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Abstract

Pavement sealcoat products contain high concentrations of unsubstituted polycyclic aromatic 

hydrocarbons (PAHs), but the assessment of the potential toxicological impact is limited without 

the inclusion of PAH derivatives. This study determined the concentrations of 23 unsubstituted 

PAHs, 11 high molecular weight-PAHs (MW302-PAHs), and 56 PAH derivatives, including 10 

methyl-PAHs (MPAHs), 10 heterocyclic-PAHs (Hetero-PAHs), 26 nitrated-PAHs (NPAHs), and 10 

oxygenated-PAHs (OPAHs) in coal-tar and asphalt based sealcoat products and time point scrapes. 

Inclusion of MW302-PAHs resulted in an increase of 4.1–38.7% in calculated benzo[a]pyrene-

carcinogenic equivalent (B[a]Peq) concentrations for the coal-tar based products. Increases in some 

NPAH and OPAH concentrations were measured after application, suggesting the possibility of 

photochemical transformation of unsubstituted PAHs. The Ames assay indicated that the asphalt 

based product was not mutagenic, but the coal-tar based sealcoat products were. The zebrafish 

developmental toxicity tests suggested that fractions where NPAHs and OPAHs eluted have the 

most significant adverse effects.
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INTRODUCTION

Sealcoat is a black liquid often sprayed or brushed on the asphalt pavement of driveways and 

parking lots. Recent research has demonstrated that some sealcoat products, in particular 

those that are coal-tar emulsion, contain high concentrations of unsubstituted polycyclic 

aromatic hydrocarbons (PAHs),1–3 some of which are known or suspected to be 

carcinogenic.4 Coal-tar is a byproduct of the coal coking process and contains a myriad of 

PAHs and PAH derivatives. PAHs originating from sealcoat have been measured in air5,6 and 

may have adverse health effects on the aquatic environment.7–9 In addition, incidental 

ingestion of settled house dust contaminated with PAHs from coal-tar based sealcoated 

pavement may be hazardous to human health.6,10

In the United States, asphalt and coal-tar based sealcoat are the most common types of 

sealcoat products. Research by Mahler et al.6 has shown that PAH concentrations measured 

in the coal-tar based products were three orders of magnitude higher than in the asphalt 

based products. Geographically, coal-tar based product was more commonly found east of 

the U.S. continental divide, while asphalt based product was more common to the west of 

the divide.11 Pavement sealcoat products are also used in Canada.6,12 Bans on coal-tar based 

sealcoat products have been enacted, or are being considered, in multiple U.S. municipalities 

and states,6,13 while coal-tar based sealcoat use in the European Union is limited or banned.
14

Research on PAHs released from sealcoat products has primarily focused on unsubstituted 

PAHs (PAHs) and methylated-PAHs (MPAHs) or commonly also known as alkylated-PAHs.
5,6,12,15 However, there are other PAH groups which have not been studied in sealcoat 

products. Heterocylic-PAHs (Hetero-PAHs) are a group of PAH derivatives where one of the 

carbons within the ring system is replaced by nitrogen, oxygen, or sulfur. Recent research 

has indicated that some Hetero-PAHs show estrogenic activity16 and ecotoxicity.17 Nitro-

PAHs (NPAHs) and oxygenated-PAHs (OPAHs) have been detected in the environment18–20 

and some are classified as known mutagens and/or possible or probable human carcinogens 

(group A2 or B2, respectively).4,19,21 In addition, some high-molecular-weight PAHs 

(MW302-PAHs) are classified as possible/probable carcinogens and have some of the 

highest draft U.S. EPA Relative Potency Factors (RPFs) for PAHs.4,22 Although MW302-

PAHs have been previously detected in coal-tar23,24 and in the environment,25 analysis of 

this group of PAH derivatives in sealcoat has not been previously reported.

Given the current regulatory evaluation of sealcoat products and their use, the purpose of this 

study was to investigate the presence of PAHs, MPAHs, MW302-PAHs, Hetero-PAHs, 

NPAHs, and OPAHs in sealcoat products and time point scrapings after application, as well 

as to evaluate their toxicological relevance in a real-world complex mixture. Gas 

chromatography coupled with mass spectrometry (GC/MS) was used for comprehensive 

measurement of a wide range of compounds in the sealcoat products and time point scrapes. 

