Assess the significance of the features in Q2 on the post-hoc

dataset, of size ntest, using the conditional inference framework.

Let Q3 � Q2 be the set of features that remain insignificant in

both Step 2 and Step 3. Remove the set Q3 from further

consideration.

4. Obtain another bootstrap replicate of the observed samples.

Draw a random sample of q features from M�Q3 features and

repeat Steps 2 and 3.

5. Stop when both the following conditions are satisfied (a) each of

the M features is either declared significant or is deleted and (b)

Q3 ¼ fg for the particular tree.

6. Using only the out-of-bag samples in Step 2 will lead to mis-

match in power of the tests determining deletion from iteration

to iteration. To achieve more balance in power, we augment the

out-of-bag samples with randomly selected training samples to

obtain the post-hoc dataset whose size, ntest, remains same in all

iteration.

7. Perform cross validation to remove potential bias in variable

selection.

8. Once the algorithm has converged, the set of features that sur-

vives the last iteration, in that particular fold, is declared the set

of significant features, Fw.

9. Grow a standard multi-variate CRF on the secondary test set

using features in Fw and collect the splitting features. This set of

features, F s, has the highest evidence against the orthogonality

between the response and features. Elements of F s are termed as

strongly informative features.

Evidently, we can attach statements about statistical significance to the

screened set of features. Qualitative labels, indicating variable impor-

tance, are automatic, i.e. features in F s are strongly informative while

those in Fw � F s are weakly informative. Finally, the second stage

multi-variate CRF, generated with the features in Fw, becomes the pre-

dictive apparatus (A pseudocode of this algorithm can be found the

Supplementary Material. An R code implementing this algorithm can

be downloaded from https://github.com/jomayer/SMuRF/). We can

also generate another multi-variate CRF on the secondary test data

using features in F s which we call strong-SMuRFS. We demonstrate

improved biological relevance of strong-SMuRFS in Section 3.

2.1 Incorporating biological information
Our focal application in this article is targeted drug therapy which

contains precise information about drug targets and proteins that

are closely connected with those targets. The SMuRFS algorithm

described above does not include that additional information while

performing variable selection. We offer an intuitive approach to

accommodate drug target specific information within the SMuRFS

framework.

Observe that, conditional inference framework first partitions

the feature space and then estimates partition-based regression

relationships. When we have information about drug targets, and

features closely connected to those targets, we have a natural dichot-

omous partition of the feature space. Let, XA be the set containing

biologically relevant features (associated with a given drug) and its

complementary set, Xc
A, contains biologically unrelated features and

those features whose association with the elements in XA are biolog-

ically ambiguous.

We propose an unbalanced penalization rule where features

belonging to Xc
A need to satisfy stricter inclusion criterion as com-

pared to features belonging to XA. As SMuRFS requires that each

feature must survive multiple testings before being included in Fw,

we can subject all the features in Xc
A to this standard SMuRFS inclu-

sion rule. In contrast, if the features in XA turn out to be significant

in any one of the iterations of SMuRFS algorithm, they are directly

included in Fw.

3 Results

3.1 Simulation
We compare the variable selection accuracy of our proposed

SMuRFS and strong-SMuRFS with that of MLASSO, MEnet and

standard RELIEFF methodologies. In particular, we observe how

the foregoing two versions of SMuRFS react to (a) a high dimen-

sional feature space, (b) highly correlated predictors and (c)

> 2�dimensional response space [It is to be noted that MLASSO or

its elastic net counterpart are not based on hypothesis testing princi-

ple and, therefore, do not make binary decisions on whether to

retain a feature or discard it. Instead, they produce weights reflect-

ing relative importance of each feature. However, under model

misspecification such weights are not reliable (Supplementary

Material). Regardless of the incompatibility between SMuRFS and

MLASSO/MEnet, the latter are the only methodologies, we know

of, that allow simultaneous feature selection for multi-variate

responses in a single coherent setup].

