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Abstract

The commercialization of engineered nanomaterials (ENMs) began in the early 2000’s. Since then 

the number of commercial products and the number of workers potentially exposed to ENMs is 

growing, as is the need to evaluate and manage the potential health risks. Occupational exposure 

limits (OELs) have been developed for some of the first generation of ENMs. These OELs have 

been based on risk assessments that progressed from qualitative to quantitative as nanotoxicology 

data became available. In this paper, that progression is characterized. It traces OEL development 

through the qualitative approach of general groups of ENMs based primarily on read-across with 

other materials to quantitative risk assessments for nanoscale particles including titanium dioxide, 

carbon nanotubes and nanofibers, silver nanoparticles, and cellulose nanocrystals. These represent 

prototypic approaches to risk assessment and OEL development for ENMs. Such substance-by-

substance efforts are not practical given the insufficient data for many ENMs that are currently 

being used or potentially entering commerce. Consequently, categorical approaches are emerging 

to group and rank ENMs by hazard and potential health risk. The strengths and limitations of these 

approaches are described, and future derivations and research needs are discussed. Critical needs 

in moving forward with understanding the health effects of the numerous EMNs include more 

standardized and accessible quantitative data on the toxicity and physicochemical properties of 

ENMs.
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1. Introduction

Risk assessments are conducted to estimate the risk following exposure to hazardous 

substances. Few risk assessments have been performed to date on engineered nanomaterials 
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(ENMs) due to limited data. However, there is a growing body of data that raises concerns 

about potential adverse health effects from exposure to ENMs (Hristozov et al., 2012; 

Kreyling et al., 2004; Kuempel et al., 2012; Ma-Hock et al., 2009; Nel et al., 2013; 

Oberdörster et al., 1995, Sargent et al., 2009; Savolainen and Vartio, 2017; Schmid and 

Stoeger, 2016). The commercialization of nanotechnology generally began in the early 

2000s and precautionary guidance followed soon after (Hett, 2004; HSE, 2004; NIOSH, 

2005; The Royal Society and The Royal Academy of Engineering, 2004). By 2005, 54 

consumer products were reported to contain nanomaterials, while today that number is over 

1800 products (Vance et al., 2015). Workers are involved in all aspects of ENM production 

from research to production, use, and disposal, and are potentially exposed to nanomaterials. 

Employers, workers, insurers, government decision-makers, and other stakeholders all need 

information on the hazard of nanomaterials and the health risk to workers. In response, there 

has been a concerted effort to identify the hazards of nanomaterials and the underlying 

mechanisms of action, determine exposures, assess risks, and provide guidance on managing 

those risks.

Quantitative risk assessment (QRA) methods for ENMs generally have been consistent with 

those in the standard risk assessment paradigm (NAS, 1983, 2009_; OECD, 2012). When 

quantitative dose-response data are available, risk assessment for ENMs and other 

substances involves the following five steps: 1) evaluating available data; 2) selecting an 

appropriate adverse response; 3) determining the critical dose; 4) calculating the human 

equivalent dose; and 5) determining the working lifetime exposure concentration that would 

result in that dose (Jarabek et al., 2005; Kuempel et al., 2006; Oberdörster, 1989; Schulte et 

al., 2010; U.S. EPA, 1994). QRA involves estimation of a point of departure (POD), which 

is a point on the dose-response curve that identifies the dose associated with an adverse 

response at a low level or a level that is not biologically or statistically different from 

background. A POD based on animal data is extrapolated to humans by estimating an 

equivalent dose (e.g., using interspecies adjustments) to lower risk levels based on 

quantitative modeling and/or uncertainty factors. OELs, critical tools in risk management, 

then are derived from estimates of the airborne exposure concentrations associated with no 

or low risk of adverse health effects in workers. Additionally, consideration is given to 

specific factors pertaining to the nanoscale, such as potential differences in the uptake and 

distribution of nanoscale and microscale particles in the body, and potential differences in 

the hazard potency of nanoscale vs. microscale particles of the same composition on a mass 

basis. When quantitative dose-response data are not available, other methods are needed, 

including read-across methods based on knowledge about the underlying biological 

mechanism of action, and grouping based on similar physicochemical properties, or 

comparative potency using shorter-term data in animals or cell systems (Arts et al., 2014, 

2015; Gordon et al., 2014; Kuempel et al., 2012; Maier, 2011; NAS, 2017; Nel et al., 2013; 

Schoeny and Margosches, 1989; Sobels, 1977, 1993; Stone et al., 2014).

It is possible to characterize the trajectory of risk assessments of ENMs according to 

approaches that have been used in the past. This characterization requires seeing the 

trajectory in the context of the natural history of the development of commercial 

nanotechnology. The risk assessment of ENMs builds on earlier work with ultrafine particles 

and fine dusts (Dankovic et al., 2007; Donaldson et al., 1990; Driscoll et al., 1990; Kreyling 
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et al., 2013; Oberdörster et al., 1992; Stone et al., 2016b; Tran et al., 1999; Tran and 

Buchanan, 2000; Wichmann and Peters, 2000). Fig. 1 shows the trajectory for risk 

assessment of ENMs in terms of the approaches used. In the early 2000s, concern about the 

potential hazards of ENMs was great. While there were preliminary data (air pollution 

epidemiology, health effects of welding fumes, and some studies of nanoparticle 

translocation from nose to brain), generally there was a major lack of information about 

hazards, risks, and exposures of ENMs. Consequently, the initial approach to risk assessment 

was based on precautionary appraisal to fill the pressing need for any kind of guidance to 

anchor risk management decisions (The Royal Society and The Royal Academy of 

Engineering, 2004; BSI, 2007; IFA, 2009). For ENMs with sufficient data, quantitative risk 

assessment methods have been used to develop OELs (e.g., NIOSH, 2011; NIOSH, 2013). 

Given the challenges in developing individual OELs for all ENMs - many of which have 

limited data - methods have been developed to prioritize or group ENMs based on the 

available subchronic or chronic dose-response data for benchmark materials and the 

utilization of shorter-term in vivo data for many ENMs (e.g., Arts et al., 2016; Hristozov et 

al., 2016; Drew et al., 2017). No OELs have been developed based on these methods to date, 

and efforts are underway to further develop quantitative methods to categorize ENMs by 

hazard potency, as well as to evaluate the use of data from alternative test systems including 

in vitro models.