The Ames assay and the zebrafish (Danio rerio) toxicity test were used to evaluate the 

mutagenicity and developmental toxicity of the samples, respectively.
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EXPERIMENTAL METHODS

Chemicals and Materials

All 23 PAHs, 10 MPAHs, 11 MW302-PAHs, 10 Hetero-PAHs, 26 NPAHs, and 10 OPAHs 

measured in this study, along with their abbreviations, are listed in Tables 1 and 2. Hexane, 

ethyl acetate, dichloromethane, and dimethyl sulfoxide (DMSO) were purchased from 

Fisher Scientific (Santa Clara, CA) and Sigma-Aldrich (St. Louis, MO). All materials used 

in this study were pre-cleaned and baked prior to use.

Sample Collection

The samples were collected through collaboration with United States Geological Survey 

(USGS) in Austin, TX and were previously used in a study.5 Two coal-tar based sealcoat 

products, Tarconite® Neyra® Industries Inc. (CT-1) and Gulf Seal No. 253 Henry® Company 

(CT-2), and one asphalt based sealcoat product, Henry Seal No. 532, Henry® Company 

(AS), were applied directly from the container onto separate acrylic glass sheets.5,26 The 

glass sheets were kept in a dark room under ambient temperatures. The dried product from 

each sheet was scraped off after three days, sealed in a pre-cleaned, Teflon-lined lids amber 

glass container, and refrigerated (4°C) until analysis. More information on sample collection 

is available in the SI.

To determine the change in PAH composition over time, the CT-1 product was applied on a 

pavement in Austin, TX, as described previously.5 Briefly, a commercial applicator applied 

the CT-1 product to a test plot at the J. J. Pickle Research Campus, University of Texas. 

After a curing period of 24 hours, the test plot was opened for parking and traffic. Four time 

point scrapes of the CT-1 product were taken post application at 1.6 h, 1 d, 45 d, and 149 d.5 

Care was taken during scraping to sample the CT-1 sealant layer and not the underlying 

asphalt.5 Each scrape contained a composite from 5 locations within the test plot and 

samples were stored in pre-cleaned, Teflon-lined lids amber glass containers and refrigerated 

(4°C) until analysis.

Sample Extraction and Analysis

Approximately 0.1 g of each product and time point scrape was extracted using sonication 

with ~7 mL dichloromethane (DCM) for 5 minutes, followed by solvent exchange to 

hexane. Two rounds of 20 g silica solid phase extraction (SPE) were required to remove high 

levels of impurities in the extracts. In the first silica SPE clean-up, the order of solvent 

elution was: 50 mL hexane, 100 mL DCM, and 50 mL ethyl acetate. The DCM extract was 

solvent exchanged to hexane, reduced to ~1 mL, and further purified with 20 g silica SPE 

using eleven 100 mL fractions with the following solvent elution (% hexane:% DCM): 100:0 

(F1), 90:10 (F2), 80:20 (F3), 70:30 (F4), 60:40 (F5), 50:50 (F6), 40:60 (F7), 30:70 (F8), 

20:80 (F9), 10:90 (F10), 0:100 (F11) (Figure 1).

Each of the eleven fractions was reduced to ~500 µL, solvent exchanged to DCM and stored 

at −4°C until analysis. Aliquots of the eleven fractions were removed and set aside for 

mutagenicity (100 µL) and toxicity (250 µL) test and the remaining analytical chemistry 

portion of the fractions were spiked with isotopically labeled surrogate standards. Each 
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aliquot were stored separately in a GC vial with silicone caps and refrigerated (−4°C) until 

analysis. A laboratory blank sample underwent the same handling procedures. Details on the 

sealcoat extract analysis, including GC/MS conditions, are given in the Supporting 

Information. All concentrations are reported on a dry weight basis. Figure 2 provides the 

percent concentration for each compound analyzed in this study.