First, for the ith sample, we simulate 1000 features,

X i ¼ X1i; . . . ;X1000ið Þ from a multi-variate normal distribution

with zero mean and block diagonal covariance matrix R given

by R ¼ bdiag X;X;X;X; Ið Þ, where X25�25 is given by Xbb ¼ 1 and

Xbb0 ¼ 0:7 for b 6¼ b0, and I900�900 denotes identity matrix. Next,

we simulate the coefficient matrix b1000�4 ¼ b1;b2; b3; b4�½ with bj

is given by ½b100�1
j;s ; 0900�1�; j ¼ 1; . . . ; 4. Each component of bj;s is

generated independently from a Uniform(1, 3) distribution, for

j ¼ 1; . . . ; 4. Then the mean of the ith response corresponding to the

jth dimension is generated as

lij ¼ X ibj þ 20 1þ exp ðX ibjÞ
� ��1

(2)

Finally, we simulate the marginal response Yij from a Nðlij; 1Þ distri-

bution, j ¼ 1; . . . ;4. The dependence in the response vector,

Y i ¼ Yi1;Yi2;Yi3;Yi4½ � is induced via Gaussian copula with correla-

tion coefficient q ¼ 0:5. We simulate n¼500 samples, noting that

the first 100 features are actually used to generate the mean. These

features are termed as signal features and the remaining 900 are

labeled spurious features.

For each competing algorithm, we perform 5-fold cross valida-

tion. In each fold, we use 20% of the data as primary test set and
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the remaining 80% data are randomly split into two equal parts, the

training set and the secondary test set. All variable selection algo-

rithms are run on the training set. Performances of the competitors

are measured by the number of signal and spurious features that

each of them has screened in each fold. Once the features are

selected, we train a multi-variate CRF, now on the secondary test

set, in each fold using the features selected (by different algorithms)

in the previous step. This multi-variate CRF is used to predict the

responses in the primary test set. We compare the prediction per-

formances of the competing algorithms using normalized mean

squared prediction error (NMSPE) and normalized mean absolute

prediction error given by

NMSPE ¼
Y � bY� �T

Y � bY� �
Y � �Y � 1
� �T

Y � �Y � 1
� �

NMAPE ¼ jY � bY jT1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y � �Y � 1
� �T

Y � �Y � 1
� �q ;

where Y and bY denote the vector of actual observations and their

corresponding predicted values, respectively. �Y denote the sample

mean of Y and 1 is the usual unit vector. Computation is performed

in R platform using the partykit package (Hothorn and Zeileis,

2015).

For SMuRFS, we fix q¼5, a ¼ 0:05 and ntest¼127. We run the

SMuRFS algorithm on each fold with the same values of q; a and

ntest. The screen plot in Figure 1 summarizes the performance of

SMuRFS algorithm. The figure suggests that the number of variables

selected in each fold appears to be converging empirically. For

MLASSO algorithm, we use the 5-fold cross validated minimum k

and select the features whose corresponding coefficients are

non-zero. For MEnet, we use a ¼ 0:8 and the 5-fold cross validated

minimum k and select the features whose corresponding regression

coefficients are non-zero. For both MLASSO and MEnet, we use the

glmnet package in R (Friedman et al., 2010; Simon et al., 2011). As

RELIEFF works only on univariate response, we apply RELIEFF on

Y1; . . . ;Y4, individually, using CORElearn package in R (Robnik-

Sikonja and with contributions from John Adeyanju Alao, 2016)

and take the union of top 100 features obtained from this univariate

RELIEFF deployment. Table 1 shows the performance of the com-

peting models in identifying the true signals.