Fig. 2 shows the trajectory of risk assessments for selected ENMs related to the development 

of OELs. While there are thousands of ENMs in commerce, only a minute fraction of those 

has an OEL. A recent systematic review study cited 56 OELs that have been developed for 

ENMs, although many of these are for the same set of ENMs, and this number includes both 

individual and categorical OELs (Mihalache et al., 2017). The first two examples, the British 

Standards Institute (BSI) and the German Occupational Safety and Health authority (IFA), 

utilized professional judgement to describe broad categories of ENMs, called benchmark 

exposure levels (BSI, 2007; IFA, 2009). The categories were selected to utilize size, density, 

shape, and biopersistence and the exposure levels were derived as fractions of the OEL for 

benchmark bulk material of the same composition or physical chemical characteristics as the 

ENM. For fibrous materials, such as carbon nanotubes (CNTs), the benchmark exposure 

level was one-tenth of the asbestos or 0.01 fibers/ml (BSI, 2007; IFA, 2009). OELs based on 

quantitative risk assessments have been developed for titanium dioxide (TiO2), carbon 

nanotubes and nanofibers, and silver, as discussed in Section 2. No OELs have been 

developed to date for nanoscale cellulose given the limited dose-response data, and methods 

to develop categorical OELs for ENMs are under development, as discussed in Section 3.

2. Protoypic nanomaterial risk assessment

2.1. Titanium dioxide

One of the first QRAs of a nanomaterial was on titanium dioxide (TiO2). (Dankovic et al., 

2007). A QRA is a systematic process to assess risks, in this case from chemical substances. 

The assessment procedure involves the four main steps of hazard identification, dose-

response assessment, exposure assessment and risk characterization (NAS, 1983; NAS, 

2009). Ultimately, it is the process of extrapolating from a range of direct observation to a 
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lower potentially safer range for which there are few or no data (NRC, 1987; Schulte et al., 

2002). While TiO2 has been used in commerce for decades, it has been increasingly 

formulated with a greater proportion of primary particle sizes in the sub-100 nm range. The 

dose-response data available for the TiO2 risk assessment included subchronic (13-week) 

and chronic (104-week) inhalation studies. Benchmark dose (BMD) and BMD lower 

confidence limit (BMDL) estimates (Crump, 1984) were derived from the dose-response 

data of pulmonary neutrophilic inflammation or lung tumors in rats, using the total particle 

surface area retained dose in the lungs to normalize across particle sizes. The BMDL 

estimate was used as the POD in this risk assessment. Extrapolation of the animal doses to 

humans utilized data and models to account for the inter-species differences in breathing 

rates, particle deposition fraction and clearance kinetics, and lung surface areas (Kuempel et 

al., 2006).

Dankovic et al. (2007) and NIOSH (2011) used these QRA methods to derive recommended 

exposure limits (RELs) for nanoscale and microscale TiO2. This was the first REL to 

address two size ranges of respirable particles (≤100 nm ultrafine and > 100 nm fine). The 

primary data used were lung tumor data from a chronic inhalation study of rats (with one 

dose point for nanoscale TiO2) exposed to ultrafine TiO2 (Heinrich et al., 1995) and from 

studies of fine TiO2 (Lee et al., 1985; Muhle et al., 1991). These data were pooled, and 

BMD and BMDL estimates of the particle surface area retained dose in the lungs were 

determined at target risk levels from 1:10–1:1000 excess lifetime risk. These estimates were 

extrapolated to human-equivalent working life-time exposures using a human lung 

dosimetry model (Multiple-Path Particle Dosimetry, MPPD, v. 1.0) (CIIT and RIVM, 2002). 

This procedure illustrated that various dose-response models could be fit to the same data 

(Table 1), and that the best approach was to use model averaging (Wheeler and Bailer, 2007) 

using three models (NIOSH, 2011). This approach incorporates statistical variability and 

model uncertainty into the BMD and BMDL estimation. It uses all the information from 

various dose-response models and weighs each model by how well it fits the data. The 

weighted average of the models for ultrafine and fine TiO2 at a target risk level of a lifetime 

excess risk of 1 per 1000 for lung tumors were selected as the OELs 0.3 mg/m3 and 2.4 

mg/m3 (10hr TWA), respectively. This risk level has been considered to be a significant risk 

(U.S. Supreme Court, 1980). More recently, NIOSH has updated its policy on RELs and risk 

levels for chemical carcinogens (NIOSH, 2017b).

It is known that there are many different types of TiO2 ENMs based on crystal structure and 

coatings. Available data at the time indicated that TiO2 crystal structure did not significantly 

affect the pulmonary inflammation or tumor responses, and some particle surface coatings 

increased the inflammation response. NIOSH (2011) concluded that the TiO2 risk 

assessment could be used as a reasonable baseline for potential toxicity because other 

particle treatments or formulations could potentially affect toxicity. Another approach that 

focused on inflammatory effects was utilized in Japan (Morimoto et al., 2010). This 

approach, referred to as the “biaxial” approach, compared results from inhalation studies of 

one type of TiO2 ENM with the results of intratracheal instillation studies of other types of 

TiO2 ENMs and the results extrapolated to humans. An acceptable concentration was 

estimated to be 1.2mg/m3 (8-hr TWA and 40-hr work week) (Morimoto et al., 2010). The 

route of exposure and dose rate can influence the pulmonary responses to TiO2 (Baisch et 
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al., 2014; Shi et al., 2013), which Morimoto et al. (2010) evaluated in their comparisons of 

EMN toxicity across doses and routes of exposure in rats.

2.2. Carbon nanotubes and nanofibers

In the early 2000’s, a new ENM came into commerce, which was CNT with single and 

multiwall typologies. Early on in the appearance of CNTs was the concern that the fiber 

toxicity paradigm that pertained to fibrous materials like asbestos might pertain to CNTs. 

CNTs are thin, long and biopersistent and these are characteristics of toxic fibers (Donaldson 

et al., 2006). Several animal studies published beginning in 2004 showed the development of 

pulmonary fibrosis (early onset and persistent granulomatous inflammation) from CNT 

exposure in rats and mice. These effects occurred at relatively low mass dose and occurred 

regardless of whether CNTs were purified or unpurified regarding metal contamination. 

There were also concerns that some CNTs could persist in the lungs and migrate to the 

pleura. Other studies showed the CNT exposure resulted in genotoxic effects including 

aneuploidy (Sargent et al., 2009). Various risk assessments of CNTs were conducted using 

data in rats and mice. Central to the risk assessments by NIOSH (2013) and others (Nanocyl, 

2009; Pauluhn, 2010b) were two published sub-chronic (13-week) inhalation studies of two 

types of multi-walled CNTs (MWCNTs) in rats (Ma-Hock et al., 2009; Pauluhn, 2010a). A 

follow-on study with additional evaluation of the lung tissues from the Ma-Hock et al. 