Benzo[a]pyrene-carcinogenic equivalent Concentration

In this approach, concentrations of individual carcinogenic PAHs and MW302-PAHs 

(CPAHi) were multiplied by their corresponding draft U.S. EPA relative potency factor 

(RPFi)22 and summed to obtain a B[a]Peeq concentration for each sealcoat sample (eq. 1):

B[a]Peq = ∑
i = 1

n
CPAHi

× RPFi (1)

Salmonella Mutagenicity Assay

All extract fractions were assessed for mutagenicity using the Ames assay.27 Salmonella 
strain TA98 (Xenometrix Inc., Allschwil, Switzerland) was used, in combination with the rat 

S9 mix, to test the mutagenicity, with and without metabolic activation, as previously 

described.19,28,29 2-aminoanthracene and 4-nitro-1,2-phenylenediamine were used as 

positive controls for with and without rat S9 mix, respectively. DMSO was used as the 

negative control for both experimental conditions. Each sealcoat fraction was tested in 

triplicate for each Ames endpoint. A sealcoat fraction was determined to be significantly 

mutagenic if the number of bacteria revertants per plate count was two standard deviations 

higher than its respective negative control. All samples were tested at 1:100 dilutions.

Zebrafish Developmental Toxicity Test

We combined the eleven original silica fractions (F1–F11) into four groups (A–D) according 

to the order of elution in order to reduce the number of zebrafish embryos used in test 

(Figure 1). Fraction A (F1 only) did not contain any PAHs. Fraction B (F2+F3) contained 

PAHs, MPAHs, MW302-PAHs, and DBF. Fraction C (F4+F5) contained remaining Hetero-

PAHs. Fraction D (F6–F11) contained NPAHs and OPAHs.

Each of the combined fractions was solvent exchanged to DMSO. Samples were stored at 

−20°C until 1 h prior to zebrafish exposure. Zebrafish embryos were spawned at the OSU 

Sinnhuber Aquatic Research Laboratory. Embryos were dechorionated (i.e. we removed the 

shell-like membrane complex) and each embryo was placed into individual wells 96-well 

plates with 100 µL of embryo media.30 The sealcoat fractions were diluted, 10,000, 1,000, 

400, 200, and 100 fold, and directly dispensed using the HP D300 Digital Dispenser 

(Männerdorf, Switzerland), at 6 hours post fertilization (hpf), into 16 wells in two plates, 

giving an n = 32 embryos, per diluted concentration, at ambient temperature. Immediately 

after chemical dispensing, exposed plates were placed on an orbital shaker and shaken 

overnight at 235 rpm. The concentration of DMSO was normalized to 1%, also the negative 
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control, and embryos were assessed for morphological malformations at both 24- and 120-

hpf as previously described.31,32

Statistical Analysis

Microsoft® Excel 2010, JMP (Statistical Discovery™ from SAS), and SigmaPlot version 13 

were used for statistical analyses. Error propagation in Figure 3 was calculated by 

multiplying the concentration ratio with the squared root of the sum of the standard error and 

concentration ratio of each time point scrape squared (eq. 2)33:

SEerror prop =
[PAH]149 d
[PAH1.6 h] ×

SE[PAH]149 d
[PAH]149 d

2
+

SE[PAH]1.6 h
[PAH]1.6 h

2
(2)

Custom R script34 was used to generate the heat map in Figure 4 and to calculate EC50 

calculations and lowest effect levels (LEL). To compute EC50 values for the “any effect” 

endpoint, a four-parameter logistic regression was fit to the data.31

RESULTS AND DISCUSSION

PAH and PAH Derivatives Measured in Sealcoat Products

Unsubstituted PAHs made up the largest percentage, by mass, of all compounds detected, 

regardless of whether the sealcoat product was CT or AS (Table 3). Both CT products had 

total PAH concentrations 600 – 1,900 fold higher than the AS sealcoat product (p < 0.05, 

one-sided t-test), consistent with previous studies.11,12 As illustrated in Table S1, PAH 

concentrations ranged from 0.04 mg/kg (BkF in AS) to 45,000 mg/kg (PHE in CT-2) and 

MPAH concentrations ranged from 0.5 mg/kg (1-MPYR, 2,6-DMNAP, and 1,3-DMNAP in 

AS) to 2,100 mg/kg (1-MPYR in CT-2). All 23 PAHs and 10 MPAHs analyzed in this study 

were detected in both CT-based products. In the AS product, 19 of 23 PAHs and 9 of 10 

MPAHs were detected. Figure 2 shows the relative PAH profile for the CT and AS sealcoat 

products.