On an average, MEnet picks out 98 signals out of 100, followed

by SMuRFS (95), RELIEFF (54) and MLASSO (46). Conversely, on

an average, MLASSO selects the sparsest set of features (74), fol-

lowed by SMuRFS (104), RELIEFF (323) and MEnet (388). Sparsity

of MLASSO is due to the sparse nature of the problem and presence

of correlated features (Tibshirani, 1996). MEnet consistently selects

highest number of signals in each fold, but at the cost of selecting a

large number of spurious features. RELIEFF does not perform well

in terms of identifying signals nor does it induce sufficient parsi-

mony. The fact that all multi-variate procedures outperform

RELIEFF indicates that a univariate selection scheme, i.e. RELIEFF

is not appropriate when dealing with multi-variate responses.

Although one can argue that sparsity can be induced in RELIEFF if

one uses only a few features in each response dimension, but that

strategy, in our experience, results in even more non-detection of

signals.

Observe that SMuRFS is overwhelmingly superior in terms of

the picking up signals and rejecting spurious features in every fold.

The average correct detection to false detection ratio (Column 4/

Column 5 of Table 1) for SMuRFS is 13.7, followed by MLASSO

(2.55), MEnet (0.36) and RELIEFF (0.2). As mentioned before, the

splitting features observed in multi-variate CRF trained on the sec-

ondary test set identifies the strongly informative features, F s. In

this synthetic data, F s consists of 90 signals and 1 spurious feature

across all 5-folds. This demonstrates that strong-SMuRFS can reli-

ably identify true features from spurious ones.

Turning to prediction performances, we report the NMSPE and

NMAPE, averaged over the 5-folds, for each competing algorithm

in Table 2. To demonstrate the deleterious effect of spurious fea-

tures, we fit a conditional MRF without any feature selection and

report the NMSPE and NMAPE for this baseline model too.

The ability of SMuRFS to pick up the signals and remove spuri-

ous features enables it to outperform MLASSO and MEnet in terms

of predictive accuracy too (Table 2). Note that, we can also train a

Fig. 1. Empirical convergence of sequential feature selection algorithm for

100 signals

Table 1. Table showing the selection accuracy of competing algo-

rithms for m ¼ 0:1M

Method Fold Number of Number of Number of spurious

true signal signals identified features selected

SMuRFS Fold 1 100 97 9

Fold 2 100 93 4

Fold 3 100 93 8

Fold 4 100 92 17

Fold 5 100 100 7

MLASSO Fold 1 100 46 53

Fold 2 100 50 37

Fold 3 100 48 10

Fold 4 100 41 31

Fold 5 100 44 10

MEnet Fold 1 100 99 281

Fold 2 100 100 323

Fold 3 100 98 373

Fold 4 100 93 289

Fold 5 100 100 186

RELIEFF Fold 1 100 54 274

Fold 2 100 59 267

Fold 3 100 49 267

Fold 4 100 47 268

Fold 5 100 59 270
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predictive model using only the strongly informative features

belonging to F s. Hence, we also report the prediction performance

of strong-SMuRFS in Table 2. Although, its performance is inferior

to SMuRFS, but it outperforms MLASSO. Its predictive ability is

similar to that of MEnet, but strong-SMuRFS is overwhelmingly

parsimonious as compared to MEnet, and hence is preferable. As

expected, the performance of the baseline model is worst among all

competing models.

Given the evidences from the simulation, we conjecture that

inclusion of a large number of spurious features, under extreme

sparsity, is perhaps more detrimental than developing a parsimoni-

ous model that penalizes complex model more severely. Our sequen-

tial approach structurally puts higher weightage on Type I error rate

and the resulting test procedure explicitly encourages parsimony

without having to resort to difficult-to-interpret tuning parameters.