(2009) study by Treumann et al. (2013) provided more in-depth information regarding the 

nature of the granulomatous, inflammogenic, and fibrotic tissue responses in rats (discussed 

in IARC, 2017); while providing more in-depth information about the observed responses, 

these findings would not likely change the quantitative dose-response data or POD estimates 

based on the Ma-Hock et al. (2009) study.

Several shorter-term studies of other types of CNTs or carbon nanofibers (CNFs) in rodents 

provided additional data (NIOSH, 2013). The pulmonary responses, which included various 

measures of inflammation and fibrosis, were qualitatively similar across the various CNTs 

and CNFs, whether purified or unpurified with differing metal content, and of different 

dimensions. The fibrotic lung effects in the rodents subchronic studies (25/54) developed 

early (within a few weeks) after exposure to CNT or CNF, at relatively low-mass lung doses, 

and persisted or progressed during the post-exposure follow-up (~ 1–6 months). Pulmonary 

fibrosis was the primary endpoint used in the NIOSH (2013) risk assessment. The NIOSH 

REL of 1 μg/m3 (8-hr time-weighted average) was set at the analytical limit of quantification 

for respirable elemental carbon (NIOSH Method 5040), and was associated with risk 

estimates of approximately 0.5%−16% (upper confidence limit estimates) of developing 

early-stage (slight or mild) lung effects (i.e. fibrosis) over a working lifetime (NIOSH, 

2013). The NIOSH REL was meant to pertain to all types of CNTs and CNFs based on the 

available data, but it was recognized that there could be variability in toxicity due to 

physical-chemical characteristics and that the guidance may be reevaluated as new data 

becomes available.

Fig. 3 shows the OELs from several different risk assessments of various CNTs. The 

differences in these proposed OELs are due to the differences in the types of CNTs, rodent 

studies and endpoints, methods to estimate human-equivalent concentration, and uncertainty 
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factors used. At the time the OELs were developed, there were no regulatory OELs for 

CNTs (as remains the case today), and so regulatory OELs for other carbonaceous materials, 

such as carbon black (3500 μg/m3) or graphite (5000), may have been the closest OELs 

available. Had a precautionary approach not been taken, worker exposures to CNTs could 

have been roughly 3500–5000 times what had been estimated to be the human-equivalent 

concentrations associated with adverse lung effects in animal studies. Moreover, even 

though the four OELs that were derived ranged from 1 to 50 μg/m3, these are all relatively 

low mass concentrations compared to the exposure limits for other carbonaceous particles of 

3500 μg/m3 or 5000 μg/m3.

More recently, animal cancer bioassay data have been published for some CNTs. In the 

IARC (2017) evaluation, based on evidence available at the time of the monograph meeting 

(October 2014), one type of MWCNT was classified as possibly carcinogenic to humans 

(Group 2B). After this evaluation, a 2-year inhalation study showing increased lung cancer 

incidence in rats following exposure to the specific MWCNT was published (Kasai et al., 

2016). Overall, most types of MWCNTs and single-walled carbon nanotubes (SWCNT) 

were not classifiable as to their carcinogenicity to humans (Group 3) (IARC, 2017).

In addition to lung effects, inhalation exposure to CNTs has been shown to elicit pulmonary 

secretion of acute phase proteins to the blood (Poulsen et al., 2017). The induction of a 

pulmonary acute phase response following inhalation of particles including nanoparticles 

has been proposed as a causal link between particle inhalation and risk of cardiovascular 

disease (Saber et al., 2014). Inhalation exposure of rats to MWCNT has also been shown to 

decrease responsiveness of coronary arterioles to dilators and to affect heart rate variability 

(Stapleton et al., 2012; Zheng et al., 2016).

2.3. Silver nanoparticles

Another illustration of risk assessment and OEL development involves silver nanoparticles. 

Increased production and wide spread use of silver nanoparticles were reasons to consider 

what would be safe levels for workers. Prior to the initiation of commercial nanotechnology, 

silver dusts were controlled by an OEL of 10 μg/m3 (NIOSH, 1988; OSHA, 1988). 

However, that OEL did not explicitly address silver nanoparticles. Rat subchronic inhalation 

studies of silver nanoparticles (Song et al., 2013; Sung et al., 2008, 2009) were determined 

to be relevant for risk assessment for silver nanoparticles. These studies showed early-stage 

adverse lung and liver effects in male and female rats, including lung function deficits and 

histopathological findings of lung inflammation and liver bile duct hyperplasia and 

neoplasia.

Christensen et al. (2010) used a LOAEL of 49 μg/m3 for lung function deficits in female rats 

and a NOAEL of 133 μg/m3 for liver bile duct hyperplasia in male and female rats (Sung et 

al., 2008, 2009). They followed the E.U. risk assessment methods (ECHA, 2010) to estimate 

the human indicative no-effect levels (INELs), which appear to be equivalent to the ECHA 

DNELS (derived no effect levels) at occupational exposure conditions (note that Christensen 

et al., 2010 cite the 2008 version of ECHA guidelines). The factors applied to the animal 

critical effect levels included adjustments for the duration of rat vs. worker exposure day, 

worker vs. resting ventilation rate, LOAEL to NOAEL estimation, subchronic to chronic 
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extrapolation, and worker inter-individual variability. Three INELs were derived, ranging 

from 0.098 to 0.67 μg/m3 (Christensen et al., 2010).

Weldon et al. (2016) estimated BMDs and BMDLs for lung and liver effects reported in 

Sung et al. (2008, 2009). They selected liver bile duct hyperplasia as the critical effect in rats 

because it was the lowest BMDL of a specific quantitative endpoint. They adjusted the rat 

critical effect level to estimate a human-equivalent concentration (using dosi-metric 

adjustment factors for ventilation rate, pulmonary deposition fractions, pulmonary particle 

clearance rates, and interspecies dose normalization based on lung surface area). Uncertainty 

factors were applied for animal to human toxicodynamic differences, subchronic to chronic 

extrapolation, and worker individual variability. Their derived OEL was 0.19 μg/m3. 

Dissolution and clearance of silver nanoparticles was not explicitly considered in either of 

these assessments, but this likely explained in part the effects that were observed in the liver. 

This raises the question of how in vivo dissolution rates might be incorporated in risk 

models, for example, using a physiologically based pharmacokinetic model (Bachler et al., 

2013).