Van Metre et al.5 reported similar concentrations for 18 PAHs, 4 MPAHs, 1 Hetero-PAH, 

and 1 OPAH for CT-1 (Figure S1), with the exception of NAP and 2,6-DMNAP, which had 

3–7 times higher concentrations in the Van Metre et al paper.5 This may be due to the loss of 

these volatile compounds from the sample over time. This may suggest that the Van Metre et 

al.5 reported concentrations for NAP and 2,6-DMNAP are more representative for freshly 

applied CT sealcoat product and the concentrations measured in this study may be more 

representative of aged CT sealcoat product.

MW302-PAHs were detected in both CT products, but not in the AS product (Figure 2). 

N23bF, DBae+bkF, DBakF, DBjlF, DBalP, N23kF, N23eP, DBaeP, COR, DBaiP, and DBahP 

were measured in both CT products. The highest concentration of MW302-PAHs was in 

CT-1 370 mg/kg for DBjlF and DBae+bkF) and the lowest concentration was in CT-2 (7 

mg/kg for DBalP). Asphalt originates from a petrogenic source containing lower molecular 

weight PAHs, while CT sealcoat originates from a pyrogenic source (coal) containing higher 
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molecular weight PAHs.35 Although the MW302-PAHs may be less bioavailable in aquatic 

ecosystems following run-off from pavement sealcoat surfaces, they may be present in 

ambient and indoor air due to abrasion of sealcoat surfaces and tracking of sealcoat dust 

indoors.6,12 Furthermore, the presence of MW302-PAHs in the CT pavement sealcoat 

product, and their absence from the AS pavement sealcoat product, may make MW302-

PAHs a unique molecular marker for CT pavement sealcoat product use in the urban 

environment where coal is no longer burned.

Of the 10 Hetero-PAHs, only three were detected in CT-1 and AS (IND, DBF, and CARB), 

while six were detected in CT-2 (THI, IND, DBF, 5,6-BQN, ACR, CARB). Hetero-PAH 

concentrations ranged from 0.3 mg/kg (IND in AS) to 2,800 mg/kg (CARB in CT-2). CARB 

has previously been measured at high concentrations in the runoff from coal-tar based 

sealcoated surfaces.2 DBF has not been previously measured in sealcoat. However, it has 

been measured in sediment samples that are in close proximity to coal-tar sealed pavement36 

and our analyses revealed that DBF was present in both CT and AS products.

NPAHs were not detected in the AS pavement sealcoat product. However, eight NPAHs 

were measured in CT samples (9-NAN, 2-NBT, 1,6-DNP, and 1,8-DNP in CT-1; 1-NN, 2-

NN, 3-NPH, 1,3-DNP, and 1,8-DNP in CT-2). For OPAHs, 9-FLU, PHD, ANQ, 2-MANQ, 

BFLN, BEN, and BQN+PQN were measured in CT-1 product. CT-2 contained all of the 

same compounds, with the addition of BPYN. Only 9-FLU, ANQ, and BFLN were 

measured in the AS product. The lowest measured OPAHs concentration was 0.025 mg/kg 

(BFLN in AS), while the highest was 31 mg/kg (ANQ in CT-2). The detection of these 

NPAH and OPAH compounds in both CT and AS pavement sealcoat products suggests that 

they are contained in the products, in addition to their potential photochemical formation 

following sealcoat application. Given their polar characteristics, and likely increased 

bioavailability relative to unsubstituted PAHs, accounting for the increased toxicity due to 

substituted PAHs may be necessary in the future.

Benzo[a]pyrene-carcinogenic equivalent Concentration in Sealcoat

To examine the potential relevance of these findings in a human health context, we 

calculated the benzo[a]pyrene-carcinogenic equivalent (B[a]Peq) concentrations of the 

sealcoat products using eq. 1. Table S2 and S3 show the concentrations and draft U.S. EPA 

RPF values used.22 Without the inclusion of MW302-PAHs, the B[a]Peq concentrations in 

the CT products were up to three orders of magnitude higher than the AS product (Table 

S2). When MW302-PAH concentrations were included in the assessment, there was a 4.1 

and 10.7% increase in the B[a]Peq concentrations for CT-1 and CT-2, respectively, even 

though MW302-PAHs comprised only 0.5 and 4% of the total PAH concentration.