3.2 Application on GDSC dataset
We apply our feature selection methodology on GDSC gene expres-

sion and drug sensitivity dataset (version 5) downloaded from

Cancerrxgene.org (Yang, 2013). It includes genomic characteriza-

tion of numerous cell lines and different drug responses for each cell

line. For the current analysis, we consider gene expression data as

the genomic characterization information and Area under the Curve

as the representation of drug responses. The dataset has 789 cell

lines with gene expression data and 714 cell lines with drug response

data. We consider only those cell lines for which both drug response

and gene expression data are available. Each cell line has 22 277

probe-sets for gene expression, yielding a high dimensional feature

space. We consider three sets of drug pairs with each pair having

common target pathway, but the target pathways are different for

different pairs. The first set SC1 consisting of AZD-0530 and

Erlotinib target signaling pathway Erbb (Wishart et al., 2006). The

second set SC2 is AZD6244 and PD-0325901 target ERK MAPK

signaling pathway with MEK being the common target for both the

drugs (Ciuffreda et al., 2009; Falchook et al., 2012). The third set

SC3 is Nutlin-3a and PD-0332991 that target the common signaling

pathway P53 (Vassilev et al., 2004). The drug sets SC1; SC2 and SC3

have complete record for 308, 645 and 645 cell lines, respectively.

For the competing MLASSO and MEnet, we use a ¼ 0:8 and the

cross validated minimum k. Once again, we perform 5-fold cross

validation, and within each fold, we utilize 20% as the primary test

set and the remaining 80% is randomly split in half into a training

set and secondary test set. Within each fold, we select features on

the training set, train a predictive bivariate CRF utilizing the selected

features on the secondary test set and test the predictive performance

on the primary test set. Using q¼5 and a ¼ 0:05, our bivariate

SMuRFS identifies 791, 1825 and 837 significant features (elements

of Fw) for SC1; SC2 and SC3, respectively, across all 5-folds.

Subsequent CRF in the secondary test set yield 235, 214 and 222

features as strong features (elements of F s) for SC1; SC2 and SC3,

respectively across all 5-folds. In comparison, MLASSO yields

171 222 431 features and MEnet yields 172 227 439 features for

SC1; SC2 and SC3, respectively across all 5-folds. Given the incompat-

ibility of RELIEFF in multi-variate set up, as observed in our simula-

tion study, we do not deploy it in this application.

Recall that, one of our tasks was to guarantee that the selected

features are both statistically significant and biologically relevant.

Although SMuRFS guarantees statistical significance, we now exam-

ine the biological relevance of the features, selected by different

methods, in human cell targets. As the common signaling pathway

of the drug pairs are known, we can retrieve the genes associated

with that pathway using Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa and Goto, 2000) database and com-

pare the number of such genes selected by the different methods. In

all the three drug pairs, we observe that strong-SMuRFS (with com-

parable size of selected features) identifies more genes of the path-

way as compared to its regularization-based counterparts (last row

of Table 3).

Apart from this, we have evaluated the statistical over-

representation of gene ontology (GO) (Ashburner et al., 2000) cate-

gories for the set of features using the Biological Network Gene

Ontology tool (Maere et al., 2005) which is a Cytoscape (Shannon

et al., 2003) plugin. This tool performs a hypergeometric test with a

Benjamini and Hochberg false-discovery rate multiple testing correc-

tion against each of the ontologies: biological process, molecular

function and cellular component (Maere et al., 2005). Among the

GO terms selected at a significance level of 0.05 from the feature set

of SMuRFS/strong-SMuRFS for drug set SC3, 5 GO terms belong to

the P53 signaling pathway which is the common signaling pathway

for this drug pair (Buil et al., 2007; Yin et al., 2016). On the other

hand, the feature set selected by MLASSO for this drug pair has no

GO terms belonging to P53 signaling pathway.