NIOSH (2016) evaluated several risk assessment methods and assumptions in developing a 

draft document to examine the adequacy of the existing NIOSH REL of 10 μg/m3 (8-hr 

time-weighted average concentration, total mass sample, silver metal dust and soluble 

compounds, as Ag) (NIOSH, 2007) for silver nanoparticles. This REL, and the equivalent 

regulatory limit in the U.S., were derived to protect workers from developing argyria and 

argyrosis, a bluish-gray coloring of the skin and eyes. In its evaluation, NIOSH (2016) used 

a published physiologically-based pharmacokinetic (PBPK) model (Bachler et al., 2013) to 

estimate the worker-equivalent exposure concentrations to those associated with the rat 

early-stage, adverse lung and liver effects (Song et al., 2013; Sung et al., 2008, 2009). The 

human-equivalent 45-year working lifetime concentrations estimates varied from 0.19 to 3.8 

μg/m3 for total silver, and from 6.2 to 195 μg/m3 for soluble/active tissue doses (estimates 

also depended on particle diameter of 15-nm- to 100-nm-diameter) (NIOSH, 2016). In the 

draft document, NIOSH found that the available scientific evidence was insufficient to 

estimate a REL that was specific to particle size. NIOSH is currently evaluating the public 

and peer review comments and updating the literature searches to further evaluate the 

scientific evidence on the potential health risk of occupational exposure to silver 

nanoparticles.

2.4. Cellulose nanocrystals

An illustration of the dilemma investigators face in conducting risk assessments and deriving 

OELs when data are sparse and contradictory involves cellulose nanocrystals. These 

materials are rod-shaped with diameters less than 100 nm and lengths from 100 nm to 1000 

nm. Cellulose nanocrystals have many of the commercially useful properties as CNTs but at 

a lower cost for production. Consequently, they could be produced in high volumes, and the 

potential for worker exposure could be great. Cellulose nanocrystals are entering commerce 

and already there may be worker exposures, but there is no OEL for nanoscale cellulose 

against which to assess exposure.
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The size and shape of cellulose nanocrystals raises the concern for potential fiber toxicity, 

and studies have shown pulmonary effects in animals. Acute phase pulmonary responses 

(elevated neutrophils and other inflammatory cells) were more prominent in mice exposed to 

cellulose nanocrystals than in mice exposed to an equivalent mass dose of crocidolite 

asbestos at 24-hr after pharyngeal aspiration exposure (Yanamala et al., 2014). Studies of 

male and female mice (C57BL/6 mice by pharyngeal aspiration) resulted in pulmonary 

inflammation (elevated leukocytes and eosinophils in bronchoalveolar lavage fluid), 

oxidative stress, impaired pulmonary function, and elevated TGF-β (Shvedova et al., 2016; 

Yanamala et al., 2014). Toxicity was more pronounced in female mice (Shvedova et al., 

2016). Lung collagen was measured as an indicator of fibrosis by Shvedova et al. (2016); at 

a total dose of 240 μg/mouse of cellulose nanocrystals, collagen was significantly increased 

in male and female mice relative to controls. This dose is 12 times greater than the dose of 

SWCNT (20 μg/mouse) associated with fibrosis measured as the average thickness of 

alveolar connective tissue in an earlier study (Shvedova et al., 2005). However, estimates of 

the relative potency of SWCNT and cellulose nanocrystals based on these data would be 

uncertain given the one dose group only for cellulose nanocrystals and the different 

measures of fibrotic response in the two studies.

No risk assessment has been conducted for cellulose nanocrystals, but Shvedova et al. 

(2016) estimated that if workers were exposed at the current OEL for cellulose (5 mg/m3), 

then after 42 days of exposure they would achieve a dose equivalent to the 240 μg total dose 

in mice that caused the observed pathology. Although these data are not sufficient for a 

QRA, this example illustrates the limited amount of information on inhalation risks of 

cellulose nanocrystals.

Stockmann-Juvala et al. (2014) suggested an OEL of 0.01 fibers/cm3 for cellulose 

nanocrystals based on the BSI (2007) benchmark exposure level for fibrous particles derived 

from the asbestos limit value. To date, there is no strong evidence that cellulose nanocrystals 

would follow the asbestos fiber paradigm (Greim, 2004), but in the absence of adequate 

data, Stockmann-Juvala et al. (2014) based their OEL on the precautionary principle. At this 

time, overall evidence for cellulose nano-crystal toxicity is limited and inconclusive. This 

situation illustrates that there are times when adequate data are not available and a 

quantitative risk assessment for a specific substance cannot be conducted. In such cases, 

alternative approaches such as read-across or occupational hazard banding methods might be 

used to estimate an occupational exposure band (OEB) to guide risk management decision-

making (ISO, 2016; NIOSH, 2017a).

3. Categorical approaches to developing OELs

Categorical approaches explore how categories of ENMs can be treated similarly or how 

individual ENMs can be put into categories. Some of these various categorical approaches 

are meant to be used for screening ENM for prioritization for in vivo toxicological testing. 

Other categorical approaches attempt to consider ways to fill in the steps between an 

untested ENM and the derivation of an OEL by showing linkages and projections that span 

the continuum from physical-chemical properties to in vitro results to in vivo results to dose-

response models and OEL derivation.
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3.1. Generic approach for poorly soluble low toxicity particles

A generic method to estimate OELs for the poorly-soluble low toxicity category of 

respirable particles has been proposed (Pauluhn, 2011, 2014). This model utilizes the 

particle volumetric dose (6% of total macrophage cell volume) which has been associated 

with overloading of pulmonary clearance in rats (Morrow, 1988). The Pauluhn (2011) model 

also allows for a changing pool size of the alveolar macrophage cell volume and accounts 

for interspecies differences in particle size-specific lung deposition fractions and first-order 

clearance kinetics. The use of the rat dose associated with overloading of clearance as the 

POD for risk assessment is based on the hypothesis that prevention of overloading would 

prevent deleterious secondary conditions from occurring, as observed in rats. Based on this 

model, Pauluhn (2011, 2014) proposed a generic OEL for preventing particulate matter 

(PM)-induced pulmonary overload-like conditions in workers, which is calculated using a 

volume-based generic exposure of 0.54 μl PMresp × 𝜌/m3
alv, where PMresp is the respiratory 

particulate matter and 𝜌 is the apparent density of the poorly-soluble particles within the 

total macrophage pool volume, malv
3 ) (Pauluhn, 2011, 2014). This generic OEL is based on 

rat data from 13-week inhalation exposure to poorly-soluble particles. An equivalent 

expression based on two-year rat inhalation data was estimated at 0.36 μl PM
respxρ/malv

3

(Pauluhn, 2011). The theoretical model was verified through prediction of the NOAELs in 

rat inhalation studies of poorly soluble particles from 4 to 104 weeks of exposure (Pauluhn, 

2011). Evaluation of the rat overloading dose to humans remains to be evaluated, since the 

rat first-order lung clearance kinetics model has been shown to under-predict the human 

long-term retention of particles in the lungs, which requires accounting for particle 

sequestration doses below those associated with overloading in rats (Gregoratto et al., 2010; 

ICRP, 2015; Kuempel et al., 2001).