Because pavement sealcoat is used in both the U.S. and Canada, the Health Canada37 

potency equivalence factor (PEF) values were also used to calculate the B[a]Peq 

concentrations for comparison to the draft U.S. EPA RPF approach. When MW302-PAH 

concentrations were included in the assessment, there was a 26.6% and 38.6% increase in 

the B[a]Peq concentrations for CT-1 and CT-2, respectively, using the Health Canada 

approach (Table S2). The discrepancy between the U.S. EPA and Health Canada B[a]Peq 

concentrations can be attributed to the higher PEF values for the MW302-PAHs used in the 
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Canadian approach. As expected, in both approaches, there was no increase in B[a]Peq 

concentration in the AS product when MW302-PAHs were included in the calculation 

because they were not detected in the AS product. The increase in B[a]Peq concentrations, 

resulting from the inclusion of MW302-PAHs, suggests a greater potential risk to human 

health from coal-tar sealed surfaces than previously determined because of the presence of 

MW302-PAHs.10,38,39

PAH Losses from Sealcoated Surfaces

Time point scrapes of the CT-1 sealcoated pavement (1.6 h, 1 d, 45 d, and 149 d after 

application) were used to study PAH losses from a sealcoated surface. Prior studies have 

determined various routes of PAH loss from sealcoated pavement, including volatilization,
5,40 runoff,36 and abrasion,3 among others.6

A potential route of PAH loss from sealcoated surfaces that should be considered is 

photodegradation. Net loss of all PAHs, MPAHs, MW302-, and Hetero-PAHs on the 

sealcoat surface from 1.6 h to 149 d after application was measured (Figure 3A). Based on a 

prior study,5 losses due to volatilization occur primarily up until 45 days post-application. 

Photodegradation may explain some of the net loss of PAHs after the initial 45 days. By 149 

d post-application, the concentrations of ANT, FLO, 2-MANT, and PYR on the sealcoated 

surface decreased by 76–100% relative to 1.6 h post application (Figure 3A).

In addition, phototransformation of unsubstituted PAHs on pavement sealcoated surfaces 

may result in the net formation of some NPAHs and OPAHs on the same surface (Figure 

S2). 1-NP, 9-FLU, ANQ, and 2-MANQ concentrations increased 200–4,000%, on the 

sealcoated surface by 149 d (Figure 3B and Figure S2). Jariyasopit et al. previously showed 

that 1-NP was formed on ambient particulate matter after direct exposure to NO3/N2O5 and 

OH radical.21,29 OPAHs, such as 9-FLU and ANQ, have also been observed to form on 

ambient particulate matter as the product of atmospheric reaction.41–43 This suggests the 

increased concentrations of some NPAHs and OPAHs on the sealcoated surface over time 

may have originated, in part, from phototransformation of unsubstituted PAHs and 

MPAHs19,44,45 on sealcoated surface.

Mutagenicity Assessment

The Ames assay indicated that F2 of the CT-1 product and F2 of the CT-1 time point 

scrapes, as well as F3 of the CT-2 product, had indirect acting mutagenicity two standard 

deviations above the negative control (Figure S3). However, none of the AS fractions were 

mutagenic (Figure S3). This suggests that indirect-acting mutagens in F2 and F3 of the CT 

samples, including PAHs, MPAHs, and MW302-PAHs46 (Figure 1), were responsible for the 

mutagenicity in the CT fractions.

Developmental Toxicity Study

The sealcoat products and time point scrapes were also tested using the embryonic zebrafish 

developmental toxicity test, which has been previously used to assess toxicity of 

environmental samples,8,18,32 including that of OPAHs.31 The main advantage of this test is 

its high throughput capacity that allows for non-invasive observation of 20 acute endpoints 
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in addition to mortality. The rapid development, coupled with 70% genetic homology to 

humans,47 makes zebrafish a useful model to assess potential human health hazards.