There are a number of other platforms such as STRING

(Szklarczyk et al., 2015), GeneMANIA etc., that can evaluate

observed number of protein-protein interactions (PPI) among

selected features. These interactions are determined based on differ-

ent prior knowledge and interaction sources such as text-mining,

experiments, databases, co-expression, neighborhood, gene fusion

and co-occurrences. Using Affymetrix HG-U133PLUS2 for map-

ping the features or probe-sets into proteins, we arrive at different

number of proteins or nodes for different methods that are listed in

Table 3 for drug set SC3. We use these proteins as inputs in the

string-db database (http://string-db.org/) for generating the known

PPIs network which is also reported in Table 3. We observe that the

network generated using SMuRFS is more enriched in connectivity

Table 2. Prediction performance on the test set for simulation

Method Variable NMSPE NMAPE

No reduction Y1 0.5523 0.6001

Y2 0.5520 0.5999

Y3 0.5520 0.5998

Y4 0.5523 0.6000

SMuRFS Y1 0.4224 0.5224

Y2 0.4220 0.5218

Y3 0.4221 0.5220

Y4 0.4223 0.5221

strong–SMuRFS Y1 0.4381 0.5280

Y2 0.4378 0.5280

Y3 0.4384 0.5282

Y4 0.4387 0.5282

MLASSO Y1 0.4584 0.5425

Y2 0.4579 0.5419

Y3 0.4580 0.5422

Y4 0.4582 0.5421

MEnet Y1 0.4861 0.5596

Y2 0.4858 0.5590

Y3 0.4221 0.5220

Y4 0.4223 0.5221

RELIEFF Y1 0.5370 0.5902

Y2 0.5365 0.5897

Y3 0.5365 0.5899

Y4 0.5368 0.5901

Bold entries indicate best results.
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than any other methods, for all the three drug sets. PPI enrichment

P–values and ratio of observed to expected number of edges illus-

trate that SMuRFS selected proteins are more connected among

themselves as compared to MLASSO and MEnet. High ratio of

observed to expected number of edges indicates enriched PPI, which

is probably because of the functional collaborations between the

products of these genes (Taguchi, 2017). As a visual illustration, we

include PPI network for top proteins of strong-SMuRFS for drug set

SC3 in Figure 2. Biological analyses of drug sets SC1 and SC2 are

available in the Supplementary Material (A referee correctly points

out that since we resort to PPI analyses to figure out biologically rel-

evant features, we could have included such information in the vari-

able selection stage. However, we only have KEGG for validation of

pathway information of selected features and using that information

in the selection will certainly bias the results of biological signifi-

cance. Furthermore, we cannot easily utilize the biological informa-

tion for standard MLASSO and MEnet. So, to maintain uniformity

we prefer to demonstrate that a pure statistical investigation can

also lead to biologically valid selection).

Table 3. Enrichment analysis for SMuRFS, strong-SMuRFS,

MLASSO and MEnet methods for whole genome statistical back-

ground with 0.4 confidence interval for SC3 drug pair, with com-

mon signaling pathway P53, from GDSC dataset

Method SMuRFS strong-SMuRFS MLASSO MEnet

Nutlin-3a and PD-0332991

Feature size 837 222 431 439

Number of

nodes

657 176 374 381

Number of

edges

2287 265 512 539

Average node

degree

6.96 3.01 2.74 2.83

Average local

clustering

coeff

0.35 0.362 0.337 0.332

Expected

number of

edges

1733 160 426 451

PPI enrich-

ment

P-value

0 2.29e–14 3.8e–5 2.9e–5

Ratio of

observed to

expected

edges

1.32 1.65 1.2 1.2

Pathway gene

count

14 11 8 8

Bold entries indicate best results.