In other rodent studies, the particle surface area dose was the bio-logically most relevant 

metric for describing the overloading of nano-particles (Tran et al., 2000) and the 

relationship between particle dose and acute or subchronic pulmonary inflammation across a 

range of particle sizes (Elder et al., 2005; Monteiller et al., 2007; Oberdörster et al., 1994b; 

Schmid and Stoeger, 2016). Other particle properties influencing the biologically-effective 

dose include solubility, shape, and surface reactivity (Donaldson et al., 2013; Duffin et al., 

2007). In comparative potency analyses of microscale and nanoscale particles, it would be 

most useful to have experimental data sufficient to convert between various dose metrics in 

order to further evaluate the most predictive dose metrics across a range of endpoints (Drew 

et al., 2017). In developing individual or categorical OELs, the dose used as the POD to 

estimate human-equivalent exposure could be converted to airborne mass concentration to 

conform to standard mass-based concentration measurements in the workplace (as was done 

for TiO2) (NIOSH, 2011}.

3.2. Approaches using predictive toxicology

Early in the commercial history of nanotechnology, it was determined that the vast number 

of potential ENMs could not all be recommended for toxicology testing in animals. Two 

other developments converged with this recognition. One was the growing move to minimize 
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or cease animal testing of chemicals, and the other was growth of “21st century toxicology” 

the use of computational toxicology, mechanistic and biological models, and high 

throughput technologies to assess chemicals rather than using animal studies. All of these 

movements were the foundation for new approaches for prioritizing toxicity testing or 

alternative testing (NAS, 2007; NAS, 2017; Savolainen et al., 2010; Shatkin et al., 2016; 

Stone et al., 2016a). Categorical approaches have a long history with chemicals. The 

“parallelogram” approach was utilized to identify genotoxicants in Sobels (1993). For 

substances with similar structure-activity relationships, a parallelogram approach was used 

to derive OEBs for pharmaceutical intermediates by comparing in vitro assay results to those 

for well-studied substances with both in vitro and in vivo data (Maier, 2011). With regard to 

nanomaterials, the early semi-quantitative examples from BSI (2007) and IFA (2009) were 

categorical in the sense that ENMs that met the descriptive definitions would be treated as 

being in one of the prescribed groups and controlled to limits for those groups. After that, 

the concept of benchmark particles was used (Kuempel et al., 2012; Nel et al., 2013; 

Oberdörster et al., 2005). Benchmark particles are well-studied materials whose 

characteristics are known and which have risk-based OELs. Benchmark particles provide 

points of reference for comparison of dose-response relationships and the derivation of 

OELs. ENMs that are similar in chemical and physical characteristics to those benchmarks 

would be assigned the same OELs.

Risk assessments are now at the frontier of categorical research (OECD, 2014). This frontier 

involves predictive toxicological modeling from a large set of characteristics, such as 

physicochemical, structure-activity, in vitro test results, in vivo test results, or various 

biological indicators (Fig. 4). These large data sets can be evaluated to indicate 

characteristics that will predict toxic effects. ENMs that are shown to have these effects can 

be placed in the same category as a benchmark material that has an OEL. Some approaches 

use grouping of ENMs by mechanisms of toxicity and hazard potencies and also utilize 

relevant benchmark materials (Drew et al., 2017; Kuempel et al., 2012). However, the use of 

in vitro dose-response data to predict in vivo responses involves additional considerations, 

including the relevance of the in vitro doses to those in vivo. In vitro doses are typically 

much higher and may involve different biological mechanisms (Nel et al., 2013). In vitro 
dosimetry models can provide estimates of the dose of particles that reach cells given the 

particle density and settling rates, as well as dissolution in the cell culture media (Hinderliter 

et al., 2010; Liu et al., 2015). Gangwal et al. (2011) proposed methods for quantitative 

comparison of in vitro doses to equivalent total doses in human exposure, although 

differences in dose rate were not considered. Currently, use of in vitro data to predict of 

acute in vivo responses is most promising (see Fig. 4).

A limiting question is how these various toxicity indications can be linked to PODs and used 

to develop OELs or OEBs. Fig. 4 shows the various options for such linkage. There is 

concern that the approach to using quantitative structure-activity relationship (QSAR) 

modeling, read across techniques, and various grouping approaches underestimate or 

misrepresent risk, as these alternative models require making certain assumptions given the 

limited information, and may not be sufficient to establish the robust dose-response 

relationships used for traditional QRA. Therefore, these approaches may be useful initially 

for prioritizing nanomaterials for further testing, but may be insufficient for risk assessment 
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and development of OELs. If there are only limited relevant data, there will not be sufficient 

data for characterizing a dose-response relationship. Further evaluation and validation of 

these methods will be needed before these methods can be implemented for OEL derivation. 

Quantitative evaluations of dose-response relationships for key end-points across a range of 

nanoscale and microscale benchmark materials (including in vitro data and acute and 

chronic in vivo data) would provide useful information to support that process. Needed in 

such an evaluation are quantification of the doses and responses in the context of adverse 

outcome pathways (AOPs), including consideration of kinetic processes that influence the 

internal dose of particles.

Whether and how these hazard test results can be subject to dose-response analysis and 

extrapolated to humans to develop the human equivalent dose are major ongoing questions. 

This step, as well as the preceding steps of linkage of physical-chemical characteristics to in 
vitro and to in vivo toxicities are impeded by huge data gaps. These gaps are due to 

heterogeneity of the data, for example, methodologic differences in tests and assays; 

uncertainty about relevance of early response endpoints to human health risk assessment; 

limited chronic exposure data; lack of minimum data reporting requirements; and lack of 

criteria for in vitro to in vivo extrapolation. Filling the gaps and pursing the use of these data 

in risk assessment requires enhanced conceptual and technical understanding. Two major 

issues arise: how can equivalent doses be determined in in vitro or in vivo studies, and how 

can toxicity of ENMs be classified based on those data? One approach to safety 

classification involved testing or gathering data on 31 different ENMs. Out of 8 million data 

points involving in vivo and in vitro models, 11 bio-markers were identified that indicated 

that ENMs were toxic. These biomarkers become emblematic of toxicity and suggest that 

further untested ENMs can be assessed for these 11 biomarkers to predict the toxicity of the 

ENM (Savolainen and Vartio, 2017).