The heat map of Lowest Effect Levels (LELs) (Figure 4) shows there were significant 

developmental toxicity effects, as characterized by the same 14 acute endpoints, for all 

pavement sealcoat products tested. Fraction A, which did not contain any of the PAH 

compounds measured in this study (Figure 1), was not toxic in either the CT products or AS 

product. Exposure to fraction B of both CT products induced toxicity, but no toxicity was 

observed in fraction B of the AS product. Toxicity was observed in fraction C of all three 

products, with the highest toxicity observed in the AS product. Fraction D was the most 

toxic fraction for both the CT products and the AS product, as evidenced by high toxicity in 

both “any effect” and “any effect except mortality” endpoints. Fraction C contained Hetero-

PAHs and fraction D contained the NPAHs and OPAHs (Figure 1). Generally, based on the 

same developmental endpoints as above, the toxicities of the product fractions were 

D>C>B>A (Figure 4). Figure S5 shows that, based on EC50s, the toxicities of the product 

fractions were also D>C>B>A. This suggests that the higher concentrations of PAHs, 

MPAHs, and MW302-PAHs measured in fraction B were less acutely toxic relative to the 

lower concentrations of Hetero-PAHs, NPAHs and OPAHs measured in fraction C and D.

With regard to the time point scrapes of CT-1, the developmental toxicity did not appear to 

increase or decrease with time (Figure 4). However, fractions C and D showed more 

developmental toxicity than fractions A and B. Figure S6 shows that fractions C and D of 

the time point scrapes of CT-1 also had the lowest EC50’s. This is consistent with our 

conclusion above that Hetero-PAHs, NPAHs and OPAHs contribute to the developmental 

toxicity of pavement sealcoat.

We used the zebrafish test as a screen test for potential toxicological impacts from pavement 

sealcoat exposure and to make a relative comparison between coal-tar and asphalt based 

products. However, these results also suggest that there is the potential for impact to aquatic 

organisms living downstream from pavement sealcoat.8

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Solvent fractionation through the second 20 g silica SPE column. F1 is 100 mL of Hexane 

and F11 is 100 mL of DCM. 10% increments correspond to 10 mL. Composite fractions for 

zebrafish test were labeled A to D and the observed order of elution for PAH and PAH 

derivatives are outlined above.
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Figure 2. 
Profile of PAHs and PAH-derivatives in (A) CT-1, (B) CT-2, and (C) AS sealcoat products.
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Figure 3. 
(A) Ratio of PAH concentrations at t = 149 days to 1.6 hours (error bar represents ratio error 

propagation), indicating that there were net losses of PAHs, MPAHs, MW302-PAHs, and 

Hetero-PAHs. (B) Ratio of NPAH or OPAH concentrations at t = 149 days to 1.6 hours 

(error bar represents ratio error propagation), indicating net formation of some NPAHs and 

OPAHs. ‡ denotes compounds that were detected at 1.6 hours, but not at 149 days, while ^ 

denotes compounds that were detected at 149 days, but not at 1.6 hours.
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Figure 4. 
Heat map of Lowest Effect Levels (LELs) of acute endpoints in the zebrafish (Danio rerio) 

developmental toxicity test. Grey color indicates no statistically significant effect was 

observed. Samples analyzed included both CT products, AS product, and five time point 

scrapes of CT-1 post application that were taken at the following time points: 1.6 hours (h), 

1 day (d), 45 d, and 149 d. Unit is given in Σ ng PAH/µL DMSO, where Σ ng PAH is equal 

to summed PAH and PAH derivatives in each fraction.
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Table 3

PAH group CT-1 (mg/kg dry wt) CT-2 (mg/kg dry wt) AS (mg/kg dry wt)

ΣPAH 39,000 (86%) 129,000 (94%) 50 (65%)

ΣMPAH 2,700 (6%) 4,300 (3%) 20 (26%)

ΣMW302-PAH 2,000 (4%) 650 (0.5%) <LOD (0%)

ΣHetero-PAH 1,800 (4%) 3,800 (3%) 5 (6%)

ΣNPAH 8 (<0.5%) 10 (<0.5%) <LOD (0%)

ΣOPAH 32 (<0.5%) 70 (<0.5%) 2 (3%)

TOTAL 45,500 138,800 77

Summed concentrations (n = 3) of various PAH groups measured in the CT and AS sealcoat products. The concentrations of each PAH group in the 
AS sample were significantly lower (p < 0.05) than in either of the CT samples
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