Skip to main content
. 2017 Dec 18;34(8):1336–1344. doi: 10.1093/bioinformatics/btx784

Table 4.

Prediction performances of competing methods for drug set SC3

Drug name Fold Feature selection Number of NMSPE NMAPE
Algorithm Features
Nutlin-3a 1 strong-SMuRFS 149 0.7536 0.5827
SMuRFS 563 0.7903 0.5958
MLASSO 185 0.8245 0.6184
MEnet 185 0.8245 0.6184
2 strong-SMuRFS 50 0.7209 0.6495
SMuRFS 210 0.7161 0.6586
MLASSO 59 0.7638 0.6646
MEnet 68 0.7552 0.609
3 strong-SMuRFS 39 0.6795 0.5696
SMuRFS 100 0.6778 0.5732
MLASSO 183 0.7824 0.6309
MEnet 184 0.7795 0.6352
4 strong-SMuRFS 82 0.6175 0.5850
SMuRFS 192 0.6346 0.5959
MLASSO 30 0.6983 0.6238
MEnet 30 0.6954 0.6209
5 strong-SMuRFS 34 0.5714 0.5631
SMuRFS 65 0.5788 0.5648
MLASSO 49 0.6730 0.6258
MEnet 49 0.6722 0.6230
PD-0332991 1 strong-SMuRFS 149 0.8508 0.7825
SMuRFS 563 0.8763 0.7987
MLASSO 185 0.8998 0.8039
MEnet 185 0.8998 0.8039
2 strong-SMuRFS 50 0.8689 0.7392
SMuRFS 210 0.8571 0.7388
MLASSO 59 0.8766 0.7452
MEnet 185 0.8871 0.7507
3 strong-SMuRFS 39 0.8394 0.7806
SMuRFS 100 0.8529 0.7961
MLASSO 183 0.8765 0.8022
MEnet 185 0.8770 0.7994
4 strong-SMuRFS 82 0.8452 0.7770
SMuRFS 100 0.8529 0.7874
MLASSO 30 0.7769 0.7384
MEnet 185 0.7799 0.7410
5 strong-SMuRFS 34 0.8794 0.7756
SMuRFS 65 0.8853 0.7803
MLASSO 49 0.9126 0.7942
MEnet 185 0.9161 0.7926

Bold entries indicate best results.