In another study, a quantitative framework for assessing the hazard potency of ENMs was 

developed as a proof of concept using a data set consisting of in vivo rodent dose-response 

data of pulmonary neutrophilic inflammation from published studies including from two 

separate nanotoxicology research consortia (Drew et al., 2017). Doses were normalized 

across rodent species, strain and sex as the total particle mass concentration in the lungs. 

Doses associated with specific measures of pulmonary neutrophilic inflammation were 

estimated by modeling the continuous dose-response relationships using benchmark dose 

(BMD) modeling (U.S. EPA, 2012; Wang et al., 2014). One set of various types of ENMs 

was grouped by BMD estimates, and the group assignments of a separate set of ENMs were 

predicted based on physicochemical properties only. Following further evaluation with a 

more comprehensive dataset, this framework could be used to estimate categorical OELs for 

ENMs with limited dose-response data. The lower confidence estimates of the BMDs in a 

potency group could be used as points of departure (PODs) in risk assessment for 

extrapolation to estimate human-equivalent concentrations and OELs (Drew et al., 2017).

3.3. Systems approach to nanotoxicology

These methods to assess categories of ENMs are amenable to a systems approach to 

nanotoxicology, utilizing data on how nanomaterials cause biological perturbations and 
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focusing on underlying bio-logical mechanisms. These approaches will enable a gradual 

shift from using solely apical end-points toward understanding the biological pathways 

perturbed (Costa and Fadeel, 2016; DeBord et al., 2015; Sturla et al., 2014). One 

manifestation of this effort is to identify adverse outcome pathways (AOPs) (Ankley et al., 

2010; Villeneuve et al., 2014a; b). Development of AOPs allows for integration of all types 

of information at different levels of biological organization. An AOP is a biological map 

from the molecular-initiating event through the resulting adverse outcome that describes 

both the overall mode of action and the specific mechanisms or key events. However, the 

determination of a molecular-initiating event requires extensive evidence to construct an 

AOP and to determine how the characteristics of ENM affect these events.

The AOP has been widely promoted as a powerful tool for linking predictive toxicology to 

ENM risk assessment however a number of concerns have been raised. These include: 

whether it is premature to use AOP in risk assessment; whether AOP use may restrict needed 

toxicological research; that AOPs are difficult to validate; that they may falsely present the 

illusion of safety; and that they need to be based on robust data when they are used as a 

predictive tool (Pesticide Action Network Europe, 2016). The use of alternative testing 

methods can also help rank ENMs for further testing (Nel et al., 2013). This approach is 

illustrated by ITS-Nano research prioritization tool (Stone et al., 2014).

These approaches may involve strategies that incorporate systems biology approaches (Costa 

and Fadeel, 2016). An example of this is the study by Pisani et al. (2015) that used a 

microarray-based approach combined with secretomics (a subset of proteomics that analyzes 

the secreted proteins of a cell, tissue, or organism) to assess cellular responses to fumed 

silica in a human lung carcinoma cell line. The investigators derived what Lobenhofer et al., 

2004 termed a “no observed transcriptomic effect level” (NOTEL). The NOTEL was lower 

than conventional NOAEL. The NOTEL could be used as a POD for deriving a reference 

value after application of uncertainty or safety factors for benchmark dose modeling of gene 

expression or pathway activity (Schulte et al., 2015). This kind of approach needs further 

study to determine the extent of its utility.

The study of the global transcriptional profiling of ENM-exposed mice has also led to 

identification of new mechanisms-of-action for nanomaterials. Inhalation of nano-TiO2 was 

shown to induce pulmonary acute phase response in mice (Halappanavar et al., 2011). The 

acute phase response is dose-and time dependent, proportional to the deposited particle 

surface area dose and closely associated with neutrophil influx (Saber et al., 2014). Since 

acute phase response is a well-known risk factor for cardiovascular disease in humans, this 

finding suggests a possible causal link between ENM inhalation and cardio-vascular disease 

(Saber et al., 2014). For example, inhalation exposure to nanoscale TiO2 has been shown to 

decrease the responsiveness of peripheral and coronary arterioles to vasodilation (LeBlanc et 

al., 2010; Nurkiewicz et al., 2009).

4. Development of OEBs

Occupational exposure bands (OEBs) are a type of categorical OELs and an approach to 

developing occupational exposure guidance when data are limited or minimal. Some OEBs 
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are “order-of-magnitude” categories of hazard of substances and can be applied to ENMs 

(ISO, 2016; Kuempel et al., 2012; NIOSH, 2017a). The basis for assignment to such hazard 

categories are weight of evidence approaches utilizing standard data quality criteria 

(NIOSH, 2017a; OECD, 2014; Stone et al., 2014). Because of the pragmatic focus and 

immediate need in certain situations, occupational exposure banding utilizes available but 

often limited toxicological data to determine the potential range of chemical exposure levels 

that can be used as targets for ENM exposure controls. OEBs are not meant to replace OELs, 

rather they are risk management tools that can be used to control exposures.

5. In vivo and in vitro model systems in toxicology and risk assessment of 

ENMs

To put categorical approaches to risk assessment in perspective there is need to review some 

of the underlying issues pertaining to in vivo and in vitro models. This of particular 

importance with regard to extrapolation of in vitro and in vivo data to humans.

5.1. In vivo models

Generally, data in humans are not available for risk assessment of ENMs. When adequate 

exposure or dose and response data are available in animal models, QRA may be feasible. 

An important question is the extent to which data are available to evaluate the relevance of 

animal models to humans. This is of particular importance for nanomaterials because animal 

data are currently the primary basis for OEL development. There is a rich and long history 

supporting the use of animal models to make recommendations in the form of OELs to 

protect workers (Phalen et al., 2008; Rall, 1979). However, differences between humans and 

animals need to be considered in risk assessment, either through science-based 

extrapolations or the use of uncertainty factors. The deposition and clearance rates of inhaled 

particles are species-dependent, and there are differences in gross, sub-gross, and respiratory 

tract biology and anatomy (Phalen et al., 2008). Allometric relationships for respiratory 

physiologic parameters based on body weight and metabolism have been developed and 

evaluated from empirical data across species (U.S. EPA, 1994). These differences can result 

in differences in the internal dose of particles in the respiratory tracts in animals and 

humans.