Fig. 2. PPI networks for top proteins of Nutlin-3a and PD-0332991 for strong-

SMuRFS

Table 4. Prediction performances of competing methods for drug

set SC3

Drug name Fold Feature selection Number of NMSPE NMAPE

Algorithm Features

Nutlin-3a 1 strong-SMuRFS 149 0.7536 0.5827

SMuRFS 563 0.7903 0.5958

MLASSO 185 0.8245 0.6184

MEnet 185 0.8245 0.6184

2 strong-SMuRFS 50 0.7209 0.6495

SMuRFS 210 0.7161 0.6586

MLASSO 59 0.7638 0.6646

MEnet 68 0.7552 0.609

3 strong-SMuRFS 39 0.6795 0.5696

SMuRFS 100 0.6778 0.5732

MLASSO 183 0.7824 0.6309

MEnet 184 0.7795 0.6352

4 strong-SMuRFS 82 0.6175 0.5850

SMuRFS 192 0.6346 0.5959

MLASSO 30 0.6983 0.6238

MEnet 30 0.6954 0.6209

5 strong-SMuRFS 34 0.5714 0.5631

SMuRFS 65 0.5788 0.5648

MLASSO 49 0.6730 0.6258

MEnet 49 0.6722 0.6230

PD-0332991 1 strong-SMuRFS 149 0.8508 0.7825

SMuRFS 563 0.8763 0.7987

MLASSO 185 0.8998 0.8039

MEnet 185 0.8998 0.8039

2 strong-SMuRFS 50 0.8689 0.7392

SMuRFS 210 0.8571 0.7388

MLASSO 59 0.8766 0.7452

MEnet 185 0.8871 0.7507

3 strong-SMuRFS 39 0.8394 0.7806

SMuRFS 100 0.8529 0.7961

MLASSO 183 0.8765 0.8022

MEnet 185 0.8770 0.7994

4 strong-SMuRFS 82 0.8452 0.7770

SMuRFS 100 0.8529 0.7874

MLASSO 30 0.7769 0.7384

MEnet 185 0.7799 0.7410

5 strong-SMuRFS 34 0.8794 0.7756

SMuRFS 65 0.8853 0.7803

MLASSO 49 0.9126 0.7942

MEnet 185 0.9161 0.7926

Bold entries indicate best results.
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We now use the features selected by the competing variable

selection algorithms to train a multi-variate CRF on the secondary

test set. We compute the predictive performance on the test set using

NMSPE and NMAPE. The results of these metrics, for each fold, for

drug pair SC3, are reported in Table 4. Prediction performances for

drug pairs SC1; SC2 are available in Supplementary Material.

We observe that either the standard SMuRFS (using all features

in Fw) or the strong-SMuRFS provides best out-of-sample predictive

performance in terms of NMSPE and NMAPE for all three drug

pairs in almost all the folds (competing models outperform our

approach in at least 1 of the metrics in 5 out of a total of 30-folds).

Our results demonstrate that an explanatory model that can identify

true signals can provide superior predictive performance as com-

pared to model-based regularization techniques that explicitly mini-

mize in-sample error sum-of-squares.

5 Discussion

In this article, we presented a sequential multi-task feature selection

methodology (SMuRFS) that can identify statistically significant fea-

tures in addition to generating sparse set of features without resort-

ing to regularization techniques or any other modeling assumptions.

We utilized, theoretically sound, multi-variate conditional inference

methodology to incorporate correlated drug sensitivities in designing

a variable selection procedure. Conditional inference methodology

allowed us to identify significant features and the subsequent dele-

tion technique allowed us to jettison spurious features–all within a

multi-variate framework. We also devised a strategy of labeling the

selected features as strongly informative or weakly informative

thereby providing us with a qualitative variable importance measure

in multi-variate framework- a tool that is not available in extant var-

iable selection approaches. We have also outlined a strategy by

which biological information can be included in the variable selec-

tion phase.

Utilizing synthetic and biological data, we showed that the pro-

posed sequential approach actually increases the prediction accuracy

as compared to the popular regularization-based techniques. The

proposed methodology provides a novel technique to identify statis-

tically significant targets in designing multi-drug therapy regimes.

The presented research has strong potential for extension. One

such direction will involve increasing the dimension of the responses

so that an entire drug-screen, typically consisting of tens of drugs,

can be modeled simultaneously. Another direction will be explicitly

including biological information in the feature selection strategy

itself where pre-identified groups of biologically related features will

be tested as blocks, at each node of conditional inference trees, pro-

viding us with an analog of multi-variate grouped-LASSO with the

added advantage of performing explicit inference on the relevance

of the features without making any modeling assumptions.
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