Dose estimation of inhaled nanomaterials involves many of the same principles and concepts 

as for inhaled microscale particles, but also may involve differences in the distribution 

within tissues and clearance rates. For example, at 24 hours after 4–6 hour inhalation 

exposures to metal oxide nanoparticles in rats, nanoparticles were observed (via enhanced 

darkfield microscopy) in the lungs, lymphatics, pulmonary blood vessels, liver, spleen, and 

kidney (Guttenberg et al., 2016). Particle size has been shown to influence the 

biodistribution and biokinetics of particles (Balasubramanian et al., 2013; Kreyling et al., 

2013). Other factors may include agglomeration state, shape, surface properties, and 

solubility. In recent years, several dosimetry models focusing on nanomaterials deposition, 

translocation, retention, and/or clearance have been published (Asgharian and Price, 2007; 

Asgharian et al., 2014; Bachler et al., 2013 Sturm et al., 2015; 2017; Sweeney et al., 2015). 

In general, prediction of the deposited dose of inhaled nanoparticles based on airborne 
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particle size may be better understood than the fate of the nanoparticles following 

deposition.

The long-term clearance kinetics of respirable particles in rodents and humans is an 

important consideration in the QRA of inhaled particles including ENMs. Lung particle 

overloading in rats was described 30 years ago by Morrow (1988) as the continuous 

prolongation of particle lung clearance after reaching a retained mass burden-threshold. 

Overloading thresholds have also been described for particle surface area dose (Oberdörster 

et al., 1994a; b; Tran et al., 2000) and particle volumetric dose (Pauluhn, 2011, 2014), and 

these dose metrics help to explain particle-size dependent differences in particle clearance. 

For nearly as many years, the interpretation and use of rat overload dose and response data 

of inhaled particles in human hazard and risk assessment and OEL development has been 

discussed and debated (Borm et al., 2015; Cherrie et al., 2013; ECETOC, 2013; IARC, 

2010; ILSI , 2000; Kuempel et al., 2014; Morfeld et al., 2015; Oberdörster, 1995; Pauluhn, 

2014; Warheit et al., 2016; Yu, 1996).

The effect of overload kinetics on dose can be taken into account in QRA by using science-

based dosimetry models to estimate the human-equivalent respiratory tract doses to the 

rodent effect levels (e.g. ARA, 2017; ICRP, 2015). However, the role of particle 

characteristics (such as size, shape, and solubility) on the clearance and retention of the 

deposited particle dose has not been as thoroughly studied. The human and rat biological 

responses to equivalent mass, surface area, or volumetric particle lung doses are also not 

fully understood. With regard to lung cancer, the rat chronic bioassay data have been shown 

to give fewer false negatives than have the mouse and hamster data by comparison to 

particles classified by IARC as human carcinogens (Mauderly, 1997). ILSI (2000) 

concluded that the rat is a useful model for human non-neoplastic lung responses to PSLT, 

and in the absence of mechanistic data to the contrary, the rat model is also relevant to 

identifying potential carcinogenic hazards in humans. Overloading doses in rats have been 

shown to be equivalent on a mass basis to the retained particle doses measured in the lung 

tissues of workers in dusty jobs such as coal mining (IARC, 2010; Kuempel et al., 2014; 

NIOSH, 2011). IARC (2010) included rat bioassay data in its evaluation of the 

carcinogenicity of inhaled PSLT (carbon black and TiO2), and NIOSH (2011) used rat data 

in its hazard classification and REL development for nanoscale and microscale TiO2.

A less favorable view of rat models and overload by PSLT is that resultant lung tumors are 

unique to rats and overload particle exposures to PSLTs do not produce neoplastic responses 

to mice or hamsters or larger mammals such as humans or nonhuman primates, hence the rat 

data would not be relevant to workers. However, as noted in an editorial by Borm et al. 

(2015), the question about relevance for humans of both neoplastic and non-neoplastic 

effects observed in rats chronically exposed to PSLTs is still a subject for debate. Borm et al. 

(2015) identified a number of scientific questions that still need to be resolved, and they 

cited two papers to further contribute to the debate (Morfeld et al., 2015; Pauluhn, 2014). To 

date there is no clear resolution of this issue in the scientific community. Therefore, 

interpretations of the rat dose-response data for risk assessment have differed widely for 

inhaled PSLT including for nanoscale TiO2, using the same basic data (NIOSH, 2011; Relier 

et al., 2017; Warheit et al., 2016). While the scientific debate continues, dosimetric 
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adjustments to account for differences in PSLT aerosol particle size and respiratory tract 

disposition and/or clearance between rodents and workers can be used to adjust for 

toxicokinetic differences, and uncertainty factors can be considered for toxicodynamic 

differences (ICRP, 2015; Jarabek et al., 2005; Kuempel et al., 2015; Oller and Oberdörster, 

2016).

The utility of in vivo data for risk assessment will be predicated on the quality of input data, 

and animal toxicology studies should conform to good laboratory practice and international 

guidelines such as provided by the Organization for Economic Cooperation and 

Development (OECD, 2005; OECD, 2009). Factors to be considered in evaluating study 

quality include the adequacy of the study hypothesis, experimental design, sample size, 

assay methods, execution of experiments, statistical analysis, and interpretation of results 

(NTP, 2015). The relevance the animal model to humans and evaluation of dose metrics and 

kinetics are also important, as discussed above. In the design of toxicology studies of 

particles, sufficient doses should be included to characterize the dose-response relationship 

from low doses to over-loading doses (ILSI , 2000; Oberdörster, 1997; Kuempel et al., 2014; 

Pauluhn, 2011). Mice are another commonly used species in nanotoxicology studies, and 

further evaluations are needed to compare the dose-response relationships in mice to 

humans, and in other animal species, strains, and sexes (Teeguarden et al., 2014).

5.2. In vitro models

Many of the anticipated approaches to identify hazards of ENMs will involve the use of in 
vitro models, which are a key component of alternative test systems (Maier, 2011; Nel et al., 

2013; Oberdörster et al., 2005; Stone et al., 2014; Savolainen and Vartio, 2017). The use of 

in vitro testing for ENMs has increased dramatically in the last decade and the number of 

possible tests is large. In vitro tests may be useful in comparative potency analyses and 

categorical frameworks. In vitro assays should assess key events in the biological 

mechanism of action to ensure that appropriate endpoints are addressed (Stone et al., 2014). 

Since in vitro assays target specific processes, a combination of several in vitro assays are 

likely required to assess different aspects of hazard. Lai (2017) has identified the limitations 

of in vitro tests for ENMs (Table 2). Clearly, in vitro testing of ENMs is a critical part of 

hazard and ultimately risk assessment according to 21st century toxicology (NAS, 2007; 

NAS, 2017). Approaches suggested for using in vitro toxicology data of ENMs in risk 

assessment involve a tiered approach. The first tiers include physicochemical particle 

characterization and in vitro toxicology testing, followed by the selection of a subset of 

nanoparticles for a limited number of in vivo tests in rodents and comparison of dose-

response relationships to those for reference materials of each class/subclass of nanoparticles 

(Kuempel et al., 2012; Lai and Warheit, 2015; Lai, 2017; Nel et al., 2013; Oberdörster et al., 

2005; Stone et al., 2014). Biological mode of action data may be used in defining the 

categories by the performance of in vitro or in vivo high throughput genomics and or 

proteomics to investigate underlying mechanisms which can be tested further. As discussed 

in Section 3.2, a key issue in the use of in vitro data in hazard and risk assessment is to 

determine the in vitro doses that are equivalent to realistic in vivo exposures Oberdörster et 

al., 2005).
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6. Future directions and research needs

Much of the activity in generating categorical approaches to developing OELs for ENM is 

currently occurring with physical-chemical and in vitro data (Arts et al., 2014; Lai, 2017; 

Nel et al., 2013; Stone et al., 2014). However, various approaches need to be developed to 

optimize in vitro testing strategies. For example, one framework to evaluate ENM exposure 

characterization data for designing in vitro studies would provide useful information for risk 

assessment (Sharma et al., 2016). This work concluded that “... effective risk assessment of 

ENM depends on focusing in vitro testing on relevant exposure pathway with ENM in dose 

forms and at dose levels that reflect environmental transformation.” More of this type of 

thinking would help to improve the realism of risk assessment by including sufficient doses 

in in vitro and in vivo studies to characterize the dose-response relationship, including doses 

that reflect workplace exposure levels. Duration of exposure is another important 

consideration, and models are currently underdeveloped to quantitatively link and predict 

acute and chronic endpoints for inhaled particles.

More broadly, there are three research needs to enable risk assessment of ENMs for 

development of OELs. These are to: 1) determine the characteristics of categories that 

encompass these ENMs, with regard to physicochemical properties and biological mode of 

action; 2) apply the proposed priority schemes for standardized in vivo testing to develop 

comprehensive databases for qualitative and quantitative data analysis; and 3) identify the 

means to utilize physicochemical characteristics and in vitro data to incorporate into 

predictive modeling of exposure-response relationships and risk determinations. Efforts are 

occurring in each of these areas as discussed in this paper. However, in most instances they 

are pilot efforts and comprehensive data for validation are still needed.

One of the issues that arise in using a biomarker-based approach is that the earlier endpoints 

in an AOP may result in increased sensitivity compared with conventional approaches, 

which could result in OELs that are much lower than might be determined using in vivo data 

of apical endpoints if there is not a good understanding of the relationship between the 

biomarker and the apical endpoint. PODs based on these earlier biological responses might 

lead to OELs that are overly protective with regard to the risk of developing adverse health 

effects. This issue needs to be addressed. Nonetheless, the power of a systems biology 

approach is something that could be harnessed to support risk assessment and the 

development of OELs for ENMs.

7. Conclusions

The history of risk assessment for engineered nanomaterials generally spans less than 20 

years but during that time various approaches have been utilized. The scientific evidence 

basis for these approaches began with investigations of the differences in the dose-response 

relationships of respirable particles by size, i.e., ultrafine (nanoscale) and fine (microscale) 

particles. Generally, dosimetry models and methods are available to estimate equivalent 

deposited doses of inhaled nanoparticles in animals and humans, although data are much 

more limited to evaluate the long-term doses and the dose-response relationships across 

species. The realization that there are and could be many more ENMs than could be 
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effectively tested in animal models leads to thinking about the need for ways to look at 

categories of ENM or to group ENM in homogenous categories for hazard assessments and 

ultimately risk assessment. Generally, it is likely that risk assessments will rely increasingly 

on data on how ENMs can cause biological perturbations and focus more on underlying 

mechanisms. Many approaches have been tried and a path forward appears likely to emerge 

from these efforts.
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Fig. 1. 
The eras of risk assessment and development of occupational exposure limits for engineered 

nanomaterials.
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Fig. 2. 
Trajectory of risk assessments and development of occupational exposure limits for 

engineered nanomaterials.

Abbreviations:

BSI: British Standards Institute

IFA: Institute for Occupational Safety and Health of the German Social Accident Insurance

TiO2: Titanium dioxide

CNT/CNF: Carbon nanotubes and carbon nanofibers
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Fig. 3. 
Example of proposed occupational exposure limits (OELs) for carbon nanotubes and carbon 

nanofibers, with comparison to existing regulatory OELs for microscale carbonaceous 

particles.

Notes:

OELs shown are for 8-hr time-weighted average concentration.

In Aschberger et al. (2010), OEL for MWCNT1 is 2 μg/m3 based on data from Pauluhn 

(2010b); OEL for MWCNT2 is 1 μg/m3 based on LOAEL from Ma-Hock et al. (2009).

In Nakanishi (ed.) (2011), the OEL is limited to a period of 15-yr. Information also provided 

in Nakanishi et al. (2015).

BSI (2007) OEL for CNT (not shown) is 0.01 f/ml (benchmark exposure level) for high 

aspect ratio nanomaterials, established at 1/10th of asbestos OEL.

Abbreviations:

PEL: Permissible Exposure Limit, U.S. Occupational Safety and Health Administration 

(OSHA) (29 CFR 1910 CFR 1910.1000, Table Z-1)

CNT: Carbon nanotubes

CNF: Carbon nanofibers

MWCNT: Multi-walled carbon nanotubes
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Fig. 4. 
Frontier of risk assessment for developing occupational exposure limits for engineered 

nanomaterials.

Abbreviations: ENM: engineered nanomaterial; OEL: Occupational exposure limit; QSAR: 

quantitative structure-activity relationship
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Table 1

Various dose-response models for TiO2 – Lung dose and airborne exposure concentration estimates are 

associated with 1/1000 excess risk of lung cancer after a 45-year working lifetime (Table 4–6 from NIOSH, 

2011).
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Table 2

Limitations of in vitro test data for ENMs. Adapted from (Lai, 2017).

• No single short-term test can be used to predict all health effects of ENMs

• A large number of false positive and false negative results occur

• Effects at high dose levels may not extrapolate to low-dose levels

• Endpoints identified in short-term tests may not be predictive of long-term exposure effects

• Different cell lines may yield different responses

• Some in vitro tests involve release of protein, but various types of ENMs can absorb protein, thus confounding results (Dutta et ah, 2007)

• Various physico-chemical characteristics of ENMs can interfere with some in vitro tests (e.g. fluorescent quantum dots in a fluorescent assay) 
(Monteiro-Riviere and Inman, 2006)

• Particle kinetics of ENMs in culture media often not considered, resulting in erroneous interpretations of dose-response relationship (Mecke et 
ah, 2005)